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Abstract

In this note we give a conceptual proof of the fact that, given a quasi-compact
algebraic stack A with good moduli space X, the good moduli space of every
quasi-compact connected component of Grad(X) is finite over X. Our main
intermediate result states that if a stack Y is a ®-action retract onto a stack &
with good moduli space Z, then Z is a categorical moduli space for Y.

1. Setup. Let X be an algebraic stack, locally finitely presented over a quasi-separated and
locally noetherian algebraic space S, with affine stabilizers and separated inertia. The stack of
graded points of X is the mapping stack Grad(X) = Map(BG,,, X), which is algebraic and
satisfies the same properties of X named above, see for example Halpern-Leistner [6]. There is
an obvious map tot: Grad(X) — X called the rotal point map.

In this note, we work under the assumption that & is quasi-compact and has a good moduli
space p: X — X in the sense of Alper [1]. Let X, ¢ Grad(X) be a connected component and
assume that &, is quasi-compact. It is shown in Ibafiez Nufiez [7, Lemma 2.6.7] that &, has a
good moduli space p,,: L, — X, and that the induced map g, : X, — X is affine. In this note

we give a proof of the following fact.
2. Theorem. The induced map g, : X, — X between good moduli spaces is finite.

3.Luna’sresult. This resultisknown by Lunain the case of a stack of the form X’ = Spec A/GL,,
over a field of characteristic 0, Luna [8, Théoreme]. Therefore, if the base S is the spectrum of a
characteristic O field, then the theorem follows by taking étale slices as in Alper, Hall, and Rydh
[2, Theorem 4.12].

4. Stack of filtrations. Our proof of Theorem 2 will use the stack of filtrations Filt(), defined
as the mapping stack Filt(X) = Map(®, ), where © = AlY G,, is the quotient of Al by the
usual scaling action of G,,,, see Halpern-Leistner [6]. The associated graded map gr: Filt(X) —
Grad(X), defined by precomposition along 0: BG,, — 0, is quasi-compact and induces a
bijection on connected components [6, Lemma 1.3.8]. Let X C Filt(X) be the connected

component mapping to X, .



Since X has a good moduli space, X is @-complete, that is, the evaluation map ev: Filt(X) —
X, defined by precomposition along 1: Spec Z — 0, is universally closed, by Alper, Halpern-
Leistner, and Heinloth [4, Theorem 5.4]. Since %:; i1s quasi-compact, the restriction of the

. . + .
evaluation map ev,,: X, — X is proper.

5.Proposition. Let p’: X — X, be the composition of the associated graded map gr,,: L —
X, and the good moduli space p,: X, — X,. Then p:: X — X, is a categorical moduli

space, that is, any map X, — Y, with Y an algebraic space, factors uniquely through p;.

Proof. Consider the maps N — N%: b — (0,b) and N> > N: (a,b) — a +b. After applying
G)(_) as in Bu, Halpern-Leistner, Ibafiez Nufiez and Kinjo [5, §5.1.2], we obtain maps ® — e’
and ©° — O, respectively. After taking mapping stacks, we obtain maps Filt(&f)2 — Filt(X)
and Filt(X) — Filt(X )2, respectively. The second map is a closed and open immersion by
[5, Theorem 5.1.4], and composed with the first one it gives the identity on Filt(). Thus,
the image of X in Filtz(%) under Filt(X) — Filtz(fx) lies in the open and closed substack
Filt(X}) ¢ Filt(Filt(X)) = Filtz(i)f). This realizes X, as a closed and open substack of Filt()),
witnessing the canonical ®-action on &,

We claim that the associated graded map gr: Filt(X)) — Grad(X,) is identified with
gr,: Lo — X, when restricted to L. For this, consider the map Z XN — Z: (a,b) — a + b,

which gives a morphism BG,, X ® — BG,,,. We obtain commuting squares

BG,, x0® —— BG,, Grad(Filt(X)) «—— Grad(X)
l l and ng Tgr
e 0 Filt(Filt(X)) «—— Filt(X),

where the horizontal arrows in the right square are open and closed immersions. The claim
follows.
Now take a map f: X, — Y with Y an algebraic space. Applying Filt and Grad, we obtain
a diagram
f

of — I Ly

e

X —— Filt(X)) —— Fil(Y)

L

X, — Grad(X}) —— Grad(Y).

This shows that f factors through gr,. This factorization is unique because gr,, has a section.

The result follows because X, — X,, is a categorical moduli space [3, Theorem 3.12]. m|

6. We remark that the proof of Proposition 5 only uses that &, has a good moduli space. It is

not necessary to assume that X has a good moduli space. Thus, we have the following stronger



result.

7. Proposition. Let Y — ZF be a O-action retract in the sense of [5, §5.1.10], where Y and E
are algebraic stacks satisfying the basic assumptions [5, §1.1.11]. Suppose that £ has a good

moduli space £ — Z. Then the composition Y — E — Z is a categorical moduli space.

8. The categorical moduli space Y — Z is an example of non-reductive moduli space in the

sense of forthcoming work of David Rydh.
The next ingredient in the proof of Theorem 2 is the following useful property of p}..

9. Proposition. We have a canonical isomorphism pz,*®%+ = Oy . Here, p;’* denotes the

underived pushforward.

Proof. Let R = Specg (P, .Og+) and denote r: R — X,, the obvious map. The map X — R

factors uniquely through p? by Proposition 5, givingamap u: X, — R. We have a commutative

diagram

that shows that # and r are inverses of each other. The result follows. O

10. Proposition 9 is still valid if we replace p|, by any categorical good moduli space, since this

is the only property of p; that we used in the proof.

11. Proof of Theorem 2. First, we note the commutativity of the diagram




Indeed, commutativity of the lower part of the diagram is immediate from the definition of

84> While the upper part of the diagram commutes by [7, Lemma 2.2.2]. We know from [7,

Lemma 2.6.7] that g, is affine, so we need to show that g, , (®Xa) is coherent. By Proposition 9,

we have

ga,*(®Xa) = g(x,*p;,*(@%;) = ga/,*gra/,*pa/,*(®§x;) = p*eva,*(Gfx;)'

Now ev,, is proper, by §4, and thus eva’*(@)%;) is coherent, while p, preserves coherence by
Alper [1, Theorem 4.16, (x)]. We conclude.
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