
RIBET’S CONVERSE THEOREM

YU-SHENG LEE

In this note we discuss the relation between Eisenstein congruences and Ribet’s converse to
the Herbrand-Ribet theorem. Following [Ski09], we treat the theorem as a specialized case of the
Iwasawa main conjecture and emphasize the role of the congruence modules. Throughout, let p be
an odd prime, χ : GQ → Z×p be the p-th cyclotomic character, and

ω = χ : GQ → Gal(Q(µp)/Q)→ F×p ∼= µp−1

be the Teichmuller character.

1. The Herbrand-Ribet theorem

Let A = Cl(Q(µp))⊗Zp be the p-primary part of the field Q(µp). The action of Gal(Q(µp)/Q)
on A gives a decomposition

A =

p−2⊕
n=0

An

where the Galois group acts on An by ωn. Recall that p is said to be irregular if A 6= 0, and we are
interested in the finer problem of whether An 6= 0.

When n is even, the Kummer-Vandiver conjectuere states that An should be trivial. Using the
Stickelberger elements, Herbrand has shown that A0 = A1 = 0, and if Ap−k 6= 0 for some even
k < p− 1, then p divides the k-th Bernoulli number Bk defined by

t

et − 1
=

∞∑
n=0

Bn
tn

n!
.

We refer to [Was82] for a detailed discussion of these facts. On the other hand, Ribet has shown
that the converse of Herbrand’s result is also true.

Theorem 1.1. [Rib76] Let 2 ≤ k < p− 1 be an even number. If p | Bk, then Ap−k 6= 0.

Remark 1.2. By the von Staudt theorem we have valp(Bp−1) = −1. This is compatible with the
fact that A1 = 0.

We first reinterpret An as Selmer groups. Let G = GQ, H = GQ(µp),∆ = Gal(Q(µp)/Q) = G/H
and W = F(ωn), define

H1
f (Q,W ) := ker

(
H1(Q,W )→

∏
`

H1(I`,W )

)
.
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Since p - #∆, we can stare at the inflation-restriction exact sequence

H1(∆,W ) H1(G,W ) H1(H,W )∆ H2(∆,W )

0 H1(I`,W )
∏
v|`H

1(Iv,W ) 0

∼

and the isomorphism H1(H,W )∆ ∼= Hom∆(H,W ), then realize that

H1
f (Q,W ) ∼= H1

f (Q(µp),W )∆ = {φ ∈ Hom∆(H,W ) | f(Iv) = 0 for all v} = Hom(An,F).

To show that An 6= 0, it suffices to show that H1
f (Q,F(ωn)) is nontrivial, or equivalently, that there

exists a non-split extension of Galois representations

0→ F(ωn)→ ρ→ F→ 0

that splits everywhere locally. We will find such an extension by studying the congruences between
Galois representations of modular forms.

Consider the classical level 1 Eisenstein series Ek of weight k

Ek =
ζ(1− k)

2
+
∞∑
n=1

σk−1(n)qn, k ≥ 4.

The constant terms ζ(1−k)
2 = −Bk

2k have the following congruence relations.

(1) The values Bk/k lie in Zp if and only if (p− 1) - k.
(2) If k ≡ k′ 6≡ 0 mod (p− 1), then

Bk
k
≡ Bk′

k′
mod p.

It follows that if k < p − 1 is even and p | Bk, the Eisenstein series Ek+m(p−1) have p-integral
Fourier coefficients and the constant term is divisible by p. We may thus assume k > 4 and Ek is
such an Eisenstein series. Then there exists k = 4a+ 6b such that

F := Ek −
ζ(1− k)

2
(240E4)a(−504E6)b

is a nonzero level 1 cusp form of weight k. The Fourier coefficients of F are congruent to those of
the Eisenstein series

a`(F ) ≡ a`(Ek) = 1 + `k−1 mod p.

Example 1.3. Consider B12 = −691/2730, then E12 − (240E4)3 is a nonzero multiple of the
Ramanujan ∆ function.

Let S = Sk(1,Zp) be the space of cusp forms and T = Tk(1,Zp) ⊂ EndZp(S) be the Zp-subalgebra
generated by the Hecke operators. We have the following facts.

(1) The Hecke algebra T is reduced and finite flat over Zp.
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(2) There exists a perfect bilinear pairing

T× S → Zp, (T, f) 7→ a1(Tf)

which identifies S ∼= Hom(T,Zp). A cusp form f is a Hecke eigenform if and only if it
corresponds to a homomorphism of Zp-algebras.

(3) The Qp-algebra T⊗Qp is semi-simple and has a decomposition T⊗Qp =
∏
λKλ into finite

extensions over Qp There is a correspondence between the fields (or the minimal primes of
T) and the conjugacy classes of Hecke eigenforms.

Since Ek is a Hecke eigenform, the Zp-module homomorphism associated to F

η : T→ Fp, T` 7→ a`(F ) ≡ 1 + `k−1 mod p

becomes a ring homomorphism after modulo by p.

Lemma 1.4 (Deligne-Serre lifting). There exists an eigenform f ∈ Sk(1,O), where O is the ring
of integer of a finite extension over Qp with a uniformizer $, such that

a`(f) ≡ 1 + `k−1 mod ($).

Proof. We apply the going-down to the maximal ideal m := ker(η) in T. Since m ∩ Zp = (p), there
exists a minimal prime ideal p ⊂ T such that p ∩ Zp = (0). The quotient T/p is isomorphic to
a ring O as in the statement. Let f be the eigenform corresponding to the ring homomorphism
T→ T/p ∼= O. The congruence property follows from that ($) pullbacks to m. �

The irreducible Galois representation associated to f

ρf : GQ → GL2(K), K = FracO
is unramified away from p and satisfies trρf (Frob`) = a`(f) for all ` 6= p. It follows from

(1) trρf (Frob`) = a`(f) ≡ 1 + `k−1 = 1 + χk−1(Frob`) mod ($)

and the Chebotarev’s density that trρf (σ) ≡ 1 + χk−1(σ) mod ($) for all σ ∈ GQ. Therefore, the

semi-simplified reduction ρss is isomorphic to ωk−1⊕ 1. To find a lattice whose reduction gives the
desired non-split extension (up to a twist), we need to employ Urban’s lattice construction.

Proposition 1.5 ([Urb01]). Let ρ : GQ → GL2(K) be an irreducible Galois representation such
that

trρ ≡ χ1 + χ2 mod a = ($)n.

for characters χi : GQ → O× that are distinct modulo ($). Then there exists a stable lattice
L ⊂ K2 whose reduction is a non-split extension between χ1 and χ2 modulo a.

Proof. Observe that det ρ(σ) = trρ(σ2)− trρ(σ)2/2 and therefore

det(XI− ρ(σ)) ≡ (X − χ1(σ))(X − χ2(σ)) mod a.

Since χi are distinct modulo ($), we can pick σ0 ∈ GQ whose characteristic polynomial has distinct
roots modulo ($). By the Hensel lemma, the the roots lift to distinct eigenvalues in O. We pick a
basis {v1, v2} of eigenvectors and write

ρ(σ0) =

(
α1

α2

)
, αi ∈ O, αi ≡ χi(σ0) mod a.
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Since trρ(σσn0 ) ≡ χ1(σσn0 ) + χ2(σσn0 ) mod a, the relation

aσα
n
1 + dσα

n
2 ≡ χ1(σ)αn1 + χ2(σ)αn2 mod a, ρ(σ) =

(
aσ bσ
cσ dσ

)
holds for all n and σ ∈ GQ. And since {(1, 1), (α1, α2)} generate O2, we actually have

aσ ≡ χ1(σ), dσ ≡ χ2(σ) mod a

for all σ ∈ GQ and thus

(1) aσ, dσ ∈ O for all σ ∈ GQ,
(2) bσcτ = aστ − aσaτ ∈ O for all σ, τ ∈ GQ and bσcτ ≡ 0 mod a.

Let C = {cσ | σ ∈ O[GQ]} be the O-submodule in K generated by all cσ ∈ GQ. Then C is nonzero
because ρ is irreducible and it is actually a fractional ideal since the Galois group is compact. We
put L1 = Ov1,L2 = Cv2 and L = L1 ⊕L2, which is the stable lattice generated by v1 over O[GQ].
By above, the reduction of L modulo a is an extension

(2) 0→ O/a(χ2) ∼= L2 → L → L1
∼= O/a(χ1)→ 0

as C/aC ∼= O/a. We claim that L has no quotient on which GQ acts by χ2. Otherwise

(ρ(σ0)− χ2(σ0))v1 ≡ (α1 − α2)v1 mod a,

and therefore v1 lies in the kernel, which contradicts that v1 generates L. In particular, the extension
gives a nontrivial class in Ext1

GQ
(χ1, χ2) = H1(Q,O/a(χ2χ

−1
1 )). �

Remark 1.6. The proposition was proved for the more general setting when O is local Henselian
and ρss is the sum of mutually non-isomorphic irreducible representations. We refer to [BC09,
chapter 1] for a formulation of these results in terms of pseudo-representations and generalized
matrix algebras.

Apply the construction to a = ($) and (χ1, χ2) = (1, χk−1), we can obtain a nontrivial class in
H1(Q,F(ωk−1)) or H1(Q,F(ω1−k)). In either case, the restriction to I` for ` 6= p is trivial since ρf
is unramified away from p and the image of L1 in L is a section of the extension in (2). To finish
the proof, we need to use the fact that ap(f) ≡ 1 + pk−1 ≡ 1 is a unit and thus f is ordinary.

Theorem 1.7. We say an eigenform f is p-ordinary if ap(f) is a p-unit. When this is the case,

ρf |Ip ∼
(
χk−1 ∗

1

)
.

Now, if the reduction of the lattice L is a non-split extension 0 → F → L → F(ωk−1) → 0 and
F ⊂ K2 is the subspace where Ip acts by χk−1, the reduction of L∩F is a section of the extension
when restricted to Ip. Therefore we have show that

0 6= [L] ∈ H1
f (Q,F(ω1−k)) ∼= Hom(Ap−k,F).

This completes the proof of Ribet’s converse theorem.
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2. Congruence modules

What happens when ζ(1 − k)/2 is divisible by higher powers of p? It is natural to expect that
we will be able to construct non-split extensions in larger coefficients. Indeed, if the congruence
relation (1) holds for a = ($n), the same arguments will give a nontrivial class in

H1
f (Q,O/a(χ1−k)) := ker

(
H1(Q,O/a(χ1−k))→

∏
`

H1(I`,O/a(χ1−k))

)
.

However, the Deligne-Serre lifting lemma only works for prime ideals, and we have no control of
the sizes of congruences for each minimal prime below m = ker(η). We therefore need to consider
all these primes, or equivalently all the Hecke eigenforms congruent to Ek, at the same time.

Suppose pr ‖ ζ(1− k)/2. The ring homomorphism

T→ Zp/(p
r), T` 7→ 1 + `k−1 mod (pr)

factors through the ideal I := (T` − 1− `k−1) ⊂ T. Let J be the kernel of the surjective homomor-
phism Zp → T/I, the following commutative diagram shows that J ⊂ (pr).

T/I T/m

Zp/J Zp/(p
r) Fp

η

∼∼

Let Tm be the localization, then the components of K := Tm ⊗ Qp =
∏
λKλ corresponds to

conjugacy classes of eigenforms that are congruent to Ek. If ρλ is the p-adic Galois representation
associated to each eigenform, we write

ρm =
∏

ρλ : GQ → GL2(K) =
∏

GL2(Kλ),

which is irreducible at each component and trρm(Frob`) = T` ∈ Tm ⊂ K if ` 6= p. Since by tautology

trρm(Frob`) = T` ≡ `k−1 + 1 = χk−1(Frob`) + 1 mod I,

we have trρm(σ) ≡ χk−1(σ) + 1 mod I for σ ∈ GQ. Apply the same argument as in the proof of
the lattice construction, we can find a basis {v1, v2} of eigenvectors for some ρm(σ0) such that

ρm(σ) =

(
aσ bσ
cσ dσ

)
satisfies

(1) aσ ∈ Tm for all σ ∈ GQ and aσ ≡ χk−1(σ) mod I,
(2) dσ ∈ Tm for all σ ∈ GQ and dσ ≡ 1 mod I,
(3) bσcτ ∈ Tm for all σ, τ ∈ GQ and bσcτ ≡ 0 mod I.

Let C = {cσ | σ ∈ Tm[GQ]} be the Tm-submodule in K generated by all cσ ∈ GQ. Since each ρλ is
an irreducible Galois representation, the projection of C to each Kλ is a nonzero fractional ideal.
In particular, C is a finite faithful Tm-module.
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Put L1 = Tmv1,L2 = Cv2 and L = L1 ⊕ L2. Again, L is the stable lattice generated by v1 over
Tm[GQ] and the reduction modulo I is an extension

0→ C/IC ∼= L2 → L → L1
∼= Tm/I(χk−1)→ 0

having no quotient on which GQ acts trivially. Since Tm/I = Zp/J , for any φ ∈ Hom(C/IC,Qp/Zp)
the non-split extension

0→ L2/ ker(φ)→ L/ ker(φ)→ L1 → 0

gives a nontrivial class in H1
f (Q,L2/ ker(φ)(χ1−k)) ↪→ H1

f (Q,Qp/Zp(χ
1−k)). Thus the map

Hom(C/IC,Qp/Zp) ↪→ H1
f (Q,Qp/Zp(χ

1−k))

is injective and dually we have a surjective homomorphism H1
f (Q,Qp/Zp(χ

1−k))∨ � C/IC between
finitely-generated Zp-modules.

Definition 2.1. Let M be an R-module of finite presentation

Ra
h−→ Rb →M → 0.

We define the (0-th) Fitting ideal FittR(M) to be the R-ideal generated by the determinants of all
(b, b)-minors in h if a ≥ b, and FittR(M) = R if a < b. The definition is independent of the choice
of the presentation.

We also recall the following facts from [MW84, Appendix].

(1) Fitt(M) ⊂ Fitt(M ′) if M �M .
(2) Fitt(M) ⊂ Ann(M), therefore the Fitting ideal of a faithful R-module is trivial.
(3) FittR/I(M/IM) = FittR(M) mod I.

We can deduce from which that FittZp H
1
f (Q,Qp/Zp(χ

1−k)∨ ⊂ FittZp(C/IC) and

FittZp(C/IC) mod J = FittZp/J(C/IC) = FittTm/I(C/IC) = FittTm(C) mod I.

But FittTm(C) = 0 since C is a faithful Tm-module, thus

FittZp(C/IC) ⊂ J ⊂ (pr) = (ζ(1− k)).

And as #C/IC = #Zp/FittZp(C/IC) ≥ #Zp/(ζ(1− k), we obtain the following proposition that
partially answers the question we posed in the beginning of the section.

Proposition 2.2. Let k ≥ 4 be an even number and (p− 1) - k, we have

#H1
f (Q,Qp/Zp(χ

1−k)) ≥ #Zp/(ζ(1− k)).

At last, we recall the definition of congruence modules and reinterpret the above chain of inclu-
sions. Let M ′ = M ′k(1,Zp) be the space of modular forms with an(f) ∈ Zp for all n ≥ 1 and T′ be
the Hecke algebra acting on M ′. Note that we do not require the constant term to be p-integral.
Since S ⊂M ′, the Hecke algebra T is a quotient of T′. In fact, we have

T′ ⊗Qp
∼= Qp × (T⊗Qp)

where the Qp-component is given by the Eisenstein series Ek. Let e ∈ T′ ⊗Qp be the idempotent
corresponding to (T⊗Qp), then eT′ = T.
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Definition 2.3. Following [TU22], we define the congruence modules

C0(T′) = eT′/eT′ ∩ T′, C0(M ′) = eM ′/eM ′ ∩M ′.

Since eT′ ∩ T′ is the kernel of the homomorphism to the Eisenstein component

T′ → Qp, T` 7→ 1 + `k−1,

its image in eT′ = T is precisely I = (T` − 1− `k−1) and we have recovered C0(T′) ∼= T/I. On the
other hand, we have eM ′ ∩M ′ = S and C0(M ′) measures the congruences between cusp forms and
the Eisenstein series Ek.

Lemma 2.4. The congruence module C0(M ′) has an element of order pn if and only if there exists
G ∈M ′ such that F := Ek − pnG ∈ S.

Proof. Since C0(M ′) ∼= M ′/(ZpEk ⊕ S), if G ∈ M ′ projects to an element of order pn in C0(M ′),
then pnG = aEk + F for some a ∈ Z×p and F ∈ S \ pS. The converse is then also clear. �

In particular, recall that we have constructed F = Ek − ζ(1−k)
2 (240E4)a(−504E6)b ∈ S. By the

lemma there exists a submodule isomorphic to Zp/(ζ(1− k)) in C0(M ′). We now observe that

AnnZpC0(M ′) ⊂ (ζ(1− k)), since Zp/(ζ(1− k)) ↪→ C0(M ′),

J = AnnZpC0(T′) ⊂ AnnZpC0(M ′), since C0(T′)⊗M ′ � C0(M ′),

and we have already proved FittZp H
1
f (Q,Qp/Zp(χ

1−k))∨ ⊂ J . In conclusion, we have

(ζ(1− k)) ⊃ AnnZpC0(M ′) ⊃ AnnZpC0(T′) ⊃ FittZp H
1
f (Q,Qp/Zp(χ

1−k))∨.

This will turn out to be a recurring theme.
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[BC09] Joël Belläıche and Gaëtan Chenevier. Families of Galois representations and Selmer groups. Number 324 in
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