
CLASSIFICATION OF FINITE ABELIAN GROUPS

1. The main theorem

Theorem 1.1. Let A be a finite abelian group. There is a sequence of prime
numbers

p1 ≤ p2 ≤ · · · ≤ pn
(not necessarily all distinct) and a sequence of positive integers

a1, a2, . . . , an

such that A is isomorphic to the direct product

A
∼−→Zp

a1
1
× Zp

a2
2
× · · · × Zpann .

In particular

|A| =
n∏

i=n

paii .

Example 1.2. We can classify abelian groups of order 144 = 24× 32. Here
are the possibilities, with the partitions of the powers of 2 and 3 on the right:

Z2 × Z2 × Z2 × Z2 × Z3 × Z3; (4, 2) = (1 + 1 + 1 + 1, 1 + 1)

Z2 × Z2 × Z4 × Z3 × Z3; (4, 2) = (1 + 1 + 2, 1 + 1)

Z4 × Z4 × Z3 × Z3; (4, 2) = (2 + 2, 1 + 1)

Z2 × Z8 × Z3 × Z3; (4, 2) = (1 + 3, 1 + 1)

Z16 × Z3 × Z3; (4, 2) = (4, 1 + 1)

Z2 × Z2 × Z2 × Z2 × Z9; (4, 2) = (1 + 1 + 1 + 1, 2)

Z2 × Z2 × Z4 × Z9; (4, 2) = (1 + 1 + 2, 2)

Z4 × Z4 × Z9; (4, 2) = (2 + 2, 2)

Z2 × Z8 × Z9; (4, 2) = (1 + 3, 2)

Z16 × Z9 cyclic, isomorphic to Z144; (4, 2) = (4, 2).

There are 10 non-isomorphic abelian groups of order 144.

Theorem 1.1 can be broken down into two theorems.
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Theorem 1.3. Let A be a finite abelian group. Let q1, . . . , qr be the distinct
primes dividing |A|, and say

|A| =
∏
j

q
bj
j .

Then there are subgroups Aj ⊆ A, j = 1, . . . , r, with |Aj | = q
bj
j , and an

isomorphism

A
∼−→A1 ×A2 × · · · ×Ar.

Let p be a prime number. A finite group (abelian or not) is called a
p-group if its order is a power of p.

Theorem 1.4 (Abelian p-groups). Let p be a prime and let A be a finite
abelian group of order pN for some N ≥ 1. Then there is a sequence of
positive integers c1 ≤ c2 · · · ≤ cs and an isomorphism

A
∼−→Zpc1 × Zpc2 × · · · × Zpcs .

Theorem 1.3 is essentially a series of applications of the Chinese Remain-
der Theorem, and is not very hard, apart from one Key Lemma. It will be
presented in class.

Theorem 1.4 is a more complicated induction argument that needs to be
studied in order to be understood. It will be carried out in the next section.

Guide to the proof. Here is a short summary to help guide your reading
of the proof: Theorem 1.4 is obvious when the group A has order p. So we
assume it is true for abelian groups of order pk for k < N . We introduce
the notion of exponent of a finite p-group and choose an element a ∈ A of
maximal order, which is equal to the exponent of A. We then show that there
is a subgroup H ⊂ A of order p such that H ∩ 〈a〉 contains just the identity.
It follows that the image ā ∈ A/H of a is of maximal order – in other words,
its order is the exponent of A/H – and since |A/H| < |A|, the induction step

implies that the theorem holds for A/H. Thus A/H
∼−→〈a〉 × B′ for some

B′, and a short argument then allows us to conclude that A
∼−→〈a〉 × B,

where B = B̃′ is the subgroup of A corresponding to the subgroup B′ of
A/H.

This completes the proof of the Lemma, and then a second application of
the induction step, this time to B, completes the proof of Theorem 1.4.

2. The induction step (a very long lemma)

Let p and A be as in Theorem 1.4. We prove it by induction on the integer
N , of course. If N = 1 then |A| = p. In that case we know that A is a cyclic
group isomorphic to Zp. So we assume the theorem is known for groups of

order pk with k < N . The induction step is to show that it is then known
when |A| = pN .
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Definition 2.1. Let A be a finite p-group. The exponent of A is the largest
integer m such that there is an element a ∈ A of order exactly pm. In other

words ap
m

= e but ap
m−1 6= e.

Thus if A is cyclic of order pN , the exponent of A is N : a generator has
order pN but not pN−1. We need the following facts about the exponent.

Fact 2.2. Let A be a finite p-group, H ⊂ A a normal subgroup. Suppose
the exponent of A is m. Then the exponent of A/H is ≤ m.

Proof. Let π : A → A/H be the reduction map. Every element x ∈ A/H is
of the form π(a) for some element a ∈ A. We know that ap

r
= e for some

r ≤ m. It follows that

xp
r

= (π(a))p
r

= π(ap
r
) = π(e) = e.

So xp
m

= e for all x ∈ A/H,which implies that the exponent of A/H is at
most m. �

Fact 2.3. Let A be a finite p-group, H ⊂ A a normal subgroup, a ∈ A.
Suppose

〈a〉 ∩H = {e},
where 〈a〉 ⊂ A is the cyclic subgroup generated by a. Suppose a is of order
pm. Let π : A → A/H be the reduction map and let ā = π(a) ∈ A/H. Then
ā is of order pm in A/H.

Proof. In any case āp
m

= e for the reason already seen in the proof of Fact
2.2. Suppose ā is of order less than pm, say ās = e for some 1 ≤ s < pm.
That means that π(as) = e, or as ∈ kerπ, which implies that as ∈ H. Thus
as ∈ 〈a〉 ∩ H = {e}, which implies that as = e, and this contradicts the
assumption that a is of order pm. �

Here is the main step in the proof.

Lemma 2.4. Let A be a finite abelian p-group of order pN and exponent
m, so that the cyclic group 〈a〉 has order pm. Let a ∈ A be an element of
order pm. Then there is a subgroup B ⊆ A such that B ∩ 〈a〉 = {e}, and the
inclusion of B and 〈a〉 as subgroups of A defines an isomorphism

B × 〈a〉 ∼−→A.

Proof. This is an induction on N . If N = 1 then A is cyclic and we are
done. Suppose we know the statement for 1 ≤ k < N . We have already
chosen a of maximal exponent. Now we choose h ∈ A of smallest order such
that h /∈ 〈a〉. (We will soon see that h is of order p.) If no such h exists,
then every h ∈ A belongs to 〈a〉 and so A = 〈a〉 is cyclic, and we can take
B = {e}.

So we assume such an h exists. Let u = hp. If u = e then h has order p.
If not, then h has order pr for some r > 1, by Lagrange’s theorem, because

A is a p-group. And then up
r−1

= hp(p
r−1) = hp

r
= e, so u has smaller order
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than h, which by definition implies that u ∈ 〈a〉, say u = as, for some integer
s ∈ {1, 2, . . . pm − 1}. Thus hp = as, so

(as)p
m−1

= (hp)p
m−1

= hp
m

= e

since m is the exponent of A. It follows that as has order strictly less than
pm, so as is not a generator of the cyclic group 〈a〉. Thus s is divisible by p,
say s = pc. Then

hp = (ac)p ⇒ (a−ch)p = e.

Let h′ = a−ch. If h′ ∈ 〈a〉 then so is ach′ = h, but h was chosen not in 〈a〉,
contradiction. So h′ ∈ A is an element of order p that is not in 〈a〉. Since h
has the smallest order of elements not in 〈a〉, it follows that h has order p
after all.

Let H =< h >. We see H = | < h > | = p, and 〈a〉 ∩ H = {e}, since
h /∈ 〈a〉. Consider the composite homomorphism

〈a〉 ↪→ A → A/H.

We call this composite φ, and write ā = φ(a). Since 〈a〉∩H = {e}, it follows
from Fact 2.3 that ā = φ(a) has order pm.

Now it follows from Fact 2.2 that A/H has exponent at most m. But
ā ∈ A/H has order exactly pm, so A/H has exponent m. On the other hand
|A/H| has order |A|/|H| = pN/p < |A|. By induction on N , it follows that
there is a subgroup B′ ⊂ A/H such that B′ ∩ 〈ā〉 = {e} and

B′ × 〈ā〉 ∼−→A/H.
In particular

|A/H| = |A|/p = |B′| · |〈ā〉|; |A| = p · |B′| · |〈ā〉| = p · |B′| · pm.

We know that there is a unique subgroup B̃′ ⊂ A containing H such that
B̃′/H = B′, and thus

|B̃′| = p · |B′|.
We claim that

〈a〉 ∩ B̃′ = {e}.
This implies that the homomorphism

φ′ : 〈a〉 × B̃′ → A

has trivial kernel. Thus

pN = |A| ≥ |〈a〉 × B̃′| = |〈a〉||B̃′| = pm · |B̃′| = pm · p · |B′| = |A|.
Thus φ′ is the isomorphism we are seeking.

It remains to prove 〈a〉 ∩ B̃′ = {e}. But if b ∈ 〈a〉 ∩ B̃′ then the coset
bH ∈ A/H belongs to

〈aH〉 ∩ B̃′/H = 〈ā〉 ∩B′ = eA/H .

In other words, b ∈ H, but b ∈ 〈a〉, hence b = e.
�
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3. Completion of the proof of Theorem 1.4

Now let A be any abelian p group. We have seen that A is isomorphic to
a product

A
∼−→〈a〉 ×B,

where B is a subgroup of A. We can write this

A
∼−→B × Zpm .

Now |B| < |A|, so by induction B is isomorphic to a product

B
∼−→Zpc1 × Zpc2 × · · · × Zpcs−1

where c1 ≤ c2 · · · ≤ cs−1. Since m is the exponent of A, we know that
cs−1 ≤ m. Thus setting cs = m, we have

A
∼−→Zpc1 × Zpc2 × · · · × Zpcs

and this completes the proof.


