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1 Strict Ray Class Group

Let K be a totally real field of degree r over Q. We assume K ̸= Q. Let O = OK be the ring of integers

and D be the different of O.
Let N : K → Q be the norm map. Given any Q-algebra R, it extends to a map N : K ⊗ R → R. In

particular, for the finite adèles R = Q̂ = A(∞)
Q , we have N : K̂ = A(∞)

K → Q̂.

We will describe the strict ray class group of K in terms of (fractional) ideals of K. Let I0 be the monoid

of (fractional) ideals of K. It contains the submonoid A0 of integral ideals of K.

Definition. Let a, b ∈ I0 and f ∈ A0. We say a is equivalent to b modulo f, denoted a ∼f b, if ab
−1 = (α)

for some

α ∈ 1 + fb−1 , α≫ 0

where this second part means that α is totally positive in K. This equivalence relation preserves integrality

Definition. Let Af = A0/∼f ⊃ A×
f = Gf = strict ray class group of K of conductor f. It is contained in

If = I0/ ∼f.

By taking different f’s, we obtain an inverse system and we can take the inverse limits to get

G = lim←−
f

G ⊂ A = lim←−
f

Af ⊂ I = lim←−
f

If

In the case K = Q, we would recover Ẑ× ⊂ Ẑ ⊂ Q̂. Most of the rest of the talk could be phrased in term

of the (absolute) strict ray class group G of K but the original paper uses I, and so will we.

Proposition 1. The norm map N : I0 → N (different norm map than above, obviously) extends to N : I → Q̂
s.t. N(ab) = N(a)N(b). We have N(A) ⊂ Ẑ and N(G) ⊂ Ẑ×.

We want to compare I and K̂. Let α ∈ K̂. For any f ∈ A0, choose any αf ∈ K such that

αf ≫ 0 and α ∼= αf mod f

such that (αf)f is a “compatible sequence” with respect to the the transition maps K/f′ → K/f whenever

f′ ⊂ f. I think that to interpret this condition, we need to think of K/f as an O-module, but not quite sure.

It’s not terribly important. The idea should be clear.

Definition. Let i : K̂ → I as α 7→ ((αf))f, where (αf) ∈ If is the (fractional) ideal generated by αf . One

can show that this is well-defined and N((i(α)) = N(α).

Remark 1. If a = (α) is the fractional ideal obtained by looking at the p-valuation of α for every prime p

of K, we do not have N(a) = N(α) in general.
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We will care about the product (a · α) = a · α := a · i(α) ∈ I for a ∈ I, α ∈ K̂.

Remark 2. Since 0 is not totally positive, i(0) just corresponds to a compatible sequence of principal ideals

generated by positive elements of each f. In particular, it is not 0. So very confusingly, α · 0 is not 0.

Proposition 2. Given x ∈ K̂×, (x) · x−1 ∈ G. In fact, the map j : K̂× → G as x 7→ (x) · x−1 is just the

Artin map.

2 L-function and Analytic Properties

Let ϵ : I → C be a Schwartz function (i.e. locally constant and compact support).

Definition. L(s, ϵ) =
∑

a∈I0
ϵ(a)Na−s. In a lot of cases, we can restrict our attention to ϵ’s supported on

A0 so this infinite sum would only run over integral ideals.

Remark 3. 1. ϵ is not necessarily a character of I.

2. L(s,−) is linear in ϵ

3. The above converges for Re(s) large enough. By writing it as a linear combination of partial zeta

function, we can directly obtain its meromorphic continuation on C.

We briefly talk about its functional equation. To do so, we need the notion of parity.

Definition. Let σ be a R-place ofK. Let cσ ∈ G be complex conjugation at that place (i.e. an “Archimedean

Frobenius”). Let Σ± be the subgroup of G generated by the cσ’s. It has order 2
r where recall, r = [K : Q].

We say that ϵ has parity (aσ)σ, for some sequence of integers aσ = 0, 1, if

ϵ(σg) = (−1)aσϵ(g), ∀g ∈ G, σ

We say that ϵ is even (resp. odd) if aσ = 0 (resp. 1) for all σ.

Remark 4. An arbitrary ϵ does not have to have any parity in general. However, we can always decompose

it according to the eigenspace of the natural action of Σ± on the space of Schwartz functions on I. In other

words, we can write

ϵ =
∑
S

ϵS

as the sum runs over all possible parity S (there are 2r of them) and ϵS has parity S. In particular, for

S = (0)σ, we have

ϵ+(x) = ϵ(0)(x) =
1

2−r

∑
c∈Σ±

ϵ(cx)

and for S = (1)σ, we have

ϵ−(x) = ϵ(1)(x) =
1

2−r

∑
c∈Σ±

N(c)ϵ(cx)

We can think of these the “even” and “odd” part of ϵ. I think these formulae are easy to generalize to

obtain ϵS for a general parity S. Note that N(cσ) = −1.

We also need the notion of the “Fourier transform” Tϵ : I → C of ϵ but we won’t give the actual expression

of this new Schwartz function (cf. beginning of Section 3 of Deligne-Ribet’s paper).

Finally, let ΓR(s) = π−s/2Γ
(
s
2

)
.
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Theorem 1. Let ϵ : I → C with some parity (aσ)σ. Let A =
∑

aσ and γ(s) =
∏

σ ΓR(s + aσ. Let

Λ(s, ϵ) = γ(s)L(s, ϵ). Then,

Λ(s, ϵ) = iAΛ(1− s, T ϵ)

Moreover, Lambda(s, ϵ) is holomorphic on C, except if ϵ is even. In that case, we have at worst simple

poles at s = 0 and 1.

By looking at the poles of γ(s) coming from the simple poles of Γ(s) at non-positive integers, we get the

following corollary about trivial zeros of this L-function.

Corollary 1. Let ϵ : I → C be of some parity. Then,

1. If ϵ is not even, L(1− k, ϵ) = 0 for all even k ≥ 1.

2. If ϵ is not odd, L(1− k, ϵ) = 0 for all odd k ≥ 1.

Therefore, for a general Schwartz function ϵ : I → C, L(1 − k, ϵ) = L(1 − k, ϵ±) (depending on whether

k is even or odd).

Remark 5. This theorem is false for K = Q and k = 1.

3 Cusps and q-Expansions

We fix a polarization ideal c of I0, α ∈ K̂× and f ∈ A0. Take a = (α) ∈ I0 and b = ac−1. Then, we have

a−1 ⊗Q = O ⊗Q

in K ⊗Q and this gives a canonical isomorphism jcan : a−1 ⊗R
∼−→ O ⊗R for any Q-algebra R.

Furthermore, let ϵ : f−1O/O → f−1a−1/a−1 be the isomorphism obtained from

f−1O/O → f−1Ô/Ô−1 ×α−1

−−−−→ f−1â−1/â−1 → f−1a−1/a−1

where the hat’s ·̂ denote adelic closure. This information (a, b, ϵ, j) (all determined by α) is enough to

construct an Hilbert-Blumenthal abelian variety Xa,b over R with a Γ∞(f)-structure (coming from ϵ) and a

basis vector ωcan = ω(jcan) of ωXa,b
. This is called a Tate variety, generalizing the “usual” Tate curve.

Given an Hilbert modular form F ∈ Mk(Γ∞(f), R), its q-expansion at the cusp α is its evaluation at

Xa,b. Denote it by Fα. To obtain a p-adic q-expansion, we need a p-adic version of this Tate variety, namely

a Γ∞(p−∞f)-structure.

To do this, we take the isomorphism ϵn : p−nf−1O/O → p−nf−1a−1/a−1 obtained by multiplication by

α−1 as above (but with a division by pn). Then, a similar argument (which we don’t write out), the sequence

i(ϵ) = (ϵn)n yields a Γ∞(p−∞f)-structure of Xa,b.

Note that ϵ0 is just the same as ϵ above and i(ϵ) as a whole gives us another basic vector ω of ωXa,b
.

Indeed, tensoring ϵn with f over O, we get

p−nO/O ∼−→ p−na−1/a−1 ⇒ Zp ⊗O
∼−→ Zp ⊗ a−1

and inverting the latter gives us an isomorphism j : a−1 ⊗R→ O⊗R for any p-adic ring R. Note that j is

simply αp times jcan. So ω := ω(j) = αpωcan.

Suppose R is a flat Zp-algebra and let E = R ⊗Zp
Qp. Let πk : Mk(Γ∞(f), E) → V (Γ∞(f), E) be the

“p-adification” of classical Hilbert modular forms. The p-adic q-expansion of F at α is the evaluation of πkF

at (Xa,b, i(ϵ)), which is the same as the evaluation of F at (Xa,b, ϵ, j). Note that we use j here instead of

jcan.

Then, the relation between ω and ωcan together with the definition of “weight k” give us the following.
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Proposition 3. Let F ∈Mk(Γ∞(f), E). Then, the p-adic q-expansion of F at α is given by

Nα−k
p Fα

Theorem 2 (q-expansion principle). Let F ∈ V (Γ∞(f), E and α ∈ K̂×. If the coefficients fo the p-adic

q-expansion of F at α are all in R, then

F ∈V (Γ∞(f), R)

This follows from the irreducibility of the Igusa tower over the ordinary locus of the Hilbert moduli space.

Corollary 2. Suppose that F ∈ V (Γ∞(f), E) has a p-adic q-expansion at α given by

Fα = c0 +
∑

µ∈ab,µ≫0

cµq
µ

such that cµ ∈ R for all µ (but not necessarily c0). Let β ∈ K̂× be another cusp and let d0, dµ be the

coefficients of the q-expansion of F at β.

Then, d0 − c0 ∈ R and all dµ ∈ R.

Proof. Apply the q-expansion principal to F − c0, where we see c0 as a p-adic modular form induced from

the constant weight 0 modular form c0.

4 Eisenstein Series

Let β be any fractional ideal of K. We construct an Eisenstein series Gk,ϵ in Mk(Γ∞(f),C) where the

polarization module is c = β−1.

Definition. Given a Schwartz function ϵ : I → C, we define its modification with respect to β to be ϵ̃ : I → C

ϵ̃(x) :=

{
0, if x ̸⊂ β

ϵ(x−1 · 0), if x ⊂ β

where x−1 · 0 ∈ I is the element defined at the end of Section 1 in Remark 2.

For c ∈ G, let ϵ̃c := (ϵ̃)c be its twist by c.

Theorem 3. Let k ≥ 1, ϵ : I → C as above such that ϵ has parity (−1)k, i.e. has the same parity as k.

Suppose that ϵ is supporte on A and defined modulo f. Then, there exists an Eisenstein series

Gk,ϵ ∈Mk(Γ∞(f),C)

whose q-expansion at the cusp α ∈ K̂× is

1. If k > 1 :

N(a)k

2−rL(1− k, ϵc) +
∑
µ≫0

 ∑
x⊂βa2

ϵ(µx−1)N(µx−1)k−1

 qµ


2. If k = 1 :

N(a)

2−rL(0, ϵc + ϵ̃c) +
∑
µ≫0

 ∑
x⊂βa2

ϵ(µx−1)

 qµ
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where a = (α) and c = a · α−1.

A rationality result of Siegel tells us that if ϵ actually takes values in Q, then L(1 − k, ϵ) ∈ Q for all

integers k. By linearity in the second variable, the same is true once changing Q for Qp or Q̂. Shortly,

we will assume that ϵ “almost” takes Zp-values (or actually Ẑ-values), i.e. that the expression involving ϵ

appearing in the non-constant terms of the q-expansion above take Ẑ-values. Then, after taking care of the

small difference between p-adic q-expansion and the usual one, we will conclude that differences between

constant terms, i.e. difference between certain L-values, are also Ẑ-rational.

5 Deligne-Ribet p-adic L-function

Let’s make the final remark of the last section more precise. Let α ∈ K̂× and c = (α) · α−1 = a · α−1 ∈ G.

Then, we have

N(c) = N(a) ·N(α)−1

Note that this is not equal to 1 in general (but it is if α ∈ K and α≫ 0).

Therefore, after fixing an isomorphism Qp
∼= Q, inducing an isomorphism Q̂p = Cp

∼= C, we can see our

Eisenstein series above over Cp and takes its p-adic q-expansion at α. The formulas from our theorem above

remain the same, except the factor N(a) is replaced by N(c). This motivates the following definition.

Definition. Fix k ≥ 1, c ∈ G. Assume ϵ : I → Q̂ is a Schwartz function. Let

∆c(1− k, ϵ) := L(1− k, ϵ)−NckL(1− k, ϵc)

By our comments above, this is simply the difference between the constant terms on the p-adic q-expansion

of Gk,ϵ at the cusps 1 and α (where c = (α) · α−1), seen as an element of Q̂ by looking at all primes p at

once.

We define the distribution µc,k on I with values in Q̂ as ϵ 7→ λc(1 − k, ϵ). If k = 1, we simply write

µc := µc,1.

Theorem 4 (Main theorem). For each c ∈ G, µc is actually a measure on I with values in Ẑ. Moreover,∫
ϵ ·Nk−1dµc = ∆c(1− k, ϵ) ,

namely µc,k = Nk−1µc, where this norm map is N : I → Q̂.

To prove it, we need to use the generalized Kummer congruences.

Theorem 5. Let (ϵk)k be a sequence of Q̂-valued Schwartz functions on I with ϵk = 0 for all but finitely

many k’s. Assume that ϵk has parity (−1)k.
Let φ =

∑
k≥1 ϵkN

k−1 : I → Q̂. Let β ∈ I0 be any ideal of K and assume∑
x⊂β,x∈I0

φ(µx−1) ∈ Ẑ, ∀µ≫ 0 in K

Then, ∆c(0, ϵ1 + ϵ̃) +
∑

k≥2 ∆c(1− k, ϵk) ∈ 2rẐ, where ϵ̃1 is the modification of ϵ1 with respect to β.

Proof. After some consideration, we can reduce to the case where β = O, all ϵk are supported on A and are

all defined modulo the same conductor f. Therefore, we can construct Eisenstein series Fk := Gk,ϵk .
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Let S :=
∑

k≥1 Fk. If we compose all ϵk with the projection Q̂→ Qp, we can think of S as a p-adic Hilbert

modular form over Qp. The assumption about φ therefore simply means that all non-constant coefficients

of its p-adic q-expansion at 1 are in Zp.

Then, the q-expansion principle yields that the difference of its constant term at 1 and at α ∈ K̂× is in

Zp. By considering all primes p at once, this exactly says2−rL(0, ϵ+ ϵ̃) +
∑
k≥2

2−rL(1− k, ϵ)

−
2−rNc−1L(0, ϵc + ϵ̃c) +

∑
k≥2

2−rNc−kL(1− k, ϵc)

 ∈ Ẑ

where c = (α) · α−1 as usual. After multiplying by 2r, we get the desired conclusion.

We can now prove the main theorem above.

Proof. We first need to explained that if ϵ is Ẑ-valued, then so is its integral against µc. Using the trivial

zeroes of certain L(s, ϵS) for most parity S at s = 0 (i.e. for k = 1 in Corollary 1 of Section 2), we know that

Λc(0, ϵ) = Λc(0, ϵ
−)

Then, using the theory of “exceptional” fields, Deligne-Ribet show explicitly that Λc(0, ϵ
−) ∈ Ẑ using the

fact that ϵ− is odd.

Now, we have to prove that Nk−1µc = µc,k as distributions. This is achieved by integrating any Ẑ-integral
ϵ against both sides and show that both sides are congruent modulo m for all integers m.

Let ϵ† be ϵ+ or ϵ− depending on whether k ≥ 2 is even or odd. Then again, trivial vanishing yields

Λc(1− k, ϵ) = Λc(1− k, ϵ+)

and
∫
ϵNk−1µc =

∫
ϵ†Nk−1µc (apply vanishing to Λc(0, ϵN

k−1) by noting that ϵ†Nk−1 is always odd).

Therefore, there is no loss in generality by assuming that ϵ has parity (−1)k.
Now fix m ≥ 0 and choose any locally constant function η : A → Ẑ that is odd and congruent to N

modulo m. Then, by applying our generalized Kummer congruence with ϵ1 = ϵNk−1 and ϵk = −ϵ (all other
ϵk′ = 0), we obtain

Λc(1− k, ϵ) ≡ Λc(0, ϵη
k−1) + Λc(0, ϵ̃ηk−1) mod m

and we need to get rid of this last term. But this is not actually hard because ϵ̃ηk−1 is supported on elements

of I of the form x−1 · 0 and these have norm zero. So we have

ϵ̃ηk−1(x−1 · 0) = 0 ∈ mẐ⇒ ϵ̃ηk−1 ≡ 0 mod m

so Λc(1− k, ϵ) ≡ Λc(0, ϵη
k−1) modulo m, as desired.

This measure µc is not quite what we want. Instead, we fix some prime p and project Ẑ to Zp to see µc

as an element of the Iwasawa algebra Λ = Zp[[G]]. Then, define the “pseudo-measure”

λ :=
1

1− c
µc ∈ Frac(Λ)

This is well-defined and independent of c ∈ G since µc′ = (1 − c′)λ. The advantage here is that for any

character ϵ : G→ C×, we have ∫
ϵNkdλ = L(1− k, ϵ)

and this yields p-adic variation of the usual L-function, which we call the Deligne-Ribet p-adic L-function.
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