Intoduction to Iwasawa theory

Hung Chiang

November 7, 2024

1 Iwasawa algebra of one variable

Let F/\mathbb{Q}_p be a finite extension, $\mathcal{O} \subset F$ be the ring of integers, and $\varpi \subset \mathcal{O}$ be a uniformizer. Let $\Gamma \cong \mathbb{Z}_p$ be a topological group and γ . We may start with a \mathbb{Z}_p -Galois extension K_{∞}/K with Galois group Γ and define $K_n := (F_{\infty})^{\Gamma^{p^n}}$, $\Gamma_n := \operatorname{Gal}(K_{\infty}/K_n) = \Gamma/\Gamma^{p^n}$.

Definition 1.

$$\Lambda = \mathcal{O}[[\Gamma]] := \varprojlim_{n} \mathcal{O}[\Gamma_{n}] = \varprojlim_{n} \mathcal{O}[\Gamma/\Gamma^{p^{n}}] \cong \varprojlim_{n} \mathcal{O}[T]/\langle (1+T)^{p^{n}} - 1 \rangle$$

where the last isomorphism is given by $\gamma_0 \mapsto 1 + T$.

We will show that $\varprojlim_n \mathcal{O}[T]/\langle (1+T)^{p^n}-1\rangle = \mathcal{O}[[T]].$

Definition 2. Let $P \in \mathcal{O}[T]$. P is called a distinguished polynomial if P is non-constant, monic, and $P \equiv T^{\deg(P)} \pmod{\varpi}$.

Proposition 1 (Division Algorithm). Suppose $P = a_0 + a_1 T + \cdots \in \mathcal{O}[[T]]$, $P \not\equiv 0$ (mod ϖ), and $n = \min\{k \in \mathbb{N} \mid a_k \in \mathcal{O}^{\times}\}$. Then for every $f \in \mathcal{O}[[T]]$ there exists a unique pair (Q, R) where $Q \in \mathcal{O}[[T]]$ and $R \in \mathcal{O}[T]$ has degree smaller than n, such that

$$f = QP + R$$
.

Theorem 1 (Weierstrass Preparation). For every $f \in \mathcal{O}[[T]]$ there exists a unique triple (u, U(T), P(T)) where $u \in \mathbb{Z}_{\geq 0}$, $U \in \mathcal{O}[[T]]^{\times}$, and P(T) is a distinguished polynomial, such that

$$f = \varpi^u PU$$
.

It is easily seen that $\mathcal{O}[[T]]$ is a UFD of dimension 2 and a set of representatives of its irreducible elements are ϖ and all irreducible distinguished polynomials.

Theorem 2. Let P_1, P_2, \cdots be a sequence of distinguished polynomials such that $P_n \in (\varpi, T)^n$ and $P_n \mid P_{n+1}$ for all $n \in \mathbb{N}$. We endow $\mathcal{O}[[T]]$ with the \mathfrak{m} -adic

topology and $\mathcal{O}[[T]]/(P_n)$ the p-adic topology. Then the natural map

$$\varphi: \mathcal{O}[[T]] \to \varprojlim_{k} \mathcal{O}[[T]]/(P_n)$$

is an isomorphism of topological \mathcal{O} -algebras.

Proof. Since $\mathcal{O}[[T]]/(P_n)$ is *p*-adically complete, it is isomorphic to $\varprojlim_{\ell} \mathcal{O}[[T]]/(P_n, \varpi^{\ell})$ with each object endowed with discrete topology. Hence

$$\varprojlim_{n} \mathcal{O}[[T]]/(P_{n}) = \varprojlim_{n,\ell} \mathcal{O}[[T]]/(P_{n}, \varpi^{\ell}) = \varprojlim_{n} \mathcal{O}[[T]]/(P_{n}, \varpi^{n}),$$

where each $\mathcal{O}[[T]]/(P_n, \varpi^n)$ is given discrete topology. Since $(P_n, \varpi^n) \subset \mathfrak{m}^n$, it suffices to show that for every $n \in \mathbb{N}$ is a ℓ such that $\mathfrak{m}^{\ell} \subset (P_n, \varpi^n)$. This is true as the radical of (P_n, ϖ^n) is \mathfrak{m} .

Let $P_n := (1+T)^{p^n} - 1$. Since $\mathcal{O}[T]/(P_n) \to \mathcal{O}[[T]]/(P_n)$ is an isomorphism by division algorithm, $\varprojlim_n \mathcal{O}[T]/((1+T)^{p^n} - 1) = \mathcal{O}[[T]]$.

Limits and colimits of finite $\mathcal{O}[\Gamma]$ -modules are naturally Λ -modules. Therefore we would like to study the structure of some class of Λ -modules.

Definition 3. Let M, N are Λ -modules. We say $M \sim N$ if there is a morphism $M \to N$ with finite kernel and cokernel.

 \sim defined above is not an equivalence relation. It defines an equivalence relation on the class of finitely generated torsion Λ -modules.

Example 1. $\mathfrak{m} \sim \Lambda$ but the converse does not hold. If f, g are coprime,

$$\Lambda/(fg) \to \Lambda/(f) \oplus \Lambda/(g), \ \Lambda/(f) \oplus \Lambda/(g) \xrightarrow{\left(g \quad f\right)} \Lambda/(fg)$$

are both injective with finite cokernel.

Theorem 3. Let M be a finitely generated Λ -module. Then

$$M \sim \Lambda^r \oplus \left(\bigoplus_{i=1}^s \Lambda/(\varpi)^{n_i}\right) \oplus \left(\bigoplus_{j=1}^t \Lambda/(f_j)^{m_j}\right)$$

For some r, s, t, n_i, m_j , and irreducible distinguished f_j . These are invariants of M.

When M is torsion, we define $Ch_{\Lambda}(M) = (\varpi^{\mu}f_{M}) \subset \Lambda^{\times}$ where μ is the sum of all n_{i} and f_{M} is the product of all $f_{j}^{m_{j}}$.

Lemma 1 (Nakayama's lemma). Let X be a compact Λ -module. X is finitely generated iff $X/\mathfrak{m} X$ is finite. In this case, generators of $X/\mathfrak{m} X$ as abelian groups generates X as Λ -modules.

Proof. In light of the usual Nakayama's lemma, We should show that if X is compact and $\mathfrak{m} X = X$, X = 0. Fix $U \subset X$ an open neighborhood at 0. For every $x \in X$ there is an open neighborhood $x \in U_x$ and $n_x \geq 0$ such that $\mathfrak{m}^{n_x} U_x \subset U$. Since X is covered by finitely many U_x , $\mathfrak{m}^n X \subset U$ for some $n \geq 0$.

If $\mathfrak{m} X = X$, $\mathfrak{m}^n X = X$ for all n and we have that U can only be X. Therefore X = 0.

2 Iwasawa's theorem

Let K be a number field, K_{∞}/K be a \mathbb{Z}_p -extension.

Proposition 2. K_{∞}/K is unramified outside all places lying above p.

Proof. Let v be a place and let I_v be the inertia group in the extension, which is a closed subgroup of Γ . I_v is trivial or Γ^{p^n} for some n. If v is archimedean, I_v has order 1 or 2, hence trivial in this case. If v is nonarchimeden, consider the completion of the extension. This is an abelian extension over K_v , whose Galois group is a quotient of the profinite limit of K_v^{\times} . Therefore, if I_v is not trivial, K_v is a finite extension of \mathbb{Q}_v .

Lemma 2. Suppose K_{∞}/K_n is ramified. There is a n such that in K_{∞}/K_n , all primes that are ramified are totally ramified.

Proof. Find all I_v where v|p and v is ramified in K_{∞}/K . Suppose their intersection is Γ^{p^n} . The assertion holds for this n.

Definition 4. A_n is defined as the *p*-elementary part of the ideal class group of K_n . Let L_n/K_n be the maximal unramified *p*-extension. Then $\operatorname{Gal}(L_n/K_n) \cong A_n$. Let L_∞ be the union of all L_n , which is over K_∞ .

If $m \geq n$, elements in A_n extends to elements in A_m and the norm map from K_m to K_n sends A_m to A_n . We set

$$A_{\infty} := \varinjlim_{n} A_{n}, X_{\infty} := \varprojlim_{n} A_{n}$$

Theorem 4 (Iwasawa). There exists $n_0, \nu, \lambda \geq 0, \mu \geq 0$ such that for all $n \geq n_0$, $\log_p(|A_n|) = \lambda n + \mu p^n + \nu$.

Note that we may prove this by replacing K with any K_m . We may assume that in K_{∞}/K , all primes that are ramified are totally ramified.

With this assumption, each K_{n+1}/K_n is ramified. $K_{n+1} \cap L_n$, and all $K_m \cap L_n$

for m > n are therefore K_n . The surjective map

$$A_{n+1} \cong \operatorname{Gal}(L_{n+1}/K_{n+1}) \to \operatorname{Gal}(L_n/K_n) \cong A_n$$

corresponds to the norm map by class field theory. We see that $A_n = \operatorname{Gal}(L_n K_{\infty}/K_{\infty})$ and $\operatorname{Gal}(L_{\infty}/K_{\infty}) = \varprojlim_n A_n = X_{\infty}$.

Each A_n has a Γ_n -action: We lift $\gamma \in \Gamma_n = \operatorname{Gal}(K_n/K)$ to $\widetilde{\gamma} \in \operatorname{Gal}(L_n/K)$ and define $\gamma(x) := \operatorname{Ad}_{\widetilde{\gamma}}(x)$ for $x \in \operatorname{Gal}(L_n/K_n)$. All such liftings differ from elements in $\operatorname{Gal}(L_n/K_n)$ so $\gamma(x)$ is well-defined and give a group action. X_∞ is therefore a natural profinite module of $\Lambda := \mathbb{Z}_p[[\Gamma]]$. Let $G = \operatorname{Gal}(L_\infty/K_\infty)$. The Γ -action on X_∞ is given by lifting $\gamma \in \Gamma$ to $\widetilde{\gamma} \in G$ and apply conjugation on X_∞ .

Let $\mathfrak{p}_1, \dots, \mathfrak{p}_s$ be the prime ideals of K that are ramified in K_{∞} and I_1, \dots, I_s be their respective inertia groups in G. Each $I_i \cap X$ is trivial and $I_i \to \Gamma$ surjectively, so $I_i X = G$. We define $\sigma_i \in I_i$ be the element mapped to γ . There is a unique $a_i \in X$ such that $\sigma_i = a_i \sigma_1$. We write $G = \Gamma X = I_i X$.

Lemma 3.

$$[G,G] = (\gamma - 1)(X) = TX.$$

Proof. $(\gamma - 1)(X) \subset [G, G]$ by considering the action of Γ on X. Note that TX is closed and $\Gamma X/TX = \Gamma(X/TX)$ and it is abelian.

Definition 5. $Y_0 \subset X$ is the \mathbb{Z}_p -submodule generated by a_2, \dots, a_s and TX. $P_n := 1 + \gamma + \gamma^2 \dots + \gamma^{p^n - 1} = \frac{(1 + T)^{p^n} - 1}{T}$.

Lemma 4.

$$X/P_nY_0 \cong X_n.$$

Proof. Let n = 0. $X_0 = \operatorname{Gal}(L_0/K)$ and L_0/K is the maximal unramified abelian extension in L_∞/K . $\operatorname{Gal}(L/L_0)$ is therefore the closed subgroup generated by I_1, \dots, I_s and [G, G]. By definition of Y_0 , the quotient of G by such subgroup is exactly X/Y_0 .

For n > 0, we replace K by K_n . We have to replace γ with γ^{p^n} . With this, σ_i is replaced by $\sigma_i^{p^n}$. The equation

$$\sigma_i^{p^n} = P_n(a_i)\sigma_1^{p^n}$$

yields that a_i is replaced by $P_n(a_i)$, and [G, G] is replaced by $(\gamma^{p^n} - 1)(X) = P_n T X$. All these gives that Y_0 is replaced by $P_n Y_0$.

Since $P_1 \in \mathfrak{m}$ and $X/P_1Y_0 \cong X_1$ is finite, we have that X is a finitely generated Λ -module.

For the general case, we choose e such that the assumption holds for K_{∞}/K_e and define Y_e be the Y_0 for K_e . Let $P_{n,e} := \frac{P_n}{P_e}$. We have $X_n \cong X/P_{n,e}Y_e$ for all $n \geq e$.

We compute $|M/P_{n,e}M|$ for some standard choices of M. Note that $P_{n,e}$ is a distinguished polynomial of degree $p^n - p^e$.

- 1. $M = \Lambda$. $|M/P_{n,e}M| = \infty$.
- 2. $M = \Lambda/(p^k)$. $M/P_{n,e}M$ is isomorphic to the space of polynomials in $\mathbb{Z}/p^k\mathbb{Z}$ with degree $< p^n p^e$. The size is $p^{k(p^n p^e)} = p^{kp^n + c}$ where $c = kp^e$.
- 3. $M = \Lambda/(f)$ for some distinguished f of degree d. If $(f, P_{n,e}) \neq 1$, $|M/P_{n,e}M| = \infty$. Suppose this does not happen. We have P_{n+2}/P_{n+1} acts by p times a unit on M for all $p^n \geq d$. Assume $n_0 > e$, $p^{n_0} \geq d$, $n \geq n_0$. We have $|M/P_{n,e}M| = p^{dn+c}$ for some constant c.

$$X \sim E = \Lambda^r \oplus \left(\bigoplus_{i=1}^s \Lambda/(\varpi)^{n_i}\right) \oplus \left(\bigoplus_{j=1}^t \Lambda/(f_j)^{m_j}\right).$$

One can prove that if $M \sim N$ and $|M/P_{n,e}M| < \infty$ for all n, then $|N/P_{n,e}N| < \infty$ for all n and the ratio between the order of these tow quotients is a constant for n >> 0. Apply this to $M = Y_e$, N = E, use the computation above and $|A_n| = |X/Y_e||Y_e/P_{n,e}Y_e|$ and we get the theorem.

3 Iwasawa main conjecture for GL_1 over $\mathbb Q$

Let $\mathbb{Q}_{\infty}/\mathbb{Q}$ be the cyclotomic \mathbb{Z}_p -extension and $\Gamma = \operatorname{Gal}(\mathbb{Q}_{\infty}/\mathbb{Q})$. Let $\Lambda = \mathbb{Z}_p[[\Gamma]]$. We fix a topological generator $\gamma \in \Gamma$. Let ω be the Teichmuller character and χ be the p-adic cyclotomic character.

We define $[\cdot]: \Gamma \to \Lambda^{\times}$ sending $\gamma \in \Gamma$ to the corresponding group-like element and ϵ_{Λ} the universal character of $G_{\mathbb{Q}}$ with value in Λ by $\epsilon_{\Lambda}: G_{\mathbb{Q}} \to \Gamma \xrightarrow{[\cdot]} \Lambda^{\times}$. This universal character is a p-adic family of characters over the weight space. Let $\zeta \in \mu_{p^{\infty}}(\overline{\mathbb{Q}_p})$. We define $\phi_{k,\zeta} \in \operatorname{Hom}(\Lambda, \overline{\mathbb{Q}_p})$ by the character on Γ sending γ to $\zeta \chi(\gamma)^k$. The evaluation of ϵ_{Λ} at the point $\phi_{\zeta,k}$ has the form $\psi_{\zeta}\omega^{-k}\chi^k$, where ψ_{ζ} is a character of order p-power.

Let ψ be an odd primitive Dirichlet character. The *L*-value $L(0, \psi \epsilon_{\Lambda}(\zeta, k)) = L(-k, \psi \psi_{\zeta} \omega^{-k})$ is interpolated by the Kubota-Leopoldt *p*-adic *L*-function

$$\mathcal{L}_{\psi} = \frac{g_{\psi}}{h_{\psi}} \in \operatorname{Frac}(\Lambda)$$

where $h_{\psi} = \xi \chi(\gamma) \gamma - 1$ if ψ has the form $\psi_{\xi} \omega^{-1}$, or 1 otherwise. At the classical point (ζ, k) ,

$$\mathcal{L}_{\psi}(\zeta, k) = L^{\{p\}}(0, \psi \epsilon_{\Lambda}(\zeta, k)).$$

More generally, we for a finite set of primes not including p, say Σ , we define the imprimitive p-adic L-function as follows:

$$g_{\psi}^{\Sigma} := g_{\psi} \times \prod_{\ell \in \Sigma} (1 - \ell^{-1}(\psi^{-1}\ell^{-1}\epsilon_{\Lambda}^{-1})(\operatorname{Frob}_{\ell})), \ \mathcal{L}_{\psi}^{\Sigma} := \frac{g_{\psi}^{\Sigma}}{h_{\psi}}.$$

These imprimitive p-adic L-functions are designed to interpolate imprimitive special L-values at positive integers.

For every $k \geq 0$ and primitive Dirichlet characters ψ we define the following Selmer groups:

$$\operatorname{Sel}(\psi\chi^{-k})^{\Sigma} := \ker \left(H^{1}(\mathbb{Q}, \mathbb{Q}_{p}[\psi]/\mathbb{Z}_{p}[\psi](\psi\chi^{-k})) \xrightarrow{\operatorname{Res}} \prod_{\ell \notin \Sigma} H^{1}(I_{\ell}, \mathbb{Q}_{p}[\psi]/\mathbb{Z}_{p}[\psi](\psi\chi^{-k})) \right),$$

$$\operatorname{Sel}_{\infty}(\psi)^{\Sigma} := \ker \left(H^{1}(\mathbb{Q}, \Lambda[\psi]^{*}(\psi \epsilon_{\lambda}^{-1})) \xrightarrow{\operatorname{Res}} \prod_{\ell \notin \Sigma} H^{1}(I_{\ell}, \Lambda[\psi]^{*}(\psi \epsilon_{\lambda}^{-1})) \right),$$

and Iwasawa modules

$$X^{\Sigma}(\psi\chi^{-k}) := (\operatorname{Sel}(\psi\chi^{-k})^{\Sigma})^*, \ X^{\Sigma}_{\infty}(\psi) := (\operatorname{Sel}_{\infty}(\psi)^{\Sigma})^*$$

We omit Σ if it is the empty set. Roughly speaking, $X^{\Sigma}(\psi)$ catches an isotypic quotient of the Galois group of a maximal abelian pro-p-extension unramified outside Σ .

Proposition 3. Suppose for every $\ell \notin \{p\} \cup \Sigma$ we have that the order of ψ on I_{ℓ} is not a nontrivial p-power (for example, Σ contains all ramified primes). Then then there are isomorphisms

$$\operatorname{Sel}(\psi\psi_{\zeta}^{-1}\omega^{k}\chi^{-k})^{\Sigma} \cong (\operatorname{Sel}_{\infty}^{\Sigma}(\psi) \otimes \mathcal{O}[\zeta])[\gamma - (\zeta\chi^{k})(\gamma)],$$

and dually

$$X(\psi\psi_{\zeta}^{-1}\omega^{k}\chi^{-k})^{\Sigma} \cong \frac{X_{\infty}^{\Sigma}(\psi)\otimes\mathcal{O}[\zeta]}{(\gamma - (\zeta\chi^{k})(\gamma))X_{\infty}^{\Sigma}(\psi)\otimes\mathcal{O}[\zeta]}$$

unless k=0 and $\psi=\psi_{\zeta}$ on $G_{\mathbb{Q}_p}$. In that exceptional case we have the short exact sequence

$$0 \to \operatorname{Sel}(\psi \psi_{\zeta}^{-1})^{\Sigma} \to \operatorname{Sel}_{\infty}^{\Sigma}(\psi) \otimes \mathcal{O}[\zeta])[\gamma - \zeta] \to \mathbb{Q}_{p}[\psi] / \mathbb{Z}_{p}[\psi] \to 0$$

and the dual one.

The exceptional case reflects the fact that the interpolated special value is 0 for those cases. That never happen when ψ is odd.

Iwasawa proved that $X_{\infty}^{\Sigma}(\psi)$ is a finite Λ_{ψ} -module and moreover, if ψ is odd, is torsion. If moreover $p \nmid [\mathbb{Q}(\mu_N) : \mathbb{Q}]$ where N is the conductor of ψ , $X_{\infty}^{\Sigma}(\psi)$ has no nontrivial finite order $\Lambda[\psi]$ -submodules.

Let (f_{ψ}^{Σ}) be the characteristic ideal of $X_{\infty}^{\Sigma}(\psi)$.

Theorem 5 (Iwasawa's Main Conjecture for \mathbb{Q}). Let ψ be an odd primitive Dirichlet character. Then

$$(f_{\psi}^{\Sigma}) = (g_{\psi^{-1}}^{\Sigma}) \subset \Lambda[\psi] \otimes_{\mathbb{Z}_p} \mathbb{Q}_p$$
.

If p does not divide the order of ψ , then moreover they are the same in $\Lambda[\psi]$.

One side of the divisibility is given by Iwasawa's analytic number formula: When we fix a conductor and add on the λ -invariant over all odd Dirichlet character factoring through $\operatorname{Gal}(\mathbb{Q}(\mu_N)/\mathbb{Q})$, we get the same number for f and g, and also the equality for μ -invariant when $p \nmid [\mathbb{Q}(\mu_N) : \mathbb{Q}]$. Since such formula is not discovered in general, the divisibility obtained from this side is often done by finding an Euler system.