RIBET'S CONVERSE THEOREM

YU-SHENG LEE

In this note we discuss the relation between Eisenstein congruences and Ribet's converse to the Herbrand-Ribet theorem. Following [Ski09], we treat the theorem as a specialized case of the Iwasawa main conjecture and emphasize the role of the congruence modules. Throughout, let p be an odd prime, $\chi: G_{\mathbf{Q}} \to \mathbf{Z}_{p}^{\times}$ be the p-th cyclotomic character, and

$$\omega = \overline{\chi} \colon G_{\mathbf{Q}} \to Gal(\mathbf{Q}(\mu_p)/\mathbf{Q}) \to \mathbb{F}_p^{\times} \cong \mu_{p-1}$$

be the Teichmuller character.

1. The Herbrand-Ribet Theorem

Let $A = Cl(\mathbf{Q}(\mu_p)) \otimes \mathbf{Z}_p$ be the *p*-primary part of the field $\mathbf{Q}(\mu_p)$. The action of $Gal(\mathbf{Q}(\mu_p)/\mathbf{Q})$ on A gives a decomposition

$$A = \bigoplus_{n=0}^{p-2} A_n$$

where the Galois group acts on A_n by ω^n . Recall that p is said to be irregular if $A \neq 0$, and we are interested in the finer problem of whether $A_n \neq 0$.

When n is even, the Kummer-Vandiver conjecture states that A_n should be trivial. Using the Stickelberger elements, Herbrand has shown that $A_0 = A_1 = 0$, and if $A_{p-k} \neq 0$ for some even k < p-1, then p divides the k-th Bernoulli number B_k defined by

$$\frac{t}{e^t - 1} = \sum_{n=0}^{\infty} B_n \frac{t^n}{n!}.$$

We refer to [Was82] for a detailed discussion of these facts. On the other hand, Ribet has shown that the converse of Herbrand's result is also true.

Theorem 1.1. [Rib76] Let $2 \le k < p-1$ be an even number. If $p \mid B_k$, then $A_{p-k} \ne 0$.

Remark 1.2. By the von Staudt theorem we have $\operatorname{val}_p(B_{p-1}) = -1$. This is compatible with the fact that $A_1 = 0$.

We first reinterpret A_n as Selmer groups. Let $G = G_{\mathbf{Q}}, H = G_{\mathbf{Q}(\mu_p)}, \Delta = Gal(\mathbf{Q}(\mu_p)/\mathbf{Q}) = G/H$ and $W = \mathbb{F}(\omega^n)$, define

$$H^1_f(\mathbf{Q}, W) := \ker \left(H^1(\mathbf{Q}, W) \to \prod_{\ell} H^1(I_{\ell}, W) \right).$$

YU-SHENG LEE

Since $p \nmid \#\Delta$, we can stare at the inflation-restriction exact sequence

$$\begin{array}{cccc} H^1(\Delta, W) & \longrightarrow & H^1(G, W) & \stackrel{\sim}{\longrightarrow} & H^1(H, W)^{\Delta} & \longrightarrow & H^2(\Delta, W) \\ \\ \parallel & & \downarrow & & \downarrow & & \parallel \\ 0 & & H^1(I_{\ell}, W) & \longmapsto & \prod_{v \mid \ell} H^1(I_v, W) & & 0 \end{array}$$

and the isomorphism $H^1(H, W)^{\Delta} \cong \operatorname{Hom}_{\Delta}(H, W)$, then realize that

$$H^1_f(\mathbf{Q}, W) \cong H^1_f(\mathbf{Q}(\mu_p), W)^{\Delta} = \{ \phi \in \operatorname{Hom}_{\Delta}(H, W) \mid f(I_v) = 0 \text{ for all } v \} = \operatorname{Hom}(A_n, \mathbb{F}).$$

To show that $A_n \neq 0$, it suffices to show that $H^1_f(\mathbf{Q}, \mathbb{F}(\omega^n))$ is nontrivial, or equivalently, that there exists a non-split extension of Galois representations

$$0 \to \mathbb{F}(\omega^n) \to \overline{\rho} \to \mathbb{F} \to 0$$

that splits everywhere locally. We will find such an extension by studying the congruences between Galois representations of modular forms.

Consider the classical level 1 Eisenstein series E_k of weight k

$$E_k = \frac{\zeta(1-k)}{2} + \sum_{n=1}^{\infty} \sigma_{k-1}(n)q^n, \quad k \ge 4.$$

The constant terms $\frac{\zeta(1-k)}{2} = \frac{-B_k}{2k}$ have the following congruence relations.

- (1) The values B_k/k lie in \mathbf{Z}_p if and only if $(p-1) \nmid k$.
- (2) If $k \equiv k' \not\equiv 0 \mod (p-1)$, then

$$\frac{B_k}{k} \equiv \frac{B_{k'}}{k'} \mod p.$$

It follows that if k < p-1 is even and $p \mid B_k$, the Eisenstein series $E_{k+m(p-1)}$ have *p*-integral Fourier coefficients and the constant term is divisible by *p*. We may thus assume k > 4 and E_k is such an Eisenstein series. Then there exists k = 4a + 6b such that

$$F \coloneqq E_k - \frac{\zeta(1-k)}{2} (240E_4)^a (-504E_6)^b$$

is a nonzero level 1 cusp form of weight k. The Fourier coefficients of F are congruent to those of the Eisenstein series

$$a_\ell(F) \equiv a_\ell(E_k) = 1 + \ell^{k-1} \mod p_k$$

Example 1.3. Consider $B_{12} = -691/2730$, then $E_{12} - (240E_4)^3$ is a nonzero multiple of the Ramanujan Δ function.

Let $S = S_k(1, \mathbf{Z}_p)$ be the space of cusp forms and $\mathbb{T} = \mathbb{T}_k(1, \mathbf{Z}_p) \subset \operatorname{End}_{\mathbf{Z}_p}(S)$ be the \mathbf{Z}_p -subalgebra generated by the Hecke operators. We have the following facts.

(1) The Hecke algebra \mathbb{T} is reduced and finite flat over \mathbf{Z}_p .

(2) There exists a perfect bilinear pairing

$$\mathbb{T} \times S \to \mathbf{Z}_p, \quad (T, f) \mapsto a_1(Tf)$$

which identifies $S \cong \text{Hom}(\mathbb{T}, \mathbb{Z}_p)$. A cusp form f is a Hecke eigenform if and only if it corresponds to a homomorphism of \mathbb{Z}_p -algebras.

(3) The \mathbf{Q}_p -algebra $\mathbb{T} \otimes \mathbf{Q}_p$ is semi-simple and has a decomposition $\mathbb{T} \otimes \mathbf{Q}_p = \prod_{\lambda} K_{\lambda}$ into finite extensions over \mathbf{Q}_p There is a correspondence between the fields (or the minimal primes of \mathbb{T}) and the conjugacy classes of Hecke eigenforms.

Since E_k is a Hecke eigenform, the \mathbf{Z}_p -module homomorphism associated to F

$$\eta \colon \mathbb{T} \to \mathbb{F}_p, \quad T_\ell \mapsto a_\ell(F) \equiv 1 + \ell^{k-1} \mod p$$

becomes a ring homomorphism after modulo by p.

Lemma 1.4 (Deligne-Serre lifting). There exists an eigenform $f \in S_k(1, \mathcal{O})$, where \mathcal{O} is the ring of integer of a finite extension over \mathbf{Q}_p with a uniformizer ϖ , such that

$$a_{\ell}(f) \equiv 1 + \ell^{k-1} \mod (\varpi).$$

Proof. We apply the going-down to the maximal ideal $\mathfrak{m} := \ker(\eta)$ in \mathbb{T} . Since $\mathfrak{m} \cap \mathbf{Z}_p = (p)$, there exists a minimal prime ideal $\mathfrak{p} \subset \mathbb{T}$ such that $\mathfrak{p} \cap \mathbf{Z}_p = (0)$. The quotient \mathbb{T}/\mathfrak{p} is isomorphic to a ring \mathcal{O} as in the statement. Let f be the eigenform corresponding to the ring homomorphism $\mathbb{T} \to \mathbb{T}/\mathfrak{p} \cong \mathcal{O}$. The congruence property follows from that (ϖ) pullbacks to \mathfrak{m} .

The irreducible Galois representation associated to f

$$\rho_f \colon G_{\mathbf{Q}} \to \operatorname{GL}_2(K), \quad K = \operatorname{Frac} \mathcal{O}$$

is unramified away from p and satisfies $\operatorname{tr} \rho_f(\operatorname{Frob}_\ell) = a_\ell(f)$ for all $\ell \neq p$. It follows from

(1)
$$\operatorname{tr}\rho_f(\operatorname{Frob}_\ell) = a_\ell(f) \equiv 1 + \ell^{k-1} = 1 + \chi^{k-1}(\operatorname{Frob}_\ell) \mod (\varpi)$$

and the Chebotarev's density that $\operatorname{tr} \rho_f(\sigma) \equiv 1 + \chi^{k-1}(\sigma) \mod (\varpi)$ for all $\sigma \in G_{\mathbf{Q}}$. Therefore, the semi-simplified reduction $\overline{\rho}^{ss}$ is isomorphic to $\omega^{k-1} \oplus 1$. To find a lattice whose reduction gives the desired non-split extension (up to a twist), we need to employ Urban's lattice construction.

Proposition 1.5 ([Urb01]). Let $\rho: G_{\mathbf{Q}} \to \operatorname{GL}_2(K)$ be an irreducible Galois representation such that

$$\operatorname{tr} \rho \equiv \chi_1 + \chi_2 \mod \mathfrak{a} = (\varpi)^n.$$

for characters $\chi_i: G_{\mathbf{Q}} \to \mathcal{O}^{\times}$ that are distinct modulo (ϖ) . Then there exists a stable lattice $\mathcal{L} \subset K^2$ whose reduction is a non-split extension between χ_1 and χ_2 modulo \mathfrak{a} .

Proof. Observe that det $\rho(\sigma) = \text{tr}\rho(\sigma^2) - \text{tr}\rho(\sigma)^2/2$ and therefore

$$\det(X\mathbf{I} - \rho(\sigma)) \equiv (X - \chi_1(\sigma))(X - \chi_2(\sigma)) \mod \mathfrak{a}.$$

Since χ_i are distinct modulo (ϖ) , we can pick $\sigma_0 \in G_{\mathbf{Q}}$ whose characteristic polynomial has distinct roots modulo (ϖ) . By the Hensel lemma, the the roots lift to distinct eigenvalues in \mathcal{O} . We pick a basis $\{v_1, v_2\}$ of eigenvectors and write

$$\rho(\sigma_0) = \begin{pmatrix} \alpha_1 & \\ & \alpha_2 \end{pmatrix}, \quad \alpha_i \in \mathcal{O}, \quad \alpha_i \equiv \chi_i(\sigma_0) \mod \mathfrak{a}.$$

Since $\operatorname{tr}\rho(\sigma\sigma_0^n) \equiv \chi_1(\sigma\sigma_0^n) + \chi_2(\sigma\sigma_0^n) \mod \mathfrak{a}$, the relation

$$a_{\sigma}\alpha_{1}^{n} + d_{\sigma}\alpha_{2}^{n} \equiv \chi_{1}(\sigma)\alpha_{1}^{n} + \chi_{2}(\sigma)\alpha_{2}^{n} \mod \mathfrak{a}, \quad \rho(\sigma) = \begin{pmatrix} a_{\sigma} & b_{\sigma} \\ c_{\sigma} & d_{\sigma} \end{pmatrix}$$

holds for all n and $\sigma \in G_{\mathbf{Q}}$. And since $\{(1,1), (\alpha_1, \alpha_2)\}$ generate \mathcal{O}^2 , we actually have

$$a_{\sigma} \equiv \chi_1(\sigma), \quad d_{\sigma} \equiv \chi_2(\sigma) \mod \mathfrak{a}$$

for all $\sigma \in G_{\mathbf{Q}}$ and thus

- (1) $a_{\sigma}, d_{\sigma} \in \mathcal{O}$ for all $\sigma \in G_{\mathbf{Q}}$,
- (2) $b_{\sigma}c_{\tau} = a_{\sigma\tau} a_{\sigma}a_{\tau} \in \mathcal{O}$ for all $\sigma, \tau \in G_{\mathbf{Q}}$ and $b_{\sigma}c_{\tau} \equiv 0 \mod \mathfrak{a}$.

Let $C = \{c_{\sigma} \mid \sigma \in \mathcal{O}[G_{\mathbf{Q}}]\}$ be the \mathcal{O} -submodule in K generated by all $c_{\sigma} \in G_{\mathbf{Q}}$. Then C is nonzero because ρ is irreducible and it is actually a fractional ideal since the Galois group is compact. We put $\mathcal{L}_1 = \mathcal{O}v_1, \mathcal{L}_2 = Cv_2$ and $\mathcal{L} = \mathcal{L}_1 \oplus \mathcal{L}_2$, which is the stable lattice generated by v_1 over $\mathcal{O}[G_{\mathbf{Q}}]$. By above, the reduction of \mathcal{L} modulo \mathfrak{a} is an extension

(2)
$$0 \to \mathcal{O}/\mathfrak{a}(\chi_2) \cong \overline{\mathcal{L}}_2 \to \overline{\mathcal{L}} \to \overline{\mathcal{L}}_1 \cong \mathcal{O}/\mathfrak{a}(\chi_1) \to 0$$

as $C/\mathfrak{a}C \cong \mathcal{O}/\mathfrak{a}$. We claim that $\overline{\mathcal{L}}$ has no quotient on which $G_{\mathbf{Q}}$ acts by χ_2 . Otherwise

$$(\rho(\sigma_0) - \chi_2(\sigma_0))v_1 \equiv (\alpha_1 - \alpha_2)v_1 \mod \mathfrak{a},$$

and therefore v_1 lies in the kernel, which contradicts that v_1 generates \mathcal{L} . In particular, the extension gives a nontrivial class in $\operatorname{Ext}^1_{G_{\mathbf{O}}}(\overline{\chi}_1, \overline{\chi}_2) = H^1(\mathbf{Q}, \mathcal{O}/\mathfrak{a}(\chi_2\chi_1^{-1})).$

Remark 1.6. The proposition was proved for the more general setting when \mathcal{O} is local Henselian and $\overline{\rho}^{ss}$ is the sum of mutually non-isomorphic irreducible representations. We refer to [BC09, chapter 1] for a formulation of these results in terms of pseudo-representations and generalized matrix algebras.

Apply the construction to $\mathfrak{a} = (\varpi)$ and $(\chi_1, \chi_2) = (1, \chi^{k-1})$, we can obtain a nontrivial class in $H^1(\mathbf{Q}, \mathbb{F}(\omega^{k-1}))$ or $H^1(\mathbf{Q}, \mathbb{F}(\omega^{1-k}))$. In either case, the restriction to I_ℓ for $\ell \neq p$ is trivial since ρ_f is unramified away from p and the image of \mathcal{L}_1 in $\overline{\mathcal{L}}$ is a section of the extension in (2). To finish the proof, we need to use the fact that $a_p(f) \equiv 1 + p^{k-1} \equiv 1$ is a unit and thus f is ordinary.

Theorem 1.7. We say an eigenform f is p-ordinary if $a_p(f)$ is a p-unit. When this is the case,

$$\rho_f|_{I_p} \sim \begin{pmatrix} \chi^{k-1} & * \\ & 1 \end{pmatrix}.$$

Now, if the reduction of the lattice \mathcal{L} is a non-split extension $0 \to \mathbb{F} \to \overline{\mathcal{L}} \to \mathbb{F}(\omega^{k-1}) \to 0$ and $\mathcal{F} \subset K^2$ is the subspace where I_p acts by χ^{k-1} , the reduction of $\mathcal{L} \cap F$ is a section of the extension when restricted to I_p . Therefore we have show that

$$0 \neq [\overline{\mathcal{L}}] \in H^1_f(\mathbf{Q}, \mathbb{F}(\omega^{1-k})) \cong \operatorname{Hom}(A_{p-k}, \mathbb{F}).$$

This completes the proof of Ribet's converse theorem.

2. Congruence modules

What happens when $\zeta(1-k)/2$ is divisible by higher powers of p? It is natural to expect that we will be able to construct non-split extensions in larger coefficients. Indeed, if the congruence relation (1) holds for $\mathfrak{a} = (\varpi^n)$, the same arguments will give a nontrivial class in

$$H^1_f(\mathbf{Q}, \mathcal{O}/\mathfrak{a}(\chi^{1-k})) \coloneqq \ker \left(H^1(\mathbf{Q}, \mathcal{O}/\mathfrak{a}(\chi^{1-k})) \to \prod_{\ell} H^1(I_\ell, \mathcal{O}/\mathfrak{a}(\chi^{1-k})) \right).$$

However, the Deligne-Serre lifting lemma only works for prime ideals, and we have no control of the sizes of congruences for each minimal prime below $\mathfrak{m} = \ker(\eta)$. We therefore need to consider all these primes, or equivalently all the Hecke eigenforms congruent to E_k , at the same time.

Suppose $p^r \parallel \zeta(1-k)/2$. The ring homomorphism

$$\mathbb{T} \to \mathbf{Z}_p/(p^r), \quad T_\ell \mapsto 1 + \ell^{k-1} \mod (p^r)$$

factors through the ideal $I := (T_{\ell} - 1 - \ell^{k-1}) \subset \mathbb{T}$. Let J be the kernel of the surjective homomorphism $\mathbf{Z}_p \to \mathbb{T}/I$, the following commutative diagram shows that $J \subset (p^r)$.

Let $\mathbb{T}_{\mathfrak{m}}$ be the localization, then the components of $K := \mathbb{T}_{\mathfrak{m}} \otimes \mathbf{Q}_p = \prod_{\lambda} K_{\lambda}$ corresponds to conjugacy classes of eigenforms that are congruent to E_k . If ρ_{λ} is the p-adic Galois representation associated to each eigenform, we write

$$\rho_{\mathfrak{m}} = \prod \rho_{\lambda} \colon G_{\mathbf{Q}} \to \operatorname{GL}_2(K) = \prod \operatorname{GL}_2(K_{\lambda}),$$

which is irreducible at each component and $\operatorname{tr}\rho_{\mathfrak{m}}(\operatorname{Frob}_{\ell}) = T_{\ell} \in \mathbb{T}_{\mathfrak{m}} \subset K$ if $\ell \neq p$. Since by tautology

$$\operatorname{tr}\rho_{\mathfrak{m}}(\operatorname{Frob}_{\ell}) = T_{\ell} \equiv \ell^{k-1} + 1 = \chi^{k-1}(\operatorname{Frob}_{\ell}) + 1 \mod I,$$

we have $\operatorname{tr}\rho_{\mathfrak{m}}(\sigma) \equiv \chi^{k-1}(\sigma) + 1 \mod I$ for $\sigma \in G_{\mathbf{Q}}$. Apply the same argument as in the proof of the lattice construction, we can find a basis $\{v_1, v_2\}$ of eigenvectors for some $\rho_{\mathfrak{m}}(\sigma_0)$ such that

$$\rho_{\mathfrak{m}}(\sigma) = \begin{pmatrix} a_{\sigma} & b_{\sigma} \\ c_{\sigma} & d_{\sigma} \end{pmatrix} \quad \text{satisfies}$$

(1) $a_{\sigma} \in \mathbb{T}_{\mathfrak{m}}$ for all $\sigma \in G_{\mathbf{Q}}$ and $a_{\sigma} \equiv \chi^{k-1}(\sigma) \mod I$,

- (2) $d_{\sigma} \in \mathbb{T}_{\mathfrak{m}}$ for all $\sigma \in G_{\mathbf{Q}}$ and $d_{\sigma} \equiv 1 \mod I$,
- (3) $b_{\sigma}c_{\tau} \in \mathbb{T}_{\mathfrak{m}}$ for all $\sigma, \tau \in G_{\mathbf{Q}}$ and $b_{\sigma}c_{\tau} \equiv 0 \mod I$.

Let $C = \{c_{\sigma} \mid \sigma \in \mathbb{T}_{\mathfrak{m}}[G_{\mathbf{Q}}]\}$ be the $\mathbb{T}_{\mathfrak{m}}$ -submodule in K generated by all $c_{\sigma} \in G_{\mathbf{Q}}$. Since each ρ_{λ} is an irreducible Galois representation, the projection of C to each K_{λ} is a nonzero fractional ideal. In particular, C is a finite faithful $\mathbb{T}_{\mathfrak{m}}$ -module.

YU-SHENG LEE

Put $\mathcal{L}_1 = \mathbb{T}_{\mathfrak{m}} v_1, \mathcal{L}_2 = C v_2$ and $\mathcal{L} = \mathcal{L}_1 \oplus \mathcal{L}_2$. Again, \mathcal{L} is the stable lattice generated by v_1 over $\mathbb{T}_{\mathfrak{m}}[G_{\mathbf{Q}}]$ and the reduction modulo I is an extension

$$0 \to C/IC \cong \overline{\mathcal{L}}_2 \to \overline{\mathcal{L}} \to \overline{\mathcal{L}}_1 \cong \mathbb{T}_{\mathfrak{m}}/I(\chi^{k-1}) \to 0$$

having no quotient on which $G_{\mathbf{Q}}$ acts trivially. Since $\mathbb{T}_{\mathfrak{m}}/I = \mathbf{Z}_p/J$, for any $\phi \in \text{Hom}(C/IC, \mathbf{Q}_p/\mathbf{Z}_p)$ the non-split extension

$$0 \to \overline{\mathcal{L}}_2/\ker(\phi) \to \overline{\mathcal{L}}/\ker(\phi) \to \overline{\mathcal{L}}_1 \to 0$$

gives a nontrivial class in $H^1_f(\mathbf{Q}, \overline{\mathcal{L}}_2/\ker(\phi)(\chi^{1-k})) \hookrightarrow H^1_f(\mathbf{Q}, \mathbf{Q}_p/\mathbf{Z}_p(\chi^{1-k}))$. Thus the map

$$\operatorname{Hom}(C/IC, \mathbf{Q}_p/\mathbf{Z}_p) \hookrightarrow H^1_f(\mathbf{Q}, \mathbf{Q}_p/\mathbf{Z}_p(\chi^{1-k}))$$

is injective and dually we have a surjective homomorphism $H^1_f(\mathbf{Q}, \mathbf{Q}_p/\mathbf{Z}_p(\chi^{1-k}))^{\vee} \twoheadrightarrow C/IC$ between finitely-generated Z_p -modules.

Definition 2.1. Let M be an R-module of finite presentation

$$R^a \xrightarrow{n} R^b \to M \to 0$$

We define the (0-th) Fitting ideal $\operatorname{Fitt}_R(M)$ to be the *R*-ideal generated by the determinants of all (b, b)-minors in *h* if $a \ge b$, and $\operatorname{Fitt}_R(M) = R$ if a < b. The definition is independent of the choice of the presentation.

We also recall the following facts from [MW84, Appendix].

- (1) $\operatorname{Fitt}(M) \subset \operatorname{Fitt}(M')$ if $M \twoheadrightarrow M$.
- (2) Fitt(M) \subset Ann(M), therefore the Fitting ideal of a faithful *R*-module is trivial.
- (3) $\operatorname{Fitt}_{R/I}(M/IM) = \operatorname{Fitt}_R(M) \mod I.$

We can deduce from which that $\operatorname{Fitt}_{\mathbf{Z}_p} H^1_f(\mathbf{Q}, \mathbf{Q}_p/\mathbf{Z}_p(\chi^{1-k})^{\vee} \subset \operatorname{Fitt}_{\mathbf{Z}_p}(C/IC)$ and

$$\operatorname{Fitt}_{\mathbf{Z}_p}(C/IC) \mod J = \operatorname{Fitt}_{\mathbf{Z}_p/J}(C/IC) = \operatorname{Fitt}_{\mathbb{T}_m/I}(C/IC) = \operatorname{Fitt}_{\mathbb{T}_m}(C) \mod I.$$

But $\operatorname{Fitt}_{\mathbb{T}_m}(C) = 0$ since C is a faithful \mathbb{T}_m -module, thus

$$\operatorname{Fitt}_{\mathbf{Z}_p}(C/IC) \subset J \subset (p^r) = (\zeta(1-k)).$$

And as $\#C/IC = \#\mathbf{Z}_p/\operatorname{Fitt}_{\mathbf{Z}_p}(C/IC) \ge \#\mathbf{Z}_p/(\zeta(1-k))$, we obtain the following proposition that partially answers the question we posed in the beginning of the section.

Proposition 2.2. Let $k \ge 4$ be an even number and $(p-1) \nmid k$, we have

$$#H_f^1(\mathbf{Q}, \mathbf{Q}_p/\mathbf{Z}_p(\chi^{1-k})) \ge #\mathbf{Z}_p/(\zeta(1-k)).$$

At last, we recall the definition of congruence modules and reinterpret the above chain of inclusions. Let $M' = M'_k(1, \mathbb{Z}_p)$ be the space of modular forms with $a_n(f) \in \mathbb{Z}_p$ for all $n \ge 1$ and \mathbb{T}' be the Hecke algebra acting on M'. Note that we do not require the constant term to be *p*-integral. Since $S \subset M'$, the Hecke algebra \mathbb{T} is a quotient of \mathbb{T}' . In fact, we have

$$\mathbb{T}'\otimes \mathbf{Q}_p\cong \mathbf{Q}_p imes (\mathbb{T}\otimes \mathbf{Q}_p)$$

where the \mathbf{Q}_p -component is given by the Eisenstein series E_k . Let $e \in \mathbb{T}' \otimes \mathbf{Q}_p$ be the idempotent corresponding to $(\mathbb{T} \otimes \mathbf{Q}_p)$, then $e\mathbb{T}' = \mathbb{T}$.

Definition 2.3. Following [TU22], we define the congruence modules

$$C_0(\mathbb{T}') = e\mathbb{T}'/e\mathbb{T}' \cap \mathbb{T}', \quad C_0(M') = eM'/eM' \cap M'$$

Since $e\mathbb{T}' \cap \mathbb{T}'$ is the kernel of the homomorphism to the Eisenstein component

$$\mathbb{T}' \to \mathbf{Q}_p, \quad T_\ell \mapsto 1 + \ell^{k-1},$$

its image in $e\mathbb{T}' = \mathbb{T}$ is precisely $I = (T_{\ell} - 1 - \ell^{k-1})$ and we have recovered $C_0(\mathbb{T}') \cong \mathbb{T}/I$. On the other hand, we have $eM' \cap M' = S$ and $C_0(M')$ measures the congruences between cusp forms and the Eisenstein series E_k .

Lemma 2.4. The congruence module $C_0(M')$ has an element of order p^n if and only if there exists $G \in M'$ such that $F := E_k - p^n G \in S$.

Proof. Since $C_0(M') \cong M'/(\mathbb{Z}_p E_k \oplus S)$, if $G \in M'$ projects to an element of order p^n in $C_0(M')$, then $p^n G = aE_k + F$ for some $a \in \mathbb{Z}_p^{\times}$ and $F \in S \setminus pS$. The converse is then also clear. \Box

In particular, recall that we have constructed $F = E_k - \frac{\zeta(1-k)}{2}(240E_4)^a(-504E_6)^b \in S$. By the lemma there exists a submodule isomorphic to $\mathbf{Z}_p/(\zeta(1-k))$ in $C_0(M')$. We now observe that

$$\operatorname{Ann}_{\mathbf{Z}_p} C_0(M') \subset (\zeta(1-k)), \quad \text{since } \mathbf{Z}_p/(\zeta(1-k)) \hookrightarrow C_0(M'),$$
$$J = \operatorname{Ann}_{\mathbf{Z}_p} C_0(\mathbb{T}') \subset \operatorname{Ann}_{\mathbf{Z}_p} C_0(M'), \quad \text{since } C_0(\mathbb{T}') \otimes M' \twoheadrightarrow C_0(M'),$$

and we have already proved $\operatorname{Fitt}_{\mathbf{Z}_p} H^1_f(\mathbf{Q}, \mathbf{Q}_p/\mathbf{Z}_p(\chi^{1-k}))^{\vee} \subset J$. In conclusion, we have

$$(\zeta(1-k)) \supset \operatorname{Ann}_{\mathbf{Z}_p} C_0(M') \supset \operatorname{Ann}_{\mathbf{Z}_p} C_0(\mathbb{T}') \supset \operatorname{Fitt}_{\mathbf{Z}_p} H^1_f(\mathbf{Q}, \mathbf{Q}_p/\mathbf{Z}_p(\chi^{1-k}))^{\vee}.$$

This will turn out to be a recurring theme.

References

- [BC09] Joël Bellaïche and Gaëtan Chenevier. Families of Galois representations and Selmer groups. Number 324 in Astérisque. Société mathématique de France, 2009. 4
- [MW84] B. Mazur and A. Wiles. Class fields of abelian extensions of Q. Inventiones mathematicae, 76:179–330, 1984. 6
- [Rib76] Kenneth A. Ribet. A Modular Construction of Unramified *p*-Extensions of $\mathbf{Q}(\mu_p)$. Inventiones mathematicae, 34:151–162, 1976. 1
- [Ski09] Christopher M. Skinner. Galois representations, Iwasawa Theory, and Special Values of L-functions. CMI Summer School on Galois representations, 2009. 1
- [TU22] Jacques Tilouine and Eric Urban. Integral period relations and congruences. Algebra & Number Theory, 2022. 7
- [Urb01] Eric Urban. Selmer groups and the Eisenstein-Klingen ideal. Duke Mathematical Journal, 106(3):485 525, 2001. 3
- [Was82] Lawrence C. Washington. Introduction to cyclotomic fields. Springer-Verlag, New York, 1982. 1