
Alternative Proof of the Iwasawa Main Conjecture

Vivian Yu

February 23, 2023

Previously, we have discussed the proof of Iwasawa Main Conjecture following Mazur and Wiles using

deep techniques from algebraic geometry. In this talk, we will discuss an alternative proof by Rubin using

Kolyvagin’s Euler System.

1 Notations

We will first begin by introducing some notations.

Fix a rational prime p > 2. For every integer n ≥ 0, let

Kn = Q(ζpn+1), K∞ = ∪nKn

Put

∆ = Gal(K0/Q) ∼= (Z/pZ)× and Γ = Gal(K∞/K0) ∼= Zp,

then Gal(K∞/Q) = ∆ × Γ. For n ≥ 1, write Cn for the p-part of the ideal class group of Kn, En for the

group of global units of Kn, and En for the group of cyclotomic units of Kn. Write Un for the group of local

units of the completion of Kn above p which are congruent to 1 modulo the maximal ideal, and let Ēn and

Vn denote the closures of En ∩Un and En ∩Un in Un. Define the following inverse limits with respect to the

norm maps:

C∞ = lim←−Cn, E∞ = lim←− Ēn, V∞ = lim←−Vn, U∞ = lim←−Un.

For n ≤ ∞, Ωn be the maximal abelian p-extension of Kn unramified outside primes above p. Write

Xn = Gal(Ωn/Kn).

Define the Iwasawa algebra

Λ = Zp[[Γ]] = lim←−Zp[Gal(Kn/K0)] ∼= Zp[[T ]]

For every character χ of ∆, define the χ-idempotent

εχ =
1

p− 1

∑
δ∈∆

χ−1(δ)δ

If Y is a Zp[∆]-module, write Y (χ) = εχY .
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2 Formulation of the Main Conjecture over Q

There are several equivalent formulations of the Main Conjecture. The one we will be proving is the following:

Theorem 2.1. For all even characters χ of ∆, we have the following identity of characteristic ideals:

char(C∞(χ)) = char(E∞(χ)/V∞(χ))

3 Definition and Properties of Kolyvagin’s Euler System

Fix a positive integer m and let F = Q(ζm)+. Let S denote the set of positive square free integers divisible

only by primes l ≡ ±1 mod m (i.e., by those l which split completely in F/Q). For every r ∈ S , write

Gr = Gal(F (ζr)/F ) ∼= Gal(Q(ζr)/Q)

and write Nr =
∑

τ∈Gr
τ ∈ Z[Gr]. Because of the natural isomorphism Gr =

∏
l|r Gl, we have the relation

Nr =
∏

l|r Nl. If l ≡ ±1 mod m and l ∤ r, the we identify Gl with Gal(F (ζrl)/F (ζr)), and we write Frobl

for the Frobenius of l in Gr. For every prime l ≡ ±1 mod m, fix a generator σl of Gl. Define

Dl =

l−2∑
i=1

iσi
l ∈ Z[Gl].

It is easy to see that Dl satisfies

(σl − 1)Dl = (l − 1)−Nl.

For r ∈ S , define

Dr =
∏
l|r

Dl ∈ Z[Gr]

Fix a primitive m-th root of unity ζm and, for each prime l ≡ ±1, a primitive l-th root of unity ζl. For

r ∈ S define the Euler system ξr of level r by:

ξr =

1− ζm
∏
l|r

ζl

1− ζ−1
m

∏
l|r

ζl


These algebrain integers satisfy the following:

ES1. ξr ∈ F (ζr)×.

ES2. ξr is a cyclotomic unit if r > 1.

ES3. Nlξr = (Frobl−1)ξr/l.

ES4. ξr ≡ ξr/l mod every prime above l.

Proof. ES1 is clear from definition. ES2 follows from the classification of cyclotomic units (ζm = ζm+1
m ).

ES3 follows from the fact that ∏
η,ηp=1

(ξη − 1) = ξp − 1

Here ξ is a cyclotomic unit. ES4 follows from the fact that ζl ≡ 1 modulo all primes above l.
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Fix an odd integer M and define

SM = {r ∈ S | r is divisible only by primes l ≡ 1 mod M}.

Now we move on to construct Kolyvagin’s derivative classes from the Euler system.

Lemma 3.1. For every r ∈ SM there is a κr ∈ F×/(F×)M such that

κr ≡ Drξr mod (F (ζr)
×)M

Proof. We omit the details of the proof but κr is of the form

κr = Drξr/β
M

for some β ∈ F (ζr)×. In fact, κr is obtained from Drξr under the following sequence of isomorphisms:

Drξr ∈ [(F (ζr)
×)/(F (ζr)

×)M ]Gr ∼= H1(GF (ζr), µM )Gr ∼= H1(GF , µM ) ∼= F×/(F×)M .

Each κr is a principal ideal of F modulo M -th powers of ideals, which can be viewed as a relation in the

ideal class group of F if M is big enough. These relations will be used to bound the size of the ideal class

group. To do this, we must understand the prime factorizations of these ideals and also how to choose r so

as to get useful relations.

Let OF denote the ring of integers of F , and write I =
⊕

λ Zλ for the group of fractional ideals of F

written additively. For every rational prime l, write Il =
⊕

λ|l Zλ. Therefore, I =
⊕

l Il. If y ∈ F×, let

(y) ∈ I denote the principal ideal generated by y and let (y)l ∈ Il, [y] ∈ I /MI , and [y]l ∈ Il/MIl be

the natural projections of (y). Note that [y] and [y]l are also well defined for y ∈ F×/(F×)M .

Let G = Gal(F/Q).

Lemma 3.2. Suppose l splits completely in F and l ≡ 1 mod M . There is a unique G-equivariant surjection

φl : (OF /lOF )
× → Il/MIl

such that φl((1− σl)x) = [Nlx]l.

Remark 3.0.1. Note that φl can be extended to {y ∈ F×/(F×)M | [y]l = 0}. The Galois cohomological

formulation of this Lemma is more enlightening.

The following proposition is due to Kolyvagin and it deals with the prime factorization of (κr)

Proposition 3.1. Suppose r ∈ IM and l is a rational prime.

(i) If l ∤ r, then [κr]l = 0.

(ii) Otherwise, [κr]l = φl(κr/l).

The next Theorem is an application of the Chebotarev Theorem. Together with the proposition above,

we will be able to construct all the relations we need in the ideal class group of F . As usual we fix a rational

prime p > 2 and let C denote the p-part of the ideal class group of F .
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Theorem 3.1. Suppose we are given a class c ∈ C, M ∈ Z a power of p, a finite G-submodule W of

F×/(F×)M , and a Galois-equivariant map

ψ :W → Z/MZ[G].

Then there are infinitely many primes λ of F such that

(i) λ ∈ c

(ii) If l is the rational prime below λ, then l ≡ 1 mod M and l splits completely in F/Q.

(iii) [w]l = 0 for all w ∈W , and there is a u ∈ (Z/MZ)× such that φl(w) = uψ(w)λ for all w ∈W .

4 An Example of Applying Kolyvagin’s Method

Proposition 3.1 and Theorem 3.1 were used to bound the χ-part of the p-part of the class group of F = Q(ζp)
+.

5 Preparation for the proof of the Main Conjecture

Now we introduce some tools from Iwasawa theory that will help us with the proof of the main conjecture.

In order to use the relations we construct for the ideal class group, we need to know more about the structure

of Cn and Ēn as Zp[Gal(Kn/Q)]-modules. For any fixed n we know very little, but C∞ and E∞ has nice

Λ-module structure that can be decent to the n-th level using control theorems.

For every n, let Γn = Gal(K∞/Kn) and let In denote the ideal of Λ generated by γp
n − 1, where γ is the

topological generator of Γ. Write

Λn = Λ/In ∼= Zp[Gal(Kn/K0)].

For Y a Λ-module, write

YΓn
= Y/InY = Y ⊗Λ Λn.

We study the natural maps induced by projection:

X∞(χ)Γn
→ Xn(χ), C∞(χ)Γn

→ Cn(χ), U∞(χ)Γn
→ Un(χ)

E∞(χ)Γn
→ Ēn(χ), V∞(χ)Γn

→ Vn(χ)

The second one is an isomorphism for all χ, the first, third, and fifth are isomorphisms when χ is nontrivial

and even. For the fourth one, under the same condition for χ, the kernel of cokernal are finite and bounded

independently of n. The following are some corollaries of the control theorems that we will be using in the

proof of the Main Conjecture.

For every character χ of ∆, fix a generator hχ ∈ Λ of char(E∞(χ)/V∞(χ)).

Proposition 5.1. Suppose χ is even and χ ̸= 1. There is an ideal A of finite index in Λ such that for every

η ∈ A and every n, there is a map θn,η : Ēn(χ) such that θn,η(Vn(χ)) = ηhχΛn.

We already know that C∞(χ) is Λ-torsion and by the structure theorem of Λ-modules pseudo-isomorphic

to a module of the form
k⊕

i=1

Λ/fiΛ

Writing fχ =
∏k

i=1 fi, we have char(C∞(χ)) = fχΛ.
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Proposition 5.2. Let f1, · · · , fk be as above. There is an ideal B of finite index in Λ and for every n there

are classes c1, . . . , ck ∈ Cn(χ) such that the annihilator Ann(ci) ⊂ Λn of ci in Cn(χ)/(Λnc1 + · · ·+ Λnci−1)

satisfies BAnn(ci) ⊂ fiΛn.

Lemma 5.1. Let fχ, hχ be as above.

(i) For every n, Λn/fχΛn and Λn/hχΛn are finite.

(ii) There is a positive constant c such that for all n,

c−1 ≤ #Cn(χ)

#Λn/fχΛn
≤ c, c−1 ≤ #Ēn(χ)/Vn(χ)

#Λn/hχΛn
≤ c

(iii) If χ = 1, then fχ and hχ are units.

6 Proof of the Main Conjecture

The proof of the Main Conjecture will be similar to the inductive technique used in the example, except that

elements of group rings will be used in place of numbers.

In general, M will be a large power of p. For the proof we fix n and write

C := Cn E := En V := Vn

Let F := K+
n = Q(ζpn+1)+. When χ is even, we can identify C(χ) and the χ-component of the ideal class

group of F . Let l be a rational prime splitting completely in F . If λ is a prime of F above l, then

Il(χ) := εχ(Il ⊗ Zp)

is free of rank 1 over Λn, generated by

λ(χ) := εχλ.

Define

νλ = νλ,χ : F× → Λn st. νλ(w)λ(χ) = εχ(w)l

Since I is a free Λn-module, νλ is well-defined. We write ν̄λ : F×/(F×)M → Λn/MΛn as the corresponding

map of νλ satisfying ν̄λ(w)λ(χ) = εχ[w]l.

For r ∈ SM , let κr ∈ F×/(F×)M be as defined above. The following lemma helps us define a map

that will be used in the proof later.

Lemma 6.1. Suppose r ∈ SM , l | r, and λ is a prime of F above l. Let B be the subgroup of the ideal class

group C generated by the primes of F dividing r/l. Write c ∈ C(χ) for the class of λ(χ) and write W for

the Λn-submodule of F×/(F×)M generated by εχκr.

If η, f ∈ Λn are such that the annihilator Ann(c) ⊂ Λn of c in C(χ)/B(χ) satisfies

(i) ηAnn(c) ⊂ fΛn,

(ii) Λn/fΛn is finite,
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(iii) M ≥ #C(χ)#Il(χ)/MIl(χ)
Λn[εχκr]l

,

then there is a Gal(Kn/K0)-equivariant map ψ :W → Λn/MΛn such that

fψ(εχκr) = ην̄λ(κr).

Proof. The proof is by construction.

Recall that

char(E∞(χ)/V∞(χ)) = hχΛ, char(C∞(χ)) = fχΛ,

where fχ =
∏k

i=1 fi.

Theorem 6.1. For every even character χ of ∆, we have

char(C∞(χ)) | char(E∞(χ)/V∞(χ))

Proof. When χ = 1, we know from Lemma 5.1 that hχ and fχ are both units and the divisibility holds.

Thus, from now on we assume χ ̸= 1. Recall that κ1 is represented by ξ = (ζpn − 1)(ζ−1
pn − 1) ∈ F×

and ξ(χ) := ξεχ generates Vn(χ). Let c1, · · · , ck ∈ C(χ) be as in Proposition 5.2. Let ck+1 ∈ C(χ) be any

element. Fix an ideal C of finite index in Λ satisfying both Proposition 5.1 and Proposition 5.2. Let η ∈ C

be such that Λm/ηΛm is finite for all m. Let θ = θn,η : Ē(χ)→ Λn be the map in Proposition 5.1 with this

choice of η. WLOG we can normalize θ so that

θ(ξ(χ)) = ηhχ.

According to Lemma 5.1, we can find an integer h such that ph ≥ Λn/hχΛn. We also require ph ≥ Λn/ηΛn.

Fix M = pn+(k+1)h#C(χ).

We will be applying Theorem 3.1 inductively to choose primes λi of F lying above li for 1 ≤ i ≤ k + 1

satisfying:

(a) λi ∈ ci, li ≡ 1 mod M ,

(b) ν̄λ1(κl1) = u1ηhχ, fi−1ν̄λi(κri) = uiην̄λi−1(κri−1) for 2 ≤ i ≤ k + 1,

where ri =
∏

j≤i lj and ui ∈ (Z/MZ)×.

For the first step take c = c1, W = (E/EM )(χ), and

ψ :W → Ē(χ)/Ē(χ)M
θ−→ Λn/MΛn

εχ−→ εχZ/MZ[Gal(F/Q)]

Let λ1 be any prime satisfying Theorem 3.1 with this data, and l1 the rational prime below λ1. Theorem

3.1 says they satisfy (a). By Theorem 3.1 and Proposition 3.1, for some u1 ∈ (Z/MZ)×,

ν̄λ1(κl1)λ1(χ) = εχ[κl1 ]l1 = εχφl1(κ1) = εχu1ψ(κ1)λ1 = u1ψ(κ1)λ1(χ)

= u1θ(ξ(χ))λ1(χ) = u1ηhχλ1(χ)
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Since (Il1/MIl1)(χ) is free over Λn/MΛn, this implies (b).

Now suppose for 2 ≤ i ≤ k + 1, we have chosen λ1, · · · , λi−1 satisfying (a) and (b). We want to define

λi. Using the recursion relation (b), we know that ν̄λi−1
(κri−1

) | ηi−1hχ. Thus,

#[(Il1/MIl1)(χ)/Λn[κri−1
]li−1

] ≤ #(Λn/η
i−1hχΛn) ≤ pih

Let Wi be the Λn-submodule of F×/(F×)M generated by εχκri−1 . Apply Lemma 6.1 with r = ri−1,

l = li−1, η as before and f = fi−1, then Proposition 5.2 and Lemma 5.1 ensures that we have a map

ψi :Wi → Λn/MΛn such that

fi−1ψi(εχκri−1
) = ην̄λi−1

(κri−1
)

Let λi be any prime satisfying Theorem 3.1 with c = ci, W =Wi, and ψ = εχψi. Then (a) is satisfied. Note

that we can again find ui ∈ (Z/MZ)× such that

fi−1ν̄λi
(κri)λi(χ) = fi−1εχ[κri ]li = fi−1φli(εχκri−1

)

= fi−1uiψi(εχκri−1
)λi(χ) = uiην̄λi−1

(κri−1
)λi(χ)

By the same reasoning, we have proven (b) for i.

From the recursive relation (b), we can conclude that in Λn/MΛn,

ηk+1hχ = u

(
k∏

i=1

fi

)
ν̄λk+1

(κrk+1
)

for some u ∈ (Z/MZ)×. Thus, fχ | ηk+1hχ in Λn/p
nΛn. Since this is true for every n, we know fχ | ηk+1hχ

in Λ. We can take two η’s that are coprime, which would give us fχ | hχ. (e.g., take C = A ∩B, since

A ∩B has finite index, there exists a constant c such that T c and pc are in A ∩B. Consider η1 = T c − p2c

and η2 = T c − p3c).

Let f =
∏

χ fχ and h =
∏

χ hχ. We want to show fΛ = hΛ, then it will follow from above that fχΛ = hχΛ

for each χ.

If an, bn are two sequence of positive integers, we write an ∼ bn to mean an/bn is bounded above and below

independent of n. We have the following:

#(Λ/fΛ)Γn
∼
∏
χ

#(Λ/fχΛ)Γn
∼
∏
χ

#Cn(χ) = #Cn

#(Λ/hΛ)Γn ∼
∏
χ

#(Λ/hχΛ)Γn ∼
∏
χ

[Ēn(χ) : Vn(χ)] = [Ēn : Vn]

We know that #Cn = [Ēn : Vn] from the analytic class number formula and the non-vanishing of the p-adic

regulator for real cyclotomic fields. Thus, #(Λ/fΛ)Γn
∼ #(Λ/hΛ)Γn

. Since f |h, this implies fΛ = hΛ.
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