RIBET’S CONVERSE THEOREM

YU-SHENG LEE

In this note we discuss the relation between Eisenstein congruences and Ribet’s converse to
the Herbrand-Ribet theorem. Following [Ski09], we treat the theorem as a specialized case of the
Iwasawa main conjecture and emphasize the role of the congruence modules. Throughout, let p be
an odd prime, x: Gq — Z; be the p-th cyclotomic character, and

w=7: Gq = Gal(Q(y)/Q) = Ff = iy

be the Teichmuller character.

1. THE HERBRAND-RIBET THEOREM

Let A = Cl(Q(up)) ® Z,, be the p-primary part of the field Q(pp). The action of Gal(Q(x,)/Q)
on A gives a decomposition

p—2
A= An
n=0
where the Galois group acts on A, by w™. Recall that p is said to be irregular if A # 0, and we are
interested in the finer problem of whether A,, # 0.
When n is even, the Kummer-Vandiver conjectuere states that A, should be trivial. Using the

Stickelberger elements, Herbrand has shown that Ag = A; = 0, and if A, ; # 0 for some even
k < p—1, then p divides the k-th Bernoulli number Bj defined by

t .
b1 ZBnﬁ
n=0

We refer to [Was82| for a detailed discussion of these facts. On the other hand, Ribet has shown
that the converse of Herbrand’s result is also true.

Theorem 1.1. [Rib76] Let 2 < k < p — 1 be an even number. If p | By, then A,_; # 0.

Remark 1.2. By the von Staudt theorem we have val,(Bp—1) = —1. This is compatible with the
fact that A1 = 0.

We first reinterpret A, as Selmer groups. Let G = Gq, H = Gq(y,), A = Gal(Q(up)/Q) = G/H
and W = F(w"), define

Hi(Q, W) = ker <H1(Q, w) = [[H' I, W)).
l

1



2 YU-SHENG LEE
Since p { #A, we can stare at the inflation-restriction exact sequence

YA, W) —— HYG, W) —>— HY (H,W)» ——— H*(A,W)

H | ! |

Hl(Ifa W) — va Hl(Ivv W)

and the isomorphism H'(H,W)* = Homa (H, W), then realize that
HH(Q,W) = Hi(Q(p,), W)™ = {¢ € Homa (H,W) | f(I,) = 0 for all v} = Hom(A,,F).

To show that A,, # 0, it suffices to show that H}(Q, F(w™)) is nontrivial, or equivalently, that there
exists a non-split extension of Galois representations

0—>Fw")—>p—>F—=0

that splits everywhere locally. We will find such an extension by studying the congruences between
Galois representations of modular forms.
Consider the classical level 1 Eisenstein series Ej of weight k

B, = C(12k) + Zak_l(n)q”, k> 4.

The constant terms w =

_2—% have the following congruence relations.

(1) The values By/k lie in Z,, if and only if (p — 1) { k.
(2) f k=K #£0 mod (p—1), then
Bk- _ Bk/
A mod p.
It follows that if k& < p — 1 is even and p | By, the Eisenstein series Ej 1) have p-integral
Fourier coefficients and the constant term is divisible by p. We may thus assume k£ > 4 and Ej is
such an Eisenstein series. Then there exists k = 4a + 6b such that

1=k
2

F:=Ej — (240E4)*(—504F)°

is a nonzero level 1 cusp form of weight k. The Fourier coefficients of F' are congruent to those of
the Eisenstein series

ag(F) = ay(Ey) =1+ 01 mod p.

Example 1.3. Consider Bjs = —691/2730, then Ej5 — (240E,)3 is a nonzero multiple of the
Ramanujan A function.

Let S = Sk (1, Z,) be the space of cusp forms and T = Ty (1,Z,) C Endgz,(S) be the Z,-subalgebra
generated by the Hecke operators. We have the following facts.
(1) The Hecke algebra T is reduced and finite flat over Z,,.
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(2) There exists a perfect bilinear pairing
TxS—Z, (T,f)—al(Tf)

which identifies S = Hom(T,Z,). A cusp form f is a Hecke eigenform if and only if it
corresponds to a homomorphism of Z,-algebras.

(3) The Q,-algebra T ® Q,, is semi-simple and has a decomposition T® Q,, = [], K into finite
extensions over Q,, There is a correspondence between the fields (or the minimal primes of
T) and the conjugacy classes of Hecke eigenforms.

Since FEj, is a Hecke eigenform, the Z,-module homomorphism associated to F'
n:T—=F,, Ti—aF)=1 + 571 mod p
becomes a ring homomorphism after modulo by p.

Lemma 1.4 (Deligne-Serre lifting). There exists an eigenform f € Si(1,O), where O is the ring
of integer of a finite extension over Q,, with a uniformizer w, such that

ag(f) =141 mod (w).

Proof. We apply the going-down to the maximal ideal m := ker(n) in T. Since m N Z, = (p), there
exists a minimal prime ideal p C T such that p N Z, = (0). The quotient T/p is isomorphic to
a ring O as in the statement. Let f be the eigenform corresponding to the ring homomorphism
T — T/p =2 O. The congruence property follows from that (z) pullbacks to m. O

The irreducible Galois representation associated to f
pr: Gq = GLo(K), K =FracO
is unramified away from p and satisfies trps(Frob,) = ae(f) for all £ # p. It follows from
(1) trpy(Froby) = ag(f) = 14+ 571 = 14 x* ! (Frob,) mod (w)

and the Chebotarev’s density that trps(0) = 1+ x* (o) mod (w) for all o € Gq. Therefore, the
semi-simplified reduction p* is isomorphic to w*~! @ 1. To find a lattice whose reduction gives the
desired non-split extension (up to a twist), we need to employ Urban’s lattice construction.

Proposition 1.5 ([Urb01]). Let p: Gq — GL2(K) be an irreducible Galois representation such
that

trp = x1+ x2 mod a=(w)".
for characters x;: Gq — O that are distinct modulo (w). Then there exists a stable lattice
L C K? whose reduction is a non-split extension between y; and y2 modulo a.

Proof. Observe that det p(0) = trp(0?) — trp(c)?/2 and therefore
det(XT — p(0)) = (X — x1(0))(X — x2(0)) mod a.

Since x; are distinct modulo (w), we can pick og € Gq whose characteristic polynomial has distinct
roots modulo (w). By the Hensel lemma, the the roots lift to distinct eigenvalues in O. We pick a
basis {v1,v2} of eigenvectors and write

p(UO) - (al a2> , o, €0, o= Xi(UO) mod a.
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Since trp(ooy) = x1(o0§) + x2(cog) mod a, the relation

n n n n g bU
ol + dot} = a(o)af + xalo)of mod e, plo) = (50 1)

holds for all n and o € Gq. And since {(1,1), (a1, a2)} generate O?, we actually have
ae = x1(0), dy =x2(c) mod a

for all o € Gq and thus
(1) ay,ds, € O for all 0 € Gq,
(2) bycr = agr —agar € O for all 0,7 € Gq and byer =0 mod a.

Let C = {cs | 0 € O[Gql} be the O-submodule in K generated by all ¢, € Gq. Then C is nonzero
because p is irreducible and it is actually a fractional ideal since the Galois group is compact. We
put £1 = Ovy, Lo = Cvg and L = L1 @ Lo, which is the stable lattice generated by v over O[Ggq].
By above, the reduction of £ modulo a is an extension

(2) 0—>O/a(x2)§zg—>2—>zl%(’)/a(xl)—>0
as C/aC = O/a. We claim that £ has no quotient on which Gq acts by 2. Otherwise

(p(00) — x2(00))v1 = (1 — a2)vy  mod a,

and therefore vy lies in the kernel, which contradicts that v; generates £. In particular, the extension
gives a nontrivial class in ExtéQ (X1, X2) = HY(Q, O/a(x2x1 h)). O

Remark 1.6. The proposition was proved for the more general setting when O is local Henselian
and p** is the sum of mutually non-isomorphic irreducible representations. We refer to [BC09,
chapter 1] for a formulation of these results in terms of pseudo-representations and generalized
matrix algebras.

Apply the construction to a = (@) and (x1,x2) = (1, x*~!), we can obtain a nontrivial class in
HY(Q,F(w* 1)) or HY(Q,F(w'™*)). In either case, the restriction to I, for £ # p is trivial since p;
is unramified away from p and the image of £1 in £ is a section of the extension in ([2)). To finish
the proof, we need to use the fact that a,(f) =1 + pF=1 =1 is a unit and thus f is ordinary.

Theorem 1.7. We say an eigenform f is p-ordinary if a,(f) is a p-unit. When this is the case,

k—1 *
pf|Ip ~ <X 1 :

Now, if the reduction of the lattice £ is a non-split extension 0 — F — £ — F(w*~1) — 0 and
F C K? is the subspace where I, acts by x*~1, the reduction of £N F is a section of the extension
when restricted to I,. Therefore we have show that

0# [£] € H(Q,F(w'™)) = Hom(A, s, F).

This completes the proof of Ribet’s converse theorem.
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2. CONGRUENCE MODULES

What happens when ((1 — k)/2 is divisible by higher powers of p? It is natural to expect that
we will be able to construct non-split extensions in larger coefficients. Indeed, if the congruence
relation holds for a = (w"), the same arguments will give a nontrivial class in

HYQ, 0/a(x' ™)) = ker (Hl(Q, 0/ax'*) = [[ H' s O/a(xl_’“))>-
l

However, the Deligne-Serre lifting lemma only works for prime ideals, and we have no control of

the sizes of congruences for each minimal prime below m = ker(n). We therefore need to consider

all these primes, or equivalently all the Hecke eigenforms congruent to Ej, at the same time.
Suppose p” || (1 — k)/2. The ring homomorphism

T—Z,/(p"), Ty—1+ *~t mod (p")
factors through the ideal I := (Ty — 1 — ¢*=1) C T. Let J be the kernel of the surjective homomor-
phism Z, — T/I, the following commutative diagram shows that J C (p").

T/I —'— T/m

o [

Zy)J] —— Zp/(p") —— Fp

Let Ty be the localization, then the components of K = Ty ® Q, = [[, K corresponds to
conjugacy classes of eigenforms that are congruent to Ej. If py is the p-adic Galois representation
associated to each eigenform, we write

Pm—HpA GQ—>GL2 HGL2 K)\)
which is irreducible at each component and trpm,(Froby) = T, € Ty, C K if £ # p. Since by tautology
trpm(Froby) = Ty = (71 + 1 = x*1(Froby) + 1 mod I,

we have trpn(0) = x*71(0) + 1 mod I for ¢ € Gq. Apply the same argument as in the proof of
the lattice construction, we can find a basis {v1,v2} of eigenvectors for some pm (o) such that

ay by )
pm(0o) = (Ca d0> satisfies
(1) ay € Ty, for all 0 € Gq and a, = x* (o) mod I,

(2) dy € Ty for all 0 € Gq and dy =1 mod I,

(3) bocr € Ty for all 0,7 € Gq and bycr =0 mod .

Let C = {cs | 0 € Tu[Gq)} be the Tp-submodule in K generated by all ¢, € Gq. Since each p) is
an irreducible Galois representation, the projection of C' to each K is a nonzero fractional ideal.
In particular, C' is a finite faithful Ty,-module.
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Put £1 = Twvi, Lo = Cvg and L = L1 § Lo. Again, L is the stable lattice generated by vy over
Tw|[Gq] and the reduction modulo [ is an extension

0= C/IC=Ly—L— L1 =Ty/IX* Y =0

having no quotient on which Gq acts trivially. Since Tw/I = Z,/J, for any ¢ € Hom(C/IC,Q,/Z,)
the non-split extension

0 — Lo/ ker(¢) — L/ ker(¢) — L1 — 0
gives a nontrivial class in H}(Q,Zg/ker(qb)(xl_k)) — H}(Q, Q,/Z,(x'%)). Thus the map

Hom(C/IC,Q,/Zy) — H}(Qa Qp/zp(Xl_k))

is injective and dually we have a surjective homomorphism H } (Q,Q,/Zy(x' %)) — C/IC between
finitely-generated Z,-modules.

Definition 2.1. Let M be an R-module of finite presentation
RIS RV M 0.,
We define the (0-th) Fitting ideal Fittgr(M) to be the R-ideal generated by the determinants of all

(b,b)-minors in h if a > b, and Fittr(M) = R if a < b. The definition is independent of the choice
of the presentation.

We also recall the following facts from [MW84, Appendix].
(1) Fitt(M) C Fitt(M’) if M — M.
(2) Fitt(M) C Ann(M), therefore the Fitting ideal of a faithful R-module is trivial.
(3) Fittg;(M/IM) = Fittg(M) mod I.

We can deduce from which that Fittz, H}(Q, Qp/Z,(x' ")V C Fittz, (C/IC) and
Fittz,(C/IC) mod J = Fitty ,;(C/IC) = Fitty, ;;(C/IC) = Fittr,, (C) mod I.
But Fitty, (C') = 0 since C is a faithful Ty-module, thus
Fittz,(C/IC) C J C (p") = (((1 — k)).

And as #C/IC = #Z,/ Fittz,(C/IC) > #Z,/({(1 — k), we obtain the following proposition that
partially answers the question we posed in the beginning of the section.

Proposition 2.2. Let £ > 4 be an even number and (p — 1) { k, we have

#H}(Q, Qp/Zp(x' ")) = #Zp/(C(1 ~ k).

At last, we recall the definition of congruence modules and reinterpret the above chain of inclu-
sions. Let M’ = M/ (1,Z,) be the space of modular forms with a,(f) € Z, for all n > 1 and T’ be
the Hecke algebra acting on M’. Note that we do not require the constant term to be p-integral.
Since S C M’, the Hecke algebra T is a quotient of T’. In fact, we have

TI@ngQpX(T@)Qp)

where the Q,-component is given by the Eisenstein series Ej. Let e € T' ® Q,, be the idempotent
corresponding to (T ® Q,), then eT’" = T.
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Definition 2.3. Following [TU22|, we define the congruence modules
Co(T') =eT'/eT' NT, Co(M')=eM'/eM' N M’
Since €T’ N T’ is the kernel of the homomorphism to the Eisenstein component
T - Qp, Tr> 1+ 0571

its image in €T’ = T is precisely I = (T; — 1 — ¢*~1) and we have recovered Co(T’) = T/I. On the
other hand, we have eM’'N M’ = S and Cy(M') measures the congruences between cusp forms and
the Eisenstein series .

Lemma 2.4. The congruence module Cyp(M') has an element of order p™ if and only if there exists
G € M’ such that F = Ej, — p"G € S.

Proof. Since Co(M') = M'/(Z,E, & S), if G € M’ projects to an element of order p™ in Cy(M'),
then p"G = aEj + F for some a € Z;f and F' € S\ pS. The converse is then also clear. d

In particular, recall that we have constructed F' = Ej, — M(Z4OE4)G(—5O4E6)IJ € S. By the
lemma there exists a submodule isomorphic to Z,/({(1 — k)) in Co(M’). We now observe that

Anng, Co(M') C (¢(1—k)), since Z,/(¢(1 —k)) <= Co(M'),
J = AHHZPCO(T/) C AHHZPCO(M/), since C()(T/) QM — CO(M/>,
and we have already proved Fittz, H}(Q, Q,/Z,(x' 7))V C J. In conclusion, we have
(¢(1 = K)) D Anng, Co(M') S Amng, Co(T') S Fittz, Hi(Q, Qp/Zp(x' ™))"

This will turn out to be a recurring theme.
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