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In this talk, we will focus on defining Eisenstein series on reductive groups and introducing some of their

properties, including the meromorphic continuation and the computation of its constant term.

1 Motivation

Why do we care about Eisenstein series and their constant terms? The theory of Eisenstein series is one

of the fundamental tools for the study of automorphic forms and an indispensable part of the Langlands

program1. The Langlands-Shahidi method is that of studying L-functions that appear in the constant terms

of Eisenstein series. This method has its roots in the classical Eisenstein series on the upper half plane h.

In the classical setting it accounts for the continuous spectrum for Riemann surfaces Γ\h, as Γ ranges over

conguruence subgroup of SL2(Z).

Let s ∈ C and z ∈ h. Consider the following Eistenstein series defined at the cusp of infinity by

E(z, s) =
∑

γ∈B2(Z)\Γ

Im(γz)s

Here Γ = SL2(Z) and B2(Z) = {± ( 1 b
0 1 ) | b ∈ Z}. The Fourier expansion at ∞ is given by

E(z, s) = ys + π1/2Γ
(
2s−1

2

)
ζ(2s− 1)

Γ(s)ζ(2s)
y1−s + πsΓ(s)−1ζ(2s)−1

∑
n ̸=0

|n|−1/2

 ∑
ab=|n|

(a
b

)s−1/2

Ws(nz)

Here z = x+ iy and Ws(z) is the Whittaker function defined by

Ws(x+ iy) = 2y1/2Ks−1/2(2πy) exp(2πix)

and Kv(z) is the K-Bessel function

Kν(z) =

∫ ∞

0

e−z cosh t cosh (νt)dt,

where Re(z) > 0 and Re(ν) > −1/2.

Recall the completed L-function for the Riemann zeta function ζ(s):

L(s) = π−s/2Γ
(s
2

)
ζ(s)

1It determines the continuous spectrum of the group as well as all the non-cuspidal representations appearing discretely in

the spectrum as ressidues of these series (which are meromorphic functions of several variables)
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With a suitable normalization, we can see that the coefficient of y1−s in the expansion of E(z, s) is

L(2s− 1)

L(2s)

On the other hand, the non-constant Fourier coefficients of E(z, s) are

1

L(2s)

and they control the constant term via the quotient. The poles of E(z, s) as a function of s are controlled

by those of L(2s− 1) and are precisely those of the constant term.

This phenomenon is quite general and in fact constant terms of general Eisenstein series are ratios of L-

functions, while their non-constant Whittaker Fourier coefficients are inverses of these L-functions. We will

see the connection spelled out in the following lecture.

2 Preliminaries

We will introduce some notations and recall some facts about reductive groups.

Let k be a number field and G be a connected reductive group over k. Fix a minimal parabolic P0 of G. Let

P be a parabolic of G such that P0 ⊂ P (we call such a P standard). Write P0 = M0N0, where N0 is the

unipotent radical of P0 and M0 is a Levi factor of P0. Note that any two Levi subgroup are conjugate by a

unique element in N0. Fix a Levi decomposition P = MN of P . Then we have N0 ⊂ N . We can also fix M

uniquely by requiring M0 ⊂ M .

The adelization of G satisfying G(Ak) = P0(Ak)K, which follows from the Iwasawa decomposition of G(kv)

at each places.

Given an algebraic group H over k, let X(H)k denote the group of k-rational characters of H, i.e., all

k-morphisms of H into Gm. We write X(H) for X(H)k̄.

We can assume by restriction of scalar that k = Q. Let A = AQ be the adeles. Set

aG = Hom(X(G)Q,R).

One can define a homomorphism

HG : G(A) → aG

by2

exp⟨HG(g), χ⟩ = |χ(g)| =
∏
v

|χ(gv)|v.

Let G(A)1 = ker(HG). We also define the duals:

a∗G = X(G)⊗Z R, a∗G,C = a∗G ⊗R C = X(G)⊗Z C

Given an irreducible unitary representation π of G(A), define an action of ia∗G on the representation by

πν(x) = π(x) exp⟨ν,HG(x)⟩, ν ∈ ia∗G.

2see the details of this definition can be found on p12 of Shahidi
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Note that3 G(A) = G(A)1 ×AG(R)0, where AG is the split component of G.

Now we would like to recall the induced representation on G(A) from P (A). Let ν ∈ a∗P,C = a∗M,C. The

induced representation is defined by

IP (ν) = IndP (A)↑G(A)(RM,disc,ν ⊗ 1N )

Similar to notation introduced above,

RM,disc,ν(x) = RM,disc(x) exp⟨ν,HM (x)⟩.

The representation RM,disc : M(A) → L2
disc(M(Q)\M(A)1) is given by right regular action. In fact, M(A)

acts by projecting onto M(A)1 first. L2
disc is called the discrete spectrum. In the classical case of Γ\h,

roughly speaking, it is spanned by the constant functions and weight zero Maass cusp forms.

Let VP denote the underlying vector space of IP (v). It consists of all measurable functions

ϕ : N(A)M(Q)AM (R)0\G(A) → C

such that

1. The function ϕx : M(Q)\M(A)1 → C defined by ϕx(m) = ϕ(mx) belongs to L2
disc(M(Q)\M(A)1) for

all x ∈ G(A).

2. ||ϕ||2 =
∫
K

∫
M(Q)\M(A)1 |ϕ(mk)|2dmdk =

∫
K

∫
M(Q)\M(A)1 |ϕk(m)|2dmdk < ∞.

Note that both conditions are needed as no one implies the other. Let y ∈ G(A). The action of IP (ν) on VP

is defined by

(IP (v)(y)ϕ) (x) = ϕ(xy) exp⟨ν + ρP , HP (xy)⟩ exp⟨−(ν + ρP ), HP (x)⟩.

Note that in this definition, the space VP is independent of ν but the dependence on ν is reflected in the

representation IP (ν). The rationale of this weird-looking definition is to preserve the unitarity and be

compatible with the right regular action.

3 Eisenstein series

Now we are finally ready to define the Eisenstein series attached to ϕ.

Definition 3.1. Given x ∈ G(A), ϕ ∈ VP and ν ∈ a∗P,C = a∗M,C, let

E(x, ϕ, ν) =
∑

δ∈P (Q)\G(Q)

ϕ(δx) exp⟨ν + ρP , HP (δx)⟩

Here ρP denotes half the sum of roots in n = Lie(N).

We are also gonna define when two parabolics P, P ′ ⊃ P0 are called ”associated.”

3the superscript 0 means connected component
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Definition 3.2. Let A0 be the maximal split subtorus of a maximally split torus T in G defined over k = Q.

Let a0 denote aA0 . The Weyl set W (aP , aP ′) is the set of linear isomorphisms between aP and aP ′ that are

obtained by restricting elements of the Weyl group W (a0) := W (A0, G). We say P and P ′ are associated if

W (aP , aP ′) ̸= ϕ.

Suppose P and P ′ are associated. Given s ∈ W (aP , aP ′), choose its representative ws ∈ G(Q) as an element

in W (a0). Now we define the corresponding global intertwining operator4

M(s, ν) : VP → VP ′

by (the GL2 definition can be found in Bump p.227 (6.7))

(M(s, ν)ϕ)(x) =

∫
N ′(A)∩wsN(A)w−1

s \N ′(A)
ϕ(w−1

s nx) exp⟨ν + ρP , HP (w
−1
s nx)⟩ exp⟨−(sν + ρP ′), HP ′(x)⟩dn

This operator intertwines IP (ν) with IP ′(sν). We have

E(x, IP (ν)(y)ϕ, ν) = E(xy, ϕ, ν)

M(s, ν) (IP (ν)(y)) = (IP ′(sν)(y))M(s, ν)

The convergence of the Eisenstein seriesso defined has been established in a suitable domain for a dense

subset V 0
P ⊂ VP . The space V 0

P consists of all the ϕ ∈ VP satisfying

1. ϕ is K-finite, i.e. the space spanned by {IP (ν)(k)ϕ|k ∈ K} is finite dimensional

2. It is a subspace of a finite sum of irreducible sub-representations of VP under the action IP (ν) of G(A).

Given P , set

(a∗P )
+ = {Λ ∈ a∗P |⟨Λ, α∨⟩ > 0}.

Here α is the unique simple root of A in n, where A is the split component of M . Therefore, (a∗P )
+ is the

interior of the fundamental Weyl chamber associated to α.

Lemma 3.1 (Langlands). Suppose ϕ ∈ V 0
P and ν belongs to the open subset

{ν ∈ a∗P,C|Re(ν) ∈ ρP + (a∗P )
+}.

Then E(x, ϕ, ν) and M(s, ν)ϕ both converge absolutely to an analytic function of ν on this open subset.

We can analytically continue both E(x, ϕ, ν) and M(s, ν)ϕ to all of a∗P .

Theorem 3.1 (Langlands). Suppose ϕ ∈ V 0
P . Then E(x, ϕ, ν) and M(s, ν)ϕ can be extended to meromorphic

functions of ν ∈ a∗P satisfying

E(x,M(s, ν)ϕ, sν) = E(x, ϕ, ν).

If we have another P ′′ ⊃ P0 associated to P ′, then for t ∈ W (aP ′ , aP ′′)

M(ts, ν) = M(t, sν)M(s, ν).

When ν ∈ ia∗P , both E(x, ϕ, ν) and M(s, ν) are analyticand M(s, ν) extends to a unitary operator from VP

to VP ′ .
4overloading the notation s?
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4 Computation of the constant term

We first calculate the constant term assuming P is a maximal parabolic subgroup. Let P ′ be another

standard maximal parabolic subgroup. Write the Levi decomposition P ′ = M ′N ′ with M ′ = Mθ′ ⊃ M0.

Here the simple foots ∆(A0,M)− θ′ generates n′ and θ′ is the set of simple roots of A0 in M ′. By definition,

the constant term of E(·, ϕ, ν) along P ′ is

EP ′(x, ϕ, ν) =

∫
N ′(Q)\N ′(A)

E(nx, ϕ, ν)dn =

∫
N ′(Q)\N ′(A)

∑
δ∈P (Q)\G(Q)

ϕ(δnx) exp⟨ν + ρP , HP (δnx)⟩dn

If we write ϕν(x) = ϕ(x) exp⟨ν + ρP , HP (x)⟩, then it becomes

EP ′(x, ϕ, ν) =

∫
N ′(Q)\N ′(A)

∑
δ∈P (Q)\G(Q)

ϕν(δnx)dn.

=

∫
N ′(Q)\N ′(A)

∑
δ∈P (Q)\G(Q)/N ′(Q)

∑
γ∈N ′(Q)∩(δ−1P (Q)δ)\N ′(Q)

ϕν(δγnx)dn.

It is invariant from left because if for η ∈ P (Q) we have δγ = ηδ, then γ = δ−1ηδ lies in N ′(Q)∩(δ−1P (Q)δ).

After absorbing γ into n, we can rewrite the integral as∫
N ′(Q)∩(δ−1P (Q)δ)\N ′(A)

∑
δ∈P (Q)\G(Q)/N ′(Q)

ϕν(δnx)dn.

By the Bruhat decomposition for G(Q), we know δ ∈ P (Q)\G(Q)/N ′(Q) can be written as

δ = wγ′.

Here γ′ ∈ P ′(Q)/N ′(Q) and w ∈ NG(A0) ∩G(Q). Recall that

G(Q) =
⋃

w∈NG(A0)

P (Q)wP ′(Q).

Using these facts we can rewrite one term of the integral by∫
N ′(Q)∩(γ′−1w−1P (Q)wγ′)\N ′(A)

ϕν(wγ
′nx)dn =

∫
N ′(Q)∩(γ′−1w−1P (Q)wγ′)\N ′(A)

ϕν(wγ
′nγ′−1

γx)dn

= c(γ′)

∫
N ′(Q)∩(w−1P (Q)w)\N ′(A)

ϕν(wnγ
′x)dn

The last step follows from the fact that γ′ normalizes N ′(A) and N ′(Q) and we can apply the change of

variable γ′nγ′−1 7→ n. Here c(γ′) is a constant depending on γ′.

Next, we continue to simplify this integral.

Let w̃ be an element of the double coset P (Q)\G(Q)/N ′(Q) represented by w, which can be regarded as an

element of the Weyl group W (A0, G).

Let Φ+ = Φ+(A0, G) denote the positive roots of A0 in G and Φ+
θ the positive roots of A0 in M . In fact,

the set of all the positive roots of A0 in M is a subset of Φ+. Define the sets

Φ1
θ = {α ∈ Φ+

θ |α = w̃(β), β ∈ Φ+ − Φ+
θ′}

Φ2
θ = {α ∈ Φ+

θ |α = w̃(β), β ∈ Φ+
θ′}

These sets have the following properties:
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• If α, α′ in Φ1
θ and α+ α′ is a root, then α+ α′ ∈ Φ1

θ.

• If α ∈ Φ1
θ, α

′ ∈ Φ2
θ and α+ α′ is a root, then α+ α′ ∈ Φ1

θ.

Let N1 be the unipotent subgroup of M whose Lie algebra is generated by root vectors Xα with α ∈ Φ1
θ.

Then N1 is the unipotent radical of a parabolic subgroup of M .

Since5 w−1N1w ⊂ N ′ and

w−1P (Q)w ∩ w−1N1(Q)w = w−1M(Q)w ∩ w−1N1(Q)w = w−1N1(Q)w,

we can break the integration over w−1P (Q)w ∩N ′(Q)\N ′(A) as a product over(
w−1P (Q)w ∩N ′(Q)

)
(w−1N1(A)w)\N ′(A)

and

w−1P (Q)w ∩N ′(Q) ∩ (w−1N1(A)w)\w−1N1(A)w = w−1N1(Q)w\w−1N1(A)w = N1(Q)\N1(A)

Thus, the integral above becomes∫
(w−1P (Q)w∩N ′(Q))(w−1N1(A)w)\N ′(A)

(∫
N1(Q)\N1(A)

ϕν(n1wnγ
′x)dn1

)
dn.

Assume that ϕ is chosen such that ϕy is in L2
cusp(M(Q)\M(A)1). The inner integral equals to

exp⟨ν + ρP , HP (wnγ
′x)⟩

∫
N1(Q)\N1(A)

ϕ(n1wnγ
′x)dn1.

For y = wnγ′x, ϕy is in L2
cusp(M(Q)\M(A)1). Thus6, the integral vanishes unless Φ1

θ is empty. In that case,

N1 is trivial. Up to this point, we have not yet use the fact that P, P ′ are maximal. With this assumption,

we can conclude M ′ = w−1Mw.

Since γ′ ∈ P ′(Q)/N ′(Q) ∼= M ′(Q) and M ′(Q) = w−1M(Q)w, we can assume γ′ = 1 in the Bruhat decom-

position δ = wγ′. There are two different possibilities:

1. w̃(α) > 0, which gives P = P ′.

2. w̃(α) < 0, which gives wP ′w−1 is the parabolic subgroup ofG opposed toG. Consequently, w−1P (Q)w∩
N ′(Q) = {1}. Since γ′ = 1, the original integral we have been working on becomes∫

N ′(A)
ϕν(wnx)dn

which is a meromorphic function of ν on all of a∗P,C.

We summarize the computation above with the following:

Theorem 4.1. Assume for every y ∈ G(A) we have ϕy ∈ L2
cusp(M(Q)\M(A)1), then the constant term

EP ′(x, ϕ, ν) =

∫
N ′(Q)\N ′(A)

E(nx, ϕ, ν)dn

5this is by definition of θ′ and Φ1
θ

6if Φ1
θ is not empty, then we are integrating a cusp form against a nilpotent, which gives 0
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is zero unless θ′ = w̃(θ) for some w ∈ W (A0, G), i.e. M ′ = w−1Mw.

If P = P ′, then EP (x, ϕ, ν) = ϕν(x).

If P ′ is opposite to w−1Pw, then for Re(ν) ∈ ρP + (a∗P )
+

EP ′(x, ϕ, ν) = ϕν(x)δθ,θ′ +

∫
N ′(A)

ϕν(wnx)dn

(The equivalent statement for GL2 can be found in Bump p353 (7.15)) The general case involves the global

intertwining operator M(s, ν) we introduced earlier. If P, P ′ are two standard parabolic subgroups of G of

the same rank, then under the same assumptions,

EP ′(x, ϕ, ν) =
∑

s∈W (aP ,aP ′ )

(M(s, ν)ϕ)(x) exp⟨sν + ρP ′ , HP ′(x)⟩.

Note that one can deduce the maximal case from this. The proof of the general case needs to take into

consideration of the contribution of s ∈ W (aP , aP ′) that’s not {±1}.
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