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ABSTRACT

We define canonical refinements of Harder-Narasimhan filtrations and stratifications
in moduli theory. More precisely, we construct a canonical stratification for every
noetherian algebraic stack X with affine diagonal that admits a good moduli space
and 1s endowed with a norm on graded points. The strata live in a newly defined
stack of sequential filtrations Filtgeo (X) of X. Therefore, the stratification gives a canon-
ical sequential filtration, the werated balanced filtration, for each point of X. In the pres-
ence of suitable ®-stratifications, the iterated balanced filtration provides canonical
refinements of Harder—Narasimhan filtrations. Our construction extends Kirwan’s
refined stratifications beyond the Geometric Invariant Theory case, and the iterated
Haiden—Katzarkov—Kontsevich—Pandit (HKKP) filtration beyond the case of linear
moduli problems, as well as giving a precise link between the two theories.

We introduce the machinery of chains of stacks as a tool to compute the iterated
balanced filtration in combinatorial frameworks. We use it to give, in the case of quo-
tient stacks by diagonalisable algebraic groups, an explicit description of the iterated
balanced filtration in terms of convex geometry.

When the stack X parametrises objects in an abelian category, we show that the
iterated balanced filtration agrees with the iterated HKKP filtration for modular lat-
tices. A key ingredient in the proofis a new characterisation of the HKKP filtration
for lattices as the minimiser of a certain norm function on the set of paracomple-
mented filtrations.

Examples where our theory can be applied include moduli of principal bundles
on a curve, moduli of objects at the heart of a Bridgeland stability condition and
moduli of K-semistable Fano varieties. We conjecture that the iterated balanced fil-
tration describes the asymptotics of the Kempf—Ness flow in Geometric Invariant
Theory, extending a theorem of Haiden, Katzarkov, Kontsevich and Pandit in the
quiver case. This is part of a larger project aiming to describe the asymptotics of

natural flows in moduli theory.
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CHAPTER 1

INTRODUCTION

1.1 OVERVIEW

There is a fascinating relation in moduli theory between the algebraic notion of sta-
bility and the existence of solutions to certain differential equations. To illustrate this,
consider a vector bundle E on a smooth projective curve C. By the Narasimhan—
Seshadri theorem, there exists a hermitian metric on E whose associated connection
satisfies the Yang—Mills equations if and only if E is polystable.

One naturally wonders if this correspondence can be extended in some way to
non-polystable objects. There is a space Mg of hermitian metrics on E, and the
Yang—Mills equations define a flow, the hermitian Yang—Mills flow, on Mg. If E is
polystable, then this low converges to a minimum of the Yang—Mills functional from
any initial metric.

Question: Can the asymptotic behaviour of the Hermitian-Yang-Mills flow on

ME be detected from stability-like properties of E?

A complete answer to this question has been given by Haiden—Katzarkov-Kont-
sevich—Pandit [33, 34]. Let R* denote the partially ordered set of eventually-zero

sequences of real numbers, ordered lexicographically.

THEOREM 1.1.1 (Haiden—Katzarkov—Kontsevich—Pandit). There exists a canonical fil-
tration
O0=EysE,=---3E,=E, (1.1)
labelled by elements
c1 > >y, (1.2)
where each ¢; = (Cio, Ci1,-..) € R, such that, in the ith piece of the filtration, the hermitian
Yang—Mulls flow of E _from any initial metric grows asymptotically by a factor of
e o'~ (logt) 2 (loglog?) ™3 ---, >0, (1.3)

1



2 Chapter 1. Introduction

up to bounded terms.

The filtration of E consisting of those E; where ¢; o jumps, that is, where ¢; o >
Ci+1,0, 1s precisely the Harder—Narasimhan filtration of E [40]. Thus we call the
chain (1.1), together with the labels (1.2), the refined Harder—Narasimhan filtration of E. It
1s an R*-filtration, in the sense that the labels (1.2) are also part of the data of the
filtration.

From (1.3), we see that the Harder-Narasimhan filtration of E controls the expo-
nential growth rate of the hermitian Yang-Mills flow, while the refinement controls
the polynomial, logarithmic and iterated logarithmic growth rate.

The relation between stability and special metrics is not exclusive to the moduli
of vector bundles on a curve. For example, consider the following moduli problems:

* Moduli of G-bundles on a smooth projective complex curve C, for G a con-
nected reductive group.

* Moduli of orbits for a linear action of a reductive group G on a projective variety
X over C.

* Moduli of Fano varieties.

In each of the three situations, there is a Hitchin—Kobayashi type correspon-
dence between polystable objects and solutions to a differential equation:

* A principal G-bundle P on C admits a Hermitian—Einstein metric if and only
if P 1s polystable (Narasimhan—Seshadri and Ramanathan).

* A G-orbit of a point x € X(C) contains a zero of the moment map if and only
if x 1s polystable (Kempf—Ness theorem).

* A smooth Fano variety ¥ admits a Kahler—Einstein metric if and only if Y is
K-polystable (Yau—Tian—Donaldson conjecture, now a theorem).

In each of the three examples, there is an analogue M of the space of metrics on
a given object. For a G-bundle P, M = Mp is the space of reductions of structure
group of P to a fixed maximal compact subgroup K C G. For a point x € X(C), we
take M = M, to be the quotient G/K. For a smooth Fano variety Y, M = My 1s
the space of Kédhler metrics on Y. In each example, there is a natural flow on M (the
hermitian Yang—Mills flow, the negative gradient flow for the Kempf—Ness potential
and the Calabi flow, respectively) that converges precisely if the object 1s polystable.

Question: In each of the three moduli problems above, is there a reasonable notion
of refined Harder—Narasimhan filtration controlling the asymptotics of the natural

flow on the space M of metrics?

The difficulty 1s that we are dealing with non-linear moduli problems, that is, mod-
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uli of objects that do not come from an abelian category. The definition of the re-
fined Harder-Narasimhan filtration of a vector bundle £ by Haiden—Katzarkov—
Kontsevich—Pandit uses as input solely the partially ordered set of subbundles of E,
which is a modular lattice, together with the data of the rank and the degree of every
subbundle. However, for non-linear moduli problems such a lattice is not available,
and thus the methods of Haiden—Katzarkov—Kontsevich—Pandit do not apply. Even
more concerning 1s the fact that, without a lattice, it seems unclear what the data of
an R*-filtration of an object in a nonlinear moduli problem should be.

Even though modular lattices are exclusive to linear moduli problems, the one
type of algebraic structure that 1s present in all the moduli problems mentioned so far
is that of an algebraic stack. There 1s an algebraic stack Bun(C) parametrising vector
bundles on C, and a stack Bung (C) parametrising principal G-bundles on C. The
quotient stack X/G i1s naturally associated to the action of G on X. The case of
Fano varieties is much more complicated, but an algebraic stack X X5 parametrising
K-semistable Fano varieties has recently been constructed and proven to enjoy nice
properties by Xu and collaborators [5, 13, 14, 76]. It is then natural to rephrase our
question as follows.

Question: Can the refined Harder—Narasimhan filtration of a vector bundle E be

computed intrinsically in terms of the geometry of the algebraic stack Bun(C)?

One of the main contributions of this thesis is a positive answer to this question.
This naturally yield a version of the refined Harder—Narasimhan filtration for objects
in our three nonlinear moduli problems.

In moduli theory, the assignment of canonical filtrations 1s intimately related to
stratifications of moduli stacks. In the case of Bun(C), the assignment of the Harder—
Narasimhan filtration to every vector bundle defines a stratification of Bun(C) by
Harder—Narasimhan type. 'The analogue of this stratification for quotient stacks X /G was
defined by Kirwan [55]. It is called the HKKN stratification of X/G after Hesse-
link—Kempf-Kirwan—Ness. It is related to the assignment, for every point x of X,
of Kempf’s maximally destabilising one-parameter subgroup [53]. Indeed, for the
moduli stack X/G, the correct notion of filtration of a point x is a one-parameter
subgroup A: G,, c — G such that the limit lim,_,o A(#)x exists in X, considered up to
certain equivalence relation. This is not a surprise from the point of view of algebraic
stacks, since such a one-parameter subgroup A corresponds to a map A¢/Gm,c —
X/G sending 1 to x, and a filtration of E labelled by integers also corresponds to
a map AL/G, c — Bun(C) sending 1 to E. Here, AL/G,, ¢ is the quotient of
the multiplicative group G,, c by the natural scaling action of G,, ¢. This stack 1s
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so important in moduli theory that it has its own name: ¢ = Ag/Gpc. The
stratification of Bun(C) by Harder—Narasimhan type and the HKKN stratification
of X /G have been abstracted to general algebraic stacks by Halpern-Leistner [36] in
what is called ®-stratifications.

It 1s natural to ask whether the assignment of the refined Harder—Narasimhan
filtration for every vector bundle E defines a stratification of Bun(C) refining the
stratification by Harder—Narasimhan type, famously studied by Atiyah—Bott [10].
This 1s unclear from the work of Haiden—Katzarkov—Kontsevich—Pandit. However,
canonical refinements of the HKKN stratification of X /G and of the stratification by
Harder—Narasimhan type of Bun(C) had already been constructed by Kirwan [57,
58], with the study of cohomology rings of moduli spaces as a motivation. Kirwan’s
refined stratification of X/G are defined via an iteration of blow-ups and HKKN
stratifications. It has the caveat that it does not give a notion of R*-filtration for
every point x of X. Another issue is that Kirwan’s construction cannot be applied to
XX since this stack is not a semistable locus in the GIT sense.

The results of this thesis link Kirwan’s refined stratifications and Haiden—Katzar-
kov—Kontsevich—Pandit’s refined Harder-Narasimhan filtrations of vector bundles

on C, as well as extending both to moduli problems where they were not previously

defined.

THEOREM 1.1.2. Let X be one of the algebraic stacks Bun(C), Bung(C), X /G or X*. For
every pomnt x € X (C) of X thereis a naturally-defined set Q- Filt(X, x) of Q*°-filtrations of x,
and a canonical element A, gy(x) € Q- Filt(X, x), called the refined Harder—Narasimhan
filtration of x, defined intrinsically in terms of the stack X.. Moreoves;, the assignment of A,py(x) for
every x defines a stratification of X into locally closed substacks by type of refined Harder—Narasimhan
Sfiltration.

In the case of X/ G and Bun(C), the stratification by type of refined Harder—Narasimhan fil-
tration agrees with Rirwan’s refined stratification.

In the case of Bun(C) and a vector bundle E € Bun(C )(C), the set Q*°- Filt(Bun(C), E)
agrees with the set of Q™ -filtrations of E in the usual sense, and Arpn(X) agrees with the refined
Harder—Narasimhan filtration of E as defined by Haiden—Katzarkov—Rontsevich—Pandit.

This theorem follows from Theorems 1.6.1 and 3.5.2 and from Section 3.6. It
1s more natural and simpler to replace R* by Q® in the general theory.

Our definition of the refined Harder—Narasimhan filtration involves as main
ingredients blow-ups of stacks and ®-stratifications [36], as well as the construction
of a stack of sequential filtrations Filtge (X) for an algebraic stack X (Definition 3.2.2).
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Our construction is valid for very general algebraic stacks endowed with suitable
stability data (Definition 3.5.10).

Despite the abstract nature of its definition, the refined Harder—Narasimhan fil-
tration is often computable in terms of combinatorial data, which in this thesis come
in two flavours: convex geometry and modular lattices. In Chapter 5, we establish
a convex geometric algorithm to compute the filtration in the case of quotient stacks
by the action of a diagonalisable algebraic group (Corollary 5.2.18). The proof in-
volves the theory of chains of stacks, developed in Chapter 4. In Chapter 7, we use
these techniques to show that the refined Harder—Narasimhan filtration agrees with
the one defined by Haiden—Katzarkov—Kontsevich—Pandit when the latter, which 1s
defined in the setting of modular lattices, makes sense (Theorem 1.6.1). To that aim,
in Chapter 6 we establish a new characterisation of the HKKP filtration as the min-
imiser of a norm function in the set of paracomplemented filtrations of the lattice
(Theorem 6.6.26).

Our motivation for this work is the expectation that the refined Harder—Nara-
simhan filtration describes the asymptotics of natural flows in moduli theory, like the
Yang—Mills flow for principal bundles, the Calabi flow for varieties and the gradi-
ent flow of the Kempf—Ness potential in Geometric Invariant Theory. We provide a
conjectural statement for this expectation in the case of GI'T for affine spaces (Con-

jecture 1.7.1).

1.2 NORMED GOOD MODULI STACKS

The stratification of Bun(C) by Harder-Narasimhan type is a ®-stratification. In
particular, every stratum § has an A'-retraction § — Z onto what is called its centre
Z. In this case, Z enjoys the property of admitting a good moduli space Z — Z, that
1s, a map to an algebraic space Z that best approximates the stack Z (we recall the
precise definition from Alper [2] in Definition 2.1.1). Having a good moduli space is
a strong condition on the stack that implies many desirable properties.

We may hope that algebraic stacks admitting good moduli spaces have canonical
stratifications and, in a suitable sense, canonical filtrations for every point. These
could then be pulled back along the retractions § — Z from each centre Z and
produce, in the case of Bun(C), the sought-after stratification by HKKP type, as well
as recovering the iterated HKKP filtration of every point. This is close to being true.
What is missing is stability type data on Z on which this stratification depends. The

correct notion for our purposes turns out to be a norm on graded points of Z, a concept
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from the Beyond GIT programme of Halpern-Leistner [36].

A graded point of a stack X 1samap g: BG,, x — X, where BG,, « 1s the classifying
stack of the multiplicative group over a field k. Graded points on X can also be seen as
ordinary points of the mapping stack Grad(X) = Hom(BG,,, X). Anorm on graded
points of X 1is, roughly speaking, the data of a positive real number | g|| for every
graded point g: BG,, x — X, and this data is required to satisty some local constancy
and nondegeneracy conditions (Definition 2.3.3). For Bun(C), a natural norm is
induced by the rank of vector bundles. In this case, a graded point g: BG,,c —
Bun(C) corresponds to a vector bundle E together with a direct sum decomposition
E = @,z E., and its norm is then defined by the formula ||g||*> = Y o5 ¢* rk(E,).
This restricts to a norm on graded points on each of the centres Z of the Harder—
Narasimhan stratification.

Many other moduli stacks X are also naturally endowed with a ®-stratification,
related to the assignment, for every point x of X, of a Harder—Narasimhan filtration
of x in a generalised sense. It is often the case that each centre Z of the stratification
has a good moduli space and 1s naturally endowed with a norm on graded points (see
Section 3.6 for examples). Therefore, in order to define refined Harder-Narasimhan
filtrations in moduli theory in great generality, it is enough to deal with algebraic
stacks admitting a good moduli space and endowed with a norm on graded points.
We call these normed good moduli stacks for simplicity. Our aim thus becomes to stratify

and produce canonical filtrations for normed good moduli stacks.

1.3 SEQUENTIAL FILTRATIONS AND STRATIFICATIONS

The first obstacle we encounter is the very meaning of filtration in this generality.
The iterated HKKP filtration of a vector bundle E consists of both a chain

of subbundles and a chain

C1>Cop > >0y
of labels ¢; € Q. Here, Q% is the set of eventually zero sequences of rational
numbers, ordered lexicographically. In this sense the iterated HKKP filtration 1s
a sequential filtration, or Q*°-filtration, of E.

We first look at the well-studied case of Z-filtrations, that is, when the labels ¢;
are integers. These are closely related to the quotient stack A'/G,, of the affine line
A by the scaling action of the multiplicative group, also denoted ® = A'/G,,. In-
deed, the mapping stack Filt(Bun(C)) = Hom(A'/G,,, Bun(C)) parametrises vector
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bundles endowed with a Z-filtration (see Heinloth [41, Lemma 1.10] and Alper—
Halpern-Leistner-Heinloth [8, Corollary 7.13]). Therefore it makes sense to define
a Z-filtration of a k-point x in a general stack X to be a map f:®r — X together
with an isomorphism x ~ f(1), and to define the stack of filtrations on X to be
the mapping stack Filt(X) = Hom(®, X). This idea lies at the heart of Halpern-
Leistner’s approach to moduli theory beyond GI'T [36]. There is an associated graded
map gr: Filt(X) — Grad(X) and a forgetful map evy: Filt(X) — X. For our pur-
poses, it 1s better to consider Q-filtrations, and we work instead with the stacks of
Q-filtrations Filtg(X) and of Q-gradings Gradg(X), that we construct by formally
localising with respect to the natural action of the monoid (Z-,, -, 1) on Filt(X) and
Grad(X) (Definition 2.2.7). Rational filtrations of a point x € X (k) are defined in
the same way and they form a set Q - Filt(X, x).

Our first goal 1s to construct an algebraic stack Filtgeo (X) that, in the case X =
Bun(C), parametrises vector bundles £ endowed with a sequential filtration. To this
aim, we observe that giving a Q*-filtration on a vector bundle E on C is equivalent
to first giving a Q-filtration F, of E, then a Q-filtration of the associated graded object
gr F,, and so on, until the process finishes in finitely many steps. For general stacks,
we formalise this idea by defining the stack Filtgs (X) of Qp -filtrations inductively

as a fibre product
Filtgy (X) = Filtgp-1(X) Xgr,Gradgu—1 (X).evi Filtg (Gradgn-1(X)).

Here, Q. is Q" endowed with the lexicographic order, and Gradg: (X) is defined
inductively as Gradg:(X) = Gradg (Gradgl(X)>. The associated graded map
ar: Fﬂt@f (X) — Gradg: (X) is also defined by induction. Then we set:

DEFINITION 1.3.1 (Definition 3.2.2). The stack Filtgee (X) of sequential filtrations, or
Q°-filtrations, of X is the colimit of the stacks Filtgy (X) when n tends to oo.

Under reasonable conditions on X, the stack of Q*°-filtrations Filtge (X)) 1is al-
gebraic (Proposition 3.2.3). There 1s also a map ev;: Filtge (X) — X corresponding
to “forgetting the filtration”, so it now makes sense to define a Q*°-filtration of a field-
valued point x:Speck — X to be a k-point A € Filtge(X)(k) together with an
isomorphism x ~ evy(A). We denote Q- Filt(X, x) the set of Q*-filtrations of x
(Definition 3.2.13).

The relation between stratifications of X and sequential filtrations is encapsu-

lated in the definition of a sequential stratification.
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DEFINITION 1.3.2 (Definition 3.3.1). A sequential stratification of an algebraic stack X
1s a family (Sq)eer of locally closed substacks of Filtgee (X), indexed by a partially
ordered set I', such that

1. each composition §, — Filtge (X) — X 1s a locally closed immersion,

2. the topological spaces |S.| are pairwise disjoint and cover | X |, and

3. for every ¢ € I, the union | J,, . S| is open in X.

Thus the strata §. are locally closed substacks of X together with a choice of lift
to Filtge (X). Therefore a sequential stratification provides each point x of X with
a choice of sequential filtration of x.

The definition of a sequential stratification 1s inspired in Halpern-Leistner’s def-
inition of a ®-stratification of a stack X [36] (recalled in Definition 2.5.1), which
roughly speaking is a partition of X into locally closed substacks §. of X that are also
open substacks of Filtg(X). Very importantly, each stratum §, retracts onto what is
called its centre Z., which is an open substack of Gradg(X). Establishing existence
and nice properties of certain ®-stratifications is a crucial ingredient of our construc-
tion of the balancing stratification.

If X 1s a normed good moduli stack and f:¥ — X 1s a representable polarised
projective morphism it is a result of Halpern-Leistner [36, Theorem 5.6.1] that ¥
has a natural ®-stratification induced by the norm on X and the polarisation. This
generalises Kirwan’s construction of the instability stratification in GIT [55]. Our
first result establishes a property of this stratification that will be fundamental for our

purposes:

THEOREM 1.3.3 (Theorem 2.6.4). Let X be a normed noetherian good moduli stack with
affine diagonal. Consider a representable projective morphism f:Y — X and the ®-stratification
(S¢)ceQso of Y induced by an [ -ample line bundle £ and the norm on graded points. Then the centre
Z. of every stratum S, has a good moduli space.

For the proof, we need to consider the more general case when f is proper and
the line bundle £ is replaced by the weaker notion of a lnear form on graded points, and
then use the concepts of ®-monotonicity and S-monotonicity developed in [36] to
check ®-reductivity and S-completeness of Z., which implies the existence of a good

moduli space [8].
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1.4 THE BALANCING STRATIFICATION

Our main construction (Theorem 3.5.2 and Definition 3.5.3) produces a canoni-
cal sequential stratification for every normed noetherian good moduli stack X with
affine diagonal. We call it the balancing stratification, since the adjective balanced was
used both by Kirwan and Haiden—Katzarkov—Kontsevich—Pandit to describe the fil-
trations they studied. The balancing stratification produces a canonical sequential
filtration, the uterated balanced filtration, for every point of the stack X.

Recall that a point p in a stack X with good moduli space 7: X — X is said
to be polystable if it 1s closed in the fibre of 7 containing p. Every fibre of 7 contains
a unique polystable point. If x € X (k) is a non-polystable geometric point, it fol-
lows from a result of Kempf [53] that there is a filtration A: ® — X of x such that
A(0) = y 1s polystable. The question arises whether one can choose a canonical such
polystable degeneration A. For this problem, it is useful to endow X with a norm
on graded points. After replacing X with a w-saturated open substack containing x,
we may assume that y lies in the closed substack X™** of points with maximal sta-
biliser dimension, defined by Edidin—Rydh [27]. Kempf defines a natural number
(A, Xm>) e N (Definition 3.1.1) that can be thought of as measuring the velocity
at which A converges to y. The definition extends to rational filtrations A, giving
a rational number (A, X™*). It turns out that there is a unique rational filtration
Ap(x) € Q-Filt(X, x) such that (A, X™*) > 1 and ||A| 1s minimal among rational
filtrations with this property (Theorem 3.1.3). We call A,(x) the balanced filtration of x.
We can think of the balanced filtration as degenerating x to its associated polystable
point with optimal velocity and minimal cost.

If we lift x to the blow-up 8 = Blymsx X, then the balanced filtration of x coin-
cides with the filtration of x associated to the natural ®-stratification (S)ceq., on 8B
from Theorem 1.3.3. If & C B 13 the exceptional divisor, then we have a stratification
of X by type of balanced filtration where the strata are X™** and the S, \ &. This
1s the first approximation to the iterated balanced filtration, that we get by iterating
this procedure from the centres of the strata $..

The balancing stratification is indexed by a totally ordered set I' defined explic-
itly (Definition 3.5.1). It consists of sequences ((do. o), - .., (dn, cyn)) with do, d;, ...,
dyn € N, co,...,cn1 € Qs9, ¢, = 00, and satisfying some other conditions, and
the poset structure is given by lexicographic order. The balancing stratification 18
uniquely characterised by the following theorem. See Theorem 2.6.4 for a more

precise formulation.
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THEOREM 1.4.1 (Existence and characterisation of the balancing stratification). 7ere
i a unique way of assigning, lo every normed noetherian good moduli stack X with affine diagonal,
a sequential stratification (SX)ger of X, called the balancing stratification of X, in such a
way that for every such X the following holds. Let (S¢)ceq-, be the ©-stratification of the blow-up
B = Blogmax X induced by the natural ample line bundle on B and the norm on graded points, let Z
be the centres of the stratification, which have good moduli spaces by Theorem 1.3.3, let & C B be the
exceptional divisor; let d be the maximal stabiliser dimension of X, let w: X — X be the good moduli
space of X, and let U = X \ 7~ 1w (X™>). Then

1. the highest stratum is S (35’ o0y = X, embedded in Filtgee (X) via the trivial filtration map

X — Filtge (X);
2. for every ¢ € Qxq, and every o € T with SZ¢ # @, we have

Sticray = (Se xz, SZ)\ €

with its natural structure of locally closed substack of Filtgeo (X); and
3. forevery o € T with S¥ # @, we have S = S, as a substack of Filtgeo (X).

In the statement we are implicitly using that the Z. have good moduli spaces,
which is Theorem 1.3.3 above. Let us explain how to realise § (D(Cd’ ) inside Filtgeo (X).
For ¢ € Q~, we can pull back each nonempty §2¢ along the associated graded map
S. — Z. to get a stack V.4 = S, Xz. SaZC. The centre Z. 1s an open substack of
Gradg(B), so $Z¢ lives in Filtge (Gradg(8B)). The iterative definition of Filtge (B)

gives a cartesian square

Filtge (B) —— Filtge (Gradg(B))
L |
Filtgp(8) —~—— Gradg(B)
and hence V. 4 lives in Filtgeo(B). After subtracting the exceptional divisor &, we
get a locally closed substack S(a(cd,c),a) = Ve \ & of Filtge (X).
In order to prove Theorem 1.4.1, we introduce the concept of the central rank
of a stack. The central rank of X, denoted z(X), 1s the largest natural number n
such that BG), acts on X in a nondegenerate way (Definition 3.4.1). The condition
can be thought of as requiring that every stabiliser of X contains a copy of G}, in its
centre. 'The maximal dimension of a stabiliser of X is denoted d(X). The proof is
by induction on N(X) = d(X) — z(X).
The main observation is that, whenever we have a blow-up f:¥ = Blg X — X
of X along some closed substack R, if the ®-stratification of ¥ is (S¢)ceq-,, then for

every unstable stratum S, its centre Z. has bigger central rank than X: z(Z.) >
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z(X) (Lemma 3.4.7). We also have d(Z.) < d(X) by representability of f, so that
N(Z.) < N(X).
The balancing stratification defines a canonical sequential filtration for every

point:

DEFINITION 1.4.2 (Definition 3.5.8). Let X be a normed noetherian good moduli
stack with affine diagonal. The wterated balanced filtration of a field-valued point x € X (k)
1s the element Ay, (x) € Q°-Filt(X, x) determined by the balancing stratification
of X.

The iterated balanced filtration 1s defined over k even if k 1s not perfect. This has
to do with the assumption that X has a good moduli space instead of just an adequate
moduli space, Alper [3], which is a more general notion in positive characteristic.

For a stack ¥ endowed with a ®-stratification (S.) such that all the centres Z,
of the strata are normed good moduli stacks, the balancing stratification of each Z,
can be pulled back to the §. to define a sequential stratification of ¥. This produces
a refined Harder—Narasimhan filtration for every point of ¥ (Definition 3.5.10).

We show that the balancing stratification has nice functorial properties.

PROPOSITION 1.4.3 (Proposition 3.5.5). Let f: X — X' be a morphism between noetherian
normed good moduli stacks with affine diagonal. If f s either a closed immersion or a base change from
amap X — X' between the good moduli spaces of X and X', then for all @ € T, the stratum SX
equals the pullback S2* "X, X of SX "along f, with its natural structure of locally closed substack
of Filtgee (X).

1.5 RELATION TO CONVEX GEOMETRY

Despite its seemingly convoluted definition involving several blow-ups and ®-strat-
ifications, the iterated balanced filtration has a particularly simple description for a
point x in a quotient stack of the form Spec A/G with G a diagonalisable algebraic
group over a field k (for example a split torus G, ;) and 4 a finite type k-algebra.
For simplicity, in this introduction we will assume that Spec 4 is the total space of
a vector space V = k!, that G acts on V via the characters yi,...,; € I'z(G) =
Hom(G, G, k) and that we are interested in computing the iterated balanced filtra-
tion of the point x = (1,..., 1) in the quotient stack ¥/G. We denote N = I'®(G)
the set of rational cocharacters of G. The norm on graded points of V/G corresponds
to a rational inner product (—, —) on N = Ny, and we identify N and its dual via this

inner product.
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We now describe a sequence of elements Ag,..., A, € N in terms of the state
Bo = {x1,.-., x1} of x. Let Fy be the smallest face containing 0 of cone(Ey), the
convex cone generated by &y inside N. Then we let ¢ be the unique element of the
orthogonal complement N, := Fj- such that (Ag,a) > 1 foralla € E¢ \ Fy and |||
is minimal. This is a convex optimisation problem.

To compute Ay, -+, A,, we proceed as follows. We let
E1 ={p1(@)| a € Ep, (Ao, ) = 1} C Ny,

where p: N — Nj is the orthogonal projection. It will always be the case that Ay €
cone (E1) C N; (Theorem 5.1.18), and thus there 1s a smallest face F; of cone (2/)
containing Aq. Let N, be the orthogonal complement of F; inside N;. Then we let
A1 be the unique element in N, such that (A;,«) > 1 foralla € E; \ F; and ||A,4] is
minimal. We define E, = {ps(«) | @ € B, (A1,a@) = 1} C N,, where p,: Ny — N, 1s
the orthogonal projection. Repeating this process, we get A5, ..., A,. The algorithm
terminates when we get to 8,41 C Fy41.

A Q%>-filtration of x in V/G 1s determined by a finite sequence of elements of N

(Remark 3.2.16), and under this correspondence we have:

THEOREM 1.5.1 (Theorem 5.2.16 and Corollary 5.2.18). The terated balanced filtration
of x in V|G 1s given by the sequence Lo, . .., Ay described above.

For the proof, we use the machinery of chains of stacks. A chain of stacks is the data
of a sequence of pointed k-stacks (X, x,), together with a Q-filtration A, of each x,
and link maps (X,+1, Xp4+1) — (Grad(xn), gr /\n) (Definition 4.1.1). Associated to ev-
ery chain there is a Q*°-filtration of the point x¢ in X (Definition 4.1.3). For a pointed
normed good moduli stack (X, x), we give two different constructions of chains com-
puting sequential filtrations of (X, x), the balancing chain (Construction 4.2.1) and the
torsor chain (Construction 4.3.1). The former is closely related to the balancing stratifi-
cation, while the latter tends to be closer to combinatorial structures, such as states or
lattices. We show that both chains compute the iterated balanced filtration of (X, x)
(Proposition 4.2.6 and Theorem 4.3.4).

In order to relate the convex-geometrical picture of states to chains of stacks,
we define a category of normed semistable polarised states (Definition 5.1.1) which
1s combinatorial in nature. We then define an analogue of the notion of chain in
this category and define a canonical balancing chain for every object. There is a func-
tor from normed semistable polarised states to pointed normed good moduli stacks
(Definitions 5.2.1 and 5.2.9), and we show that it sends the balancing chain of a state
to the torsor chain of the corresponding stack (Theorem 5.2.16).
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1.6 COMPARISON WITH THE ITERATED HKKP FILTRATION

The theory of chains of stacks will be used to establish, in Chapter 7, a correspon-
dence between the iterated balanced filtration and the iterated HKKP filtration for
normed artinian lattices as defined by Haiden—Katzarkov—Kontsevich—Pandit [33].
In order to prove such a correspondence, we establish first a new characterisation of
the HKKP filtration. Recall that a lattice L 1s a partially ordered set such that every
pair of elements a,b € L has a supremum a Vv b and an infimum a A b. It is modular
if(xva)Ab = (xAb)vaforall x,a,b € L witha < b, and it is artinian if it 1s
nonempty, modular and of finite length. A (rational) norm X on L 1s the data of a
positive rational number X([a, b]) for every nontrivial interval [a, b] in L, subject to
some compatibility conditions (Definition 6.6.11). For an artinian lattice with mini-
mal element 0 and maximal element 1, a Q-filtration (resp. R-filtration) F of L 1s a
chain of elements 0 = ap < a; < - < a, = 11n L together with a chain of rational

numbers (resp. real numbers) ¢y > -+ > ¢,. We write F>, = \/...a; for ¢ € R,

cizc
and we say that F 1s paracomplemented if the interval [Fs.41, F¢] 1s complemented (the
lattice analogue of semisimple) for all ¢ € R. Haiden—Katzarkov—Kontsevich—Pandit
defined a canonical R-filtration F (the HKKP filtration) for every normed artinian
lattice L, the HKKP filtration. They characterise the HKKP filtration F of L as
the unique paracomplemented R-filtration making another lattice A(F) semistable.
Their proof of the existence and uniqueness of the HKKP filtration is complicated,
and requires minimising a certain mass function m (A(F)) on the set of paracomple-
mented R-filtrations.

In Chapter 6 we characterise the HKKP filtration of a normed artinian lattice
L as the unique minimiser of the much simpler norm function

IFI7 =) X ([Fae, Foe))
ceR

on the set of paracomplemented R-filtrations. In this way, we get a simpler proof of

the existence and uniqueness of the HKKP filtration, and we can deduce that the
HKKTP filtration is actually a Q-filtration if the norm X is rational. The main idea is
to consider maximal distributive sublattices D of L (where distributivity refers to the
operations A and V). Every such D is isomorphic to the lattice of subrepresentations
of a representation of an acyclic quiver Q with dimension vector consisting only of 1s,
and every two filtrations of L factor through some D. These observations allow us to
reduce to the distributive case, where the characterisation can be established directly.
Maximal distributive sublattices of L can be viewed as the lattice analogue of maximal

tori of reductive groups, and with this analogy our arguments resemble Kempf’s
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proof of the existence of maximally destabilising one-parameter subgroups [53]. Our
motivation to consider the norm function is that it is much closer to the theory of
instability on algebraic stacks, and thus allows to make a precise link between the
HKKCP filtration and the balanced filtration. However, we hope that our approach
to the HKKP filtration for lattices also clarifies and simplifies the original work of
Haiden—Katzarkov—Kontsevich—Pandit. The construction of the HKKP filtration
can be iterated, giving rise to the iterated HKKP filtration (Definition 6.6.27).

We can now state our main comparison result, the proof of which occupies the

majority of Chapter 7.

THEOREM 1.6.1 (special case of Corollary 7.5.11). Let k be an algebraically closed field and
let A be a locally noetherian k-linear Grothendieck abelian category. Suppose that the moduli stack of
objects M 4, 1s an algebraic stack locally of finite type over k. Let X be a quasi-compact open substack
of M4 admitting a good moduli space w: X — X, endowed with a linear norm on graded points.

For any k-point x € X (k), there is a canonically defined normed artimian lattice L and a canonical
byection Q- Filt(Ly) = Q- Filt(X, x) under which the iterated HREP filtration of L. and the

ierated balanced filtration of (X, x) agree.

Here, the set Q- Filt(L) of sequential filtrations of L is defined as in the case
of vector bundles above. The norm being linear means it is compatible with the
underlying abelian category in a precise sense. Examples of this setup include moduli
stacks of Bridgeland semistable objects, moduli stacks of semistable vector bundles
on a curve C, and moduli stacks of quiver representations (Section 3.6). For abelian
categories # satisfying suitable finiteness conditions, the algebraicity of M 4 has been
established in Fernandez Herrero—Lennen—Makarova [29]. In that context, choices
of K-theory classes of the category 4 produce open substacks X C M4 having a good
moduli space and a norm on graded points [29, Theorem 4.17], so Theorem 1.6.1
applies.

If a k-point x of X corresponds to an object M of 4, then Ly is the lattice of
subobjects N C M such that the associated graded N & M/N is also a point of X.
In practice, X is the set of semistable objects for some stability condition on +4, and
Ly is the lattice of semistable subobjects of M (of the same phase), but we do not
need to mention the specific stability condition to formulate the theorem. We would
however like to have a definition of the lattice L, formulated purely in the language
of algebraic stacks and that is canonical and independent of the presentation of X as
a substack of M4 for some abelian category 4. However, the structure of algebraic

stack of X 1s not enough for this purpose. To explain what else is needed, recall
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that a map g: BG,, x — X corresponds to an object M of 4 together with a grading
M = ®,ezM,. The graded points g such that M,, = 0foralln < 0 form a closed and
open substack Grad(X)so of Grad(X) that we call the lamp. The lamp 1s precisely
the extra data needed to define the lattice Ly intrinsically from the stack X. From
the lamp, we can recover the natural poset structure on Z - Filt(X, x) and define Ly
as a specific subposet. It turns out that L, 1s an artinian lattice, and since the norm
on graded points of X 1s linear it endows L, with a norm in the lattice-theoretic
sense. Moreover, there are natural bijections between sets of filtrations (labelled by
Z,Q or Q%) of (X, x) in the stacky sense and filtrations of Ly in the lattice-theoretic
sense. Since lamps give us a way to speak about L, intrinsically, we can formulate
a more general version of Theorem 1.6.1 for good moduli stacks X endowed with
well-behaved lamps, what we call linearly lit good moduli stacks (Definition 7.3.7).
We provide a criterion (Theorem 7.4.4) for alamp to define a linearly lit good moduli
stack that we hope can be applied to all versions of constructions of stacks of objects
in linear categories.

The first step in the proof of Theorem 1.6.1 is deformation theoretic. We prove
that for any closed k-point y of X corresponding to an object E in #, there is a (non-
canonical) pointed closed immersion ¢ : (77 ' (y),y) < (Extl(E, E)/ Aut(E),0).
Since Ext'(E, E)/ Aut(E) is isomorphic to a stack of representations for some quiver
0, every point x in 777 (y) corresponds to some representation N of Q. As ex-
pected, the lattice Ly associated to x is isomorphic to the poset of subrepresentations
of N. Since the iterated balanced filtration is unaltered under closed immersions, this
reduces us to the case of a nilpotent quiver representation. It can be shown explicitly
that in that case Kempf’s number (1, X™*), for A € Q - Filt(X, x), can be interpreted
lattice theoretically as the complementedness of the filtration F* of L, corresponding to
A (Proposition 5.2.14). From the equality of norms || F;|| = ||A|| we deduce that the
balanced filtration of (X, x) equals the HKKP filtration of L,. However, showing
that the full iterated balanced filtration of (X, x) equals the iterated HKKP filtra-
tion of L, is more complicated, and it requires the results on chains of stacks from
Chapter 4.

1.7 CONJECTURE ON ASYMPTOTICS OF FLOWS

In view of Theorem 1.6.1 and the results of Haiden—Katzarkov—Kontsevich—Pandit
on asymptotics of flows in the case of quiver representations and vector bundles on a

smooth projective complex algebraic curve [33, 34], we expect the iterated balanced
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filtration to play a role in describing asymptotics of natural flows in moduli theory.
We now make this expectation precise in the case of Geometric Invariant Theory on
affine spaces.

We begin by recalling the Kempf—Ness potential in a more general framework.
Let G be a connected reductive algebraic group over C, endowed with a norm on
cocharacters, that 1s, the data of a Weyl-invariant rational inner product on the set
I'Z(T) of cocharacters of a maximal torus T of G (Definition 2.3.8). Let K be a max-
imal compact subgroup of G. We denote g the Lie algebra of G and ¢ the Lie algebra
of K. We consider a smooth projective-over-affine scheme X over C, endowed with
an action of G. An ample line bundle &£ on X /G (thatis, an ample line bundle L on X
with a G-equivariant structure) defines an open semistable locus (X/G)* = X*/G,
which is the open stratum of a ®-stratification of X/G (Theorem 2.6.4). The line
bundle &£ restricts to a line bundle £ on the differentiable stack “of metrics” X/K,
and we endow £ with a hermitian norm ||—|| (that is, we endow L with a K-invariant
hermitian norm). For a point x € X(C), fixing a choice of nonzero lift x* of x to the
total space of &, the Kempf-Ness potential is defined to be

Px:G/K — R: Kg  log||x™| —log|lgx™|.

Here, G/K denotes the quotient by the action of K on G on the left. Note that the
Kempf-Ness potential is independent of the choice of lift x* of x. Kempf—Ness type
theorems state that, under some conditions, the following equivalences hold:

1. x 1s semistable if and only if p, is bounded below.

2. x 1s polystable if and only if p, attains a minimum.
This 1s the case, for example, if either X is projective [31,52,55] or X is affine and
some additional conditions are satisfied [43,54,63]. In these cases, if x is polystable,
then the negative gradient flow of p, converges to a minimum from any starting
point. In the strictly semistable case, we are interested in understanding the asymp-
totic behaviour of this flow.

In order to define the gradient flow, we need a Riemannian metric on G/ K. This
comes from the norm on cocharacters of G, which gives a K-invariant euclidean inner
product on £. By Hadamard’s theorem, the map

p:t—> G/K:v— Kexp (%v)
is a diffeomorphism (see [31, Appendix A]). The isomorphism dop: ¢ — T.(G/K)
induces an inner product on 7.(G/K), and we extend it to a Riemannian metric on
G/ K using the action of G on G/K by right translations (see [31, Appendix C] for
details). This allows us to define the gradient vector field Vp, on G/K.
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The semistable locus X*/G is a good moduli stack, endowed with a norm
on graded points coming from the norm on cocharacters of G. If x € X(C) is a
semistable point, then the iterated balanced filtration A;,(x) of x 1s defined, and by
Remark 3.2.16 it is identified with an equivalence class of sequences of commut-
ing rational one-parameter subgroups 41, ..., A,. We may choose representatives A ;
that are compatible with K, in the sense that for some power /\lj: C* — G thatis
integral (and hence for any such power), the inclusion )Lﬂ. (S") C K holds. The A;
induce well-defined linear maps on Lie algebras Lie(1;):C — g, giving elements
v; =1iLie(A;)(1) € L.

We now shift our attention to a particular case of the above setting. We will take
X = V to be a finite dimensional G-representation. Let a: G — G, ¢ be a character,
and take the linearisation £ = Ox/¢ (@) = (X/G — BG,, c)*a, where we regard o
as an element of Pic(BG). Choose a K-invariant hermitian metric |—|| on V. The
total space of £ 1s (V x C) /G, where the action is g(x,¢) = (gx,2(g)c). The norm

|—|| defines a hermitian norm ||—||% on £ by the formula
Iw.0)llz = e el
The associated Kempf—Ness potential for a point x € V' is

px(Kg) = |lgx||> —log|a(g)] — Ilx|>.

Suppose that x € V is semistable and let vq,...,v, € € represent the iterated
balanced filtration of x as above. We denote log = ¢~1': G/K — ¢ the inverse of the

map ¢ defined above. With this setup, we conjecture:

CONJECTURE 1.7.1. Let h: (0, 00) — G/ K be a flow line for —V px. Then the expression

log h(t) + log(t)v, + loglog(t)va + -+ + log - - -log(¢)v,

in € 15 bounded for t > 0.

In the case where V' = @,¢p, Hom(C%@, C%@) is the representation space
of a quiver Q with dimension vector d and G = [];co, GL4;,c with the standard
action, the conjecture is true for specific choices of hermitian norm on V' and norm
on cocharacters of G by Theorem 1.6.1 and [33, Theorem 5.11]. See Example 5.2.19
for a simple example where the conjecture is checked beyond the quiver case. We
hope to return to Conjecture 1.7.1 in future work.

Our expectation is that the iterated balanced filtration describes also the asymp-

totics of natural gradient flows in other moduli problems. Examples include the
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Calabi flow for a K-semistable Fano variety, the Yang—Mills flow for semistable G-
bundles on a smooth projective curve and the gradient flow for the Kempf-Ness po-
tential in more general GIT situations. In all these examples, there is an underlying
normed good moduli stack of semistable objects, so the iterated balanced filtration is
defined (Section 3.6).

1.8 NOTATION AND CONVENTIONS

The set of nonnegative integers, or natural numbers, 1s denoted N = Z~,. We will
also denote N* = Z.,.

We follow the definitions and conventions of [72] regarding algebraic stacks and
algebraic spaces. We denote Stg,,r the 2-category of stacks for the fppf'site of schemes.
For an algebraic stack X, we denote | X| its topological space and o (X) the set of con-
nected components of | X|. By a geometric point of X we mean a morphism Speck — X
where k is an algebraically closed field. If x: T — X a T-point, with T a scheme, we
denote Aut(x) the automorphism group of x as a group algebraic space over 7. The
multiplicative group over Z is denoted G,, = Spec Z[t,¢™'] and, for a scheme T, we
use the notation G, 7 = G, x T.

For a flat and finitely presented group scheme G over a base S and an algebraic
space X over S endowed with a G-action, we use the notation X /G for the quotient
stack, omitting the customary brackets. The classifying stack BG of G is the quotient
BG := S/G, where S 1s endowed with the trivial G-action.

For a field k and an algebraic group G over k, we denote I'z(G), T'%(G), I'g(G)
and I'?(G) the sets of characters, cocharacters, rational characters and rational
cocharacters of G, respectively. If A € T'%(G) is a cocharacter, and G acts on a
scheme X over k, then we denote X** the fixed point locus of the induced G,,-
action on X and X** the attractor, defined functorially on k-schemes T by the for-
mula Hom(T, X**) = Hom®"* (AL, X), where Hom®"* denotes G k-equivariant
maps and A7 is endowed with the usual scaling action [26]. For the particular case
of the conjugation action of G on itself, we denote L(1) = G*° and P(A) = G**. If
G is reductive, then P(A) is a parabolic subgroup with Levi factor L(4). If g € G(k),
we denote A8 = glg™!.

If ¥ 1s a vector bundle on an algebraic stack X, the total space of ¥ 1s A(¥F) =
Specy Symg, F and the associated projective bundle is P(¥) := Projy Symy 5.



CHAPTER 2

PRELIMINARIES

In this chapter we start by recalling, mainly following [36], the kind of stability struc-
tures on algebraic stacks that we will use in the rest of this thesis and how they give
rise to stratifications. The two main concepts are that of a norm on graded points (Defi-
nition 2.3.3) and of a linear form on graded points (Definition 2.4.1), and these give rise to
O-stratifications (Definition 2.5.1). While in [36] the stacks Grad(X) of graded points
and Filt(X) of filtrations of an algebraic stack X are used, in this work we will need
a generalisation of these, what we call the stack of rational graded points Gradg (X) and
the stack of rational filtrations Filtg (X), that we define in Section 2.2.

The main result in this chapter is Theorem 2.6.4, where we prove that, for a
representable projective morphism f:¥ — X into a stack X with a good moduli
space and a norm on graded points, the stack ¥ carries a natural ®-stratification
(S¢)ceq., Whose centres (Z¢)ceq., have good moduli spaces. This is an improvement
of Halpern-Leistner’s result [36, Theorem 5.5.10] that ¥ has a weak ®-stratification
whose semistable locus Z has a good moduli space. Existence of good moduli spaces
for all centres Z, will be fundamental in our construction of the balancing stratifica-
tion (Theorem 3.5.2).

We conclude by recalling the combinatorial notion of formal fan from [36], and

how it can be used to encode natural extra structure on the set of filtrations of a point
in a stack. This will be needed for Chapters 6 and 7.

2.1 GOOD MODULI SPACES AND LOCAL STRUCTURE THEOREMS

We start by recalling the definition of good moduli space from [2, Definition 4.1],
with the slightly modified conventions of [7, 1.7.3, 1.7.4].

DEFINITION 2.1.1 (Good moduli space). A morphism 7: X — X from an algebraic

stack X to an algebraic space X 1s said to be a good moduli space if

19
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1. the map = is quasi-compact and quasi-separated;
2. the map Ox — 7O 1s an 1somorphism; and
3. the pushforward functor 7, on quasi-coherent sheaves is exact, and the same

is true after any base change X’ — X, where X’ is an algebraic space.

If X 1s quasi-separated, then the third condition can be simplified to m, being
exact, the statement for any base change being then automatic by [2, Proposition
3.10, (vi1)]. We will often use the term good moduli stack meaning an algebraic stack X

that admits a good moduli space 7: X — X.

Remark 2.1.2. Using good moduli spaces, we can recover the concept of linear reduc-
tivity. Indeed, an affine algebraic group G over a field & is linearly reductive precisely

when the map BG — Speck 1s a good moduli space.

A good moduli space 7: X — X enjoys many special properties, for example:

1. Any map X — Y with Y an algebraic space factors uniquely through 7 [7,
Theorem 3.12]. In particular, the good moduli space 7 is uniquely determined
by X.

2. Any base change of 7 along a morphism X’ — X with X’ an algebraic space
1s a good moduli space [2, Proposition 4.7, (1)].

3. It h: X' — X 1s an affine morphism, then X’ has a good moduli space X’ — X’
and the induced map X’ — X is affine with X’ = Specy m4hOx [2, Lemma
4.14]. In particular, if 4 is a closed immersion, then so is X' — X.

4. For every point p € |X|, the fibre 77!(p) has a unique closed point ¢, and
the dimension of the stabiliser of ¢ is bigger than that of any other point of
n~1(p) [2, Proposition 9.1]. Moreover, the stabiliser of ¢ is linearly reduc-
tive [2, Proposition 12.14]. The points g € |X| that are closed in the fibre of
7 containing ¢ are said to be polystable. More generally, a field-valued point
x:Speck — X is said to be polystable if x is closed in the fibre 7717 (x) or,
equivalently, if the point of | X | underlying x is polystable.

Stacks with good moduli spaces are étale locally quotient stacks. More precisely:

THEOREM 2.1.3 (Local structure [7]). Let X be an algebraic stack and w: X — X a good
moduli space. Assume that X is of finite presentation over a quasi-compact and quasi-separated algebraic
space B and that X has affine diagonal.

Then there is a natural number n, an affine scheme Spec A endowed with an action of GLy,
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and a cartesian square

(SpecA)/GL, —— X
Spec(ACLn) SN

with h an affine Nisnevich cover (in particular; élale). Here, A" denotes the ring of invariants.
Moreover, X — B 1s of finite presentation and X has affine diagonal.

The theorem is [7, Theorem 6.1], together with the argument at the end of the
proof of [7, Theorem 5.3] to guarantee that 4 can be taken to be affine. To see that
X has affine diagonal, just take good moduli spaces for the diagonal X — X x X,
which is affine, to obtain the diagonal of X.

From Theorem 2.1.3, it follows that stacks whose good moduli space is a point

are necessarily quotient stacks.

COROLLARY 2.1.4. Let X be an algebraic stack of finite presentation over a field k and assume
that w: X — Speck s a good moduli space with affine diagonal. Then X = (Spec A)/GL,,
where A is a k-algebra of finite type and Spec A s endowed with a GLy,-action.

Over an algebraically closed field, there 1s a stronger result.

COROLLARY 2.1.5 (of [6, Theorem 4.12]). Let X be an algebraic stack of finite presentation
over an algebraically closed field k and suppose that w: X — Speck is a good moduli space with
affine diagonal. Let x € X (k) be the unique closed k-point of X and let G be the stabiliser of x.
Then X = (Spec A)/ G, where A is a finite type k-algebra and Spec A is endowed with an action

of G.

Although it will not be used in this thesis, we finish this section with a relative
version of the Luna étale slice theorem, recently proved in joint work of the author
with Mark Andrea de Cataldo and Andres Fernandez Herrero [23, Theorem 2.1].

THEOREM 2.1.6. Let k be an algebraically closed field, and let f: X — Y be a smooth morphism
between smooth algebraic stacks over k. Let x € X (k) be a closed k-point mapping to a closed k -point
v of Y. Suppose that the stabilisers Gy and G of x and y are linearly reductve and that G, s
smooth. Denote Ny and Ny, the normal spaces of X at x and of ¥ at 'y, endowed with respective

actions of Gy and G . Then there is a commutative diagram

(Nx/Gx,0) — (U, u) —— (X, x)

| | |

(Ny/Gy.0) «—— (V.v) —— (¥.)
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of pownted stacks where the horizontal arrows are étale and induce 1isomorphisms of stabiliser groups at

the respective points. Here, the left vertical map s the one naturally induced by f .

We recall the definition of the normal space Nx. The point x defines a closed
immersion i: BGy — X, its residual gerbe, with ideal sheaf d < Ox. The normal space
N, is the representation of G corresponding to the coherent sheaf i *(4)Y = (4/4%)Y

on BG,. We will also use the normal space in Section 7.4.1.

2.2 STACKS OF RATIONAL FILTRATIONS AND GRADED POINTS

In [36], Halpern-Leistner defines the stacks Grad(X) of graded points and Filt(X)
of filtrations of an algebraic stack X as mapping stacks. If X parametrises objects in
an abelian category, then Grad(X) parametrises objects endowed with a Z-grading
and Filt(X) parametrises objects endowed with a Z-filtration [8, Proposition 7.12
and Corollary 7.13], but Grad(X) and Filt(X) can be defined for very general X.
In this section we revisit the construction of Grad(X) and Filt(X), and extend it to
consider rational filtrations and gradings.

Following [36], we define the stack ® over Spec(Z) to be the quotient stack
® = A} /Gy z, the action of G,z on A} being the usual scaling action. For an
algebraic space S we denote O = 0 x .

Recall that for ¥ and Z two stacks over a base space S, an object of the mapping
stack Hom (Y, Z) over a scheme T is amap T — § together with a morphism 7" xg
Y — Z over S. In the case S = Spec(Z), we omit the subindex from the notation.
The following definition is in [36, Section 1.1], except that we do not work relative

to a base algebraic stack.

DEFINITION 2.2.1 (Stacks of filtrations and graded points). Let X be an algebraic
stack and let n be a positive integer. We define the stack Grad” (X)) of Z"-graded points
of X to be the mapping stack Grad”(X) = Hom(BG;, 5, X). Similarly, we define
the stack Filt" (X)) of Z"-filtrations of X to be Filt" (X) := Hom(®", X).

We will simply denote Filt(X) = Filt' (X) and Grad(X) = Grad'(X).

LEMMA 2.2.2 (Independence of base for mapping stacks). Let ¥ be an algebraic stack such
that ¥ — Spec Z is a good moduli space, and let X be an algebraic stack defined over an algebraic

space B. Then there is a canonical isomorphism
Hom(¥, X) = Homgz(¥Yp, X)

of mapping stacks. In particular, there is a canonical map Hom (Y, X)) — B.
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Progf. Tor a scheme T, an object of the groupoid Hom gz (¥, X)(T') is a pair (a, b)
withb:T — Banda:T xg¥Yp =T x¥Y — X amorphism over B. Since T x¥ — T
1s a good moduli space, for any given a: T x ¥ — X, an object of Hom(¥, X)(T'), the
composition T x ¥ — X — B factors uniquely through 7 x ¥ — T, giving a unique
b:T — B such that (a, b) is an object of Hom g (¥p, X)(T). ]

Applying the Lemma for ¥ = ©” or ¥ = BG]

m>

we see that Filt"(X) and
Grad” (X)) are independent of the base algebraic space considered.
To guarantee that Filt"(X) and Grad”(X) are well-behaved, we consider the

following assumption on an algebraic stack X defined over an algebraic space B.

Assumption 2.2.3. The algebraic space B is quasi-separated and locally noetherian,

and the map X — B is locally finitely presented and has affine diagonal.

Example 2.2.4. Suppose that X is a noetherian algebraic stack with affine diagonal
and 7: X — X is a good moduli space. Then X is also noetherian by [2, Theorem
4.16], and = is of finite type by [6, Theorem A.1]. The diagonal of X is affine since
it is obtained from the diagonal of X by taking good moduli spaces. In particular, X
satisfies Assumption 2.2.3 with B = X.

Under Assumption 2.2.3, the stacks Filt"(X) and Grad”(X) are algebraic and
also satisfy Assumption 2.2.3 [7, Theorem 6.22]. Note that by [7, Remark 6.16] it
1s not necessary to assume that B is excellent in order to apply [7, Theorem 6.22],
since the stacks BG;, p and % satisfy condition (N) in [7]. See also [39, Theorem
5.1.1] for a related algebraicity result.

There are several maps relating Grad(X), Filt(X) and X:

1. The “evaluation at 1” map ev;: Filt(X) — X, defined by precomposition along
{1} — ©. Itis representable and separated [36, Proposition 1.1.13].

2. The “associated graded” map gr: Filt(X) — Grad(X), defined by precompo-
sition along BG,, = {0}/G,, — O.

3. The “forgetful” map u:Grad(X) — X, defined by precomposition along
Spec(Z) — BGyy,.

4. The “evaluation at 0” map evy: Filt(X) — X, which is the composition evy =
u o gr.

5. The “split filtration” map o: Grad(X) — Filt(X), defined by precomposition
along the canonical representable morphism ® — BGy,.

6. The “trivial grading” map X — Grad(X), given by precomposition along

BG,, — SpecZ. It is an open and closed immersion.
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7. The “trivial filtration” map X — Filt(X), defined by precomposing along ® —

Spec Z. It is an open and closed immersion.

Remark 2.2.5. The fact that the “trivial grading” and “trivial filtration” maps are
closed and open immersions follows from [36, Proposition 1.3.9] by the argument
in [36, Proposition 1.3.11].

Remark 2.2.6. Sometimes, the assumption that X — B has affine diagonal can be
relaxed to X having affine stabilisers and being quasi-separated over B. This is the
case for the construction and algebraicity of Filtg (X), Gradg(X), Filtge(X) and
Gradge (X) (Definition 2.2.7 and Definition 3.2.2). Representability of evy: Filt(X) —
X follows under the additional hypothesis that X has separated inertia.

The assumption that B is locally noetherian guarantees that the topological
spaces of the algebraic stacks considered are locally connected, and hence their con-

nected Components are opemn.

The monoid (N*,-, 1) acts' on the stacks Filt(X) and Grad(X). A natural num-
ber n > 0 acts on Filt(X) by the map Filt(X) L) Filt(X) given by precom-
position along the nth power map ®7 — ©r, and similarly in the case of Grad(X).
Now denote Y one of the stacks Grad(X) or Filt(X) with its (N*,-, 1)-action. We
define a diagram Dy: (N*,|) — Stg,r, i.e. a pseudofunctor, on the 2-category Stg,
of stacks for the fppf'site of schemes. The index category is the filtered poset (N*, |) of

positive integers with the divisibility order, and Dy 1s defined by setting Dy(n) = ¥

° m/n
for all n, and Dy(n|m) to be the “rising to the Zth power” map ¥ SN
g n P p

defined above.

DEFINITION 2.2.7 (Stacks of rational filtrations and rational graded points). The
stacks Filtg (X) of rational filtrations and Gradg (X) of rational graded points are the colimits

Filtg(X) = colim Dpjyx) and Gradg(X) = colim Dgradcx)
in the cocomplete 2-category Stg,ps.

Remark 2.2.8. There are also maps ev;: Filtg(X) — X, gr: Filtg(X) — Gradg(X),
etcetera, relating the stacks Filtg (X), Gradg(X) and X, just because the version of

these maps for Filt and Grad are compatible with the colimits defining Filtg and
Gradg.

lFormally, an action of (N*,-, 1) on a stack ¥ is a pseudofunctor B(N*, -, 1) — Stg,,r sending the
unique object of B(N*,-, 1) to ¥. Here, we are denoting B(N*, -, 1) the category with one object and
endomorphism monoid equal to (N*,-, 1), and Sty is the 2-category of stacks on the category of
schemes with the fppf topology.
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PROPOSITION 2.2.9. Let X be an algebraic stack over an algebraic space B, satisfying Assumption
2.2.3. Then Filtg(X) and Gradg(X) are algebraic and satisfy Assumption 2.2.5.

Proof. By [36, Proposition 1.3.11], the “rising to the nth power” map Filt(X) —
Filt(X) 1s a closed and open immersion for n > 0. The same argument shows that the
analogue map Grad(X) — Grad(X) is a closed and open immersion too. Thus the
algebraicity result follows from Lemma 2.2.10. Since Filtg(X) and Gradg(X) are
increasing unions of closed and open substacks isomorphic to Filt(X) and Grad(X)

respectively, they also satisfy Assumption 2.2.3. []

LEMMA 2.2.10. Let I be a filtered poset, seen as a category, and let D: 1 — Stg,pp be a pseud-
ofunctor such that for all arrows s — t i I the induced D(s) — D(t) is representable by open
immersions. Let Y = colim D in the 2-category Sty If D(s) is algebraic for all objects s of D,
then so 15 Y.

Proof. In this proof, we consider the site of gffine schemes with the fppf topology. This
does not change the 2-category St of stacks, but it will be useful to consider only
quasi-compact test schemes.

The stack ¥ 1s the stackification of the colimit ¥P*¢ = colim D in the 2-category of
prestacks (meaning presheaves of groupoids). A morphism 7" — YP™ is a pair (s, f),
with s an object of I and f:T — D(s) a map. A 2-morphism (s, ) — (s/, f) 1s
a pair (z,r) with ¢t € [ such that there are arrows 7/s:s — ¢ and t/s":s’" — ¢, and
r:D(t/s)o f — D(t/s")o f"a2-morphism. From this description, and using the facts
that (1) 1 1s filtered and (2) every object in the site considered, i.e. every affine scheme,
1s quasi-compact, it follows that ¥P™ 1s already a stack, so ¥ = ¥P*. Moreover, each
of the maps D(i) — ¥ is an open immersion. Indeed, if (s, f): T — ¥ is a map,
with T affine, then D(i) xy T = D(i) xp¢) T ifi,s < s, which is open in T. Thus

Ll;er D(s) — ¥ is a smooth representable surjection, so ¥ is algebraic. [l

Remark 2.2.11 (Functor of points of Gradg(X) and Filtg(X)). From the proof of
Lemma 2.2.10 we get a simple description of points in Filtg(X) and Gradg(X).
Namely, if T is a quasi-compact scheme, then a T-point of Filtg (X) will be denoted
as %)L, where A is a T-point of Filt(X) and n 1s a positive integer. An isomorphism be-
tween T -points %)L and %()L’ ) of Filtg (X) is an isomorphism between n’A and n(A’) in
Filt(X). Here we are using additive notation for the “rising to the nth power” maps.

A similar description applies to Gradg(X).
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Remark 2.2.12. Since (N, -, 1) also acts on Filt" (X) and Grad” (X) for all positive inte-
gers n, we can form the stacks Filtg (X) and Gradﬁé (X) in a similar fashion. For the

same reasons, they are algebraic and satisty Assumption 2.2.3.

Example 2.2.13. Let k be a field, let X be a separated scheme of finite type over k,
endowed with an action of a smooth affine algebraic group G over k that admits a
k-split maximal torus 7. We denote W = Ng(T)/Zg(T) the Weyl group. Then we

have natural isomorphisms

Grad"(X/G) = | | XM /LX)
AeHom(Gy,, ., T)/ W

and

Filt"(X/G) = | | XM /P(Y)
AeHom(G", ,,T)/W

by [36, Theorem 1.4.8]. Here L(1), P(X), X** and X** are the centraliser, as-
sociated parabolic subgroup, fixed point locus and attracting locus of A, see Sec-
tion 1.8 for the precise definitions. The same description holds for Gradg (X/G) and
Filtg (X/G) when replacing Hom(Gy, ,.T)/W by Q®zHom(G,, ,,T)/W. This can
be seen by identifying the “rising to the nth power” maps with the “scaling by n” in
Hom(Gy, ;. T'). We will use this throughout.

Over a general base B, this description still holds for a quotient stack of the
form X/GLy with X an algebraic space that 1s quasi-separated and locally finitely

presented over B [36, Theorem 1.4.7].

The formation of Filtg (X) and Gradg (X) is well-behaved with respect to base

change from a target algebraic space.

PROPOSITION 2.2.14. Let X — B and X' — B’ satisfy Assumption 2.2.5 and let
X' — X
X — X

be a cartesian square with X and X' algebraic spaces. Then

Gradg (X') = Gradg (X) xx X' = Gradg(X) xx X’

and

Filtg (X') 2= Filtg (X) ey, x X' 2= Filtg (X) xx X'
Sfor all n. The same holds for Filt" and Grad”.
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Proof- The case of Filt" (X’) and Grad”"(X’) is [36, Corollary 1.3.17]. The result fol-
lows for Filtg(X") and Gradg (X') after covering these by copies of Filt"(X’) and
Grad"(X). O

PROPOSITION 2.2.15. Let X be an algebraic stack defined over an algebraic space B, satisfying
Assumption 2.2.5, and let X' — X be a closed immersion. Then
Gradg (X') = Gradg (X) xx X’
and
Filtg (X') 2 Filtg (X) Xev,, 6 X’
Jor all n. The same holds for Filt" and Grad”.

Proof- As above, it is enough to see the fact for Filt" and Grad”, which is [36, Propo-
sition 1.3.1]. L

It will be useful for the sequel the fact that Grad preserves properness.

PROPOSITION 2.2.16. Let f: X — Y be a representable proper finitely presented morphism of
algebraic stacks over a base algebraic space B satisfying Assumption 2.2.5. Then

Grad(f): Grad(X) — Grad(¥Y)

and

Gradg(f): Gradg(X) — Gradg(¥Y)

are representable and proper.

Proof. (Halpern-Leistner) It is enough to prove the statement for Grad(f). Let T be
ascheme and 7' — Grad(¥) a map, corresponding to BG,, 7 — ¥. Form a cartesian

square

Z l_—) BGm,T

I

X — Y.
The 1-category of representable algebraic stacks over BG,, r is equivalent to the
category of algebraic spaces over 7' endowed with a G,, r-action, and the equivalence
is given by pullback along 7" — BG,, r. Therefore Z = Z/G,, r for a T-algebraic
space Z acted on by G,, 7. Forming now the fibre product

‘u[_—>T

| |

Grad(X) —— Grad(¥Y)
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and given a T-scheme S, a map S — U over T is a section of Z — BG,, r over
BG,, s — BG,, 1, whichisin turn a G, r-equivariant map S — Z. Therefore U =
Z®m.1  the fixed points of Z, as a stack over T. Since Z — T is finitely presented,
we have by [36, Proposition 1.4.1] that the map Z®»7 — Z is a closed immersion

and also, by hypothesis, that Z — T is proper. Thus U — T is proper. ]

We recall the definition of Z-flag spaces from [36, Definition 1.1.15] and introduce

the natural counterpart of Q-flag spaces.

DEFINITION 2.2.17 (Flag spaces). Let X be an algebraic stack over an algebraic space
B satistying Assumption 2.2.3, and let x: 7 — X be a scheme-valued point. We
define the Z-flag space Flag(X, x) to be the fibre product

Flag(X,x) —— T
Filt(X) —— X

and the Q-flag space Flagq (X, x) as the fibre product

Flago (X, x) —— T

Filtg(X) —— X.
By representability and separatedness of ev;: Filt(X) — X and ev;: Filtg(X) —
X, the flag spaces Flag(X, x) and Flagg (X, x) are separated algebraic spaces over
T. Since Filt(X) — Filtg(X) 1s an open and closed immersion, we have a natural

open and closed immersion Flag(X, x) — Flagg (X, x) of flag spaces.
In the case of a field-valued point, we can talk about a set of filtrations.

DEFINITION 2.2.18 (Set of filtrations of a point). Let X be an algebraic stack over an
algebraic space B satisfying Assumption 2.2.3. Let k be a field and let x: Spec(k) —
X be a k-point. The set of Z-filtrations (or integral filtrations) of x 1s defined to be

Z - Filt(X, x) == Flag(%, x)(k).

the set of k-points of the Z-flag space of x. Similarly, the set of Q-filtrations (or rational
Siltrations) of x 1s
Q- Filt(X, x) := Flagg (X, x) (k).

The filtration of x given by the composition of A} /G, x — Spec k and x: Speck —
X 1s denoted 0 and referred to as the trwial filtration.
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Remark 2.2.19 (Filtrations of a quotient stack). Let k be a field and let X be a separated
scheme over k, endowed with an action a: G x X — X by a linear algebraic group
G. Form the quotient stack X = X/G and let x € X(k) be a k-point. We abusively
also denote by x the composition Spec k 5 X > X. I Gmx — G 1s a cocharacter,

we say that lim;_,¢ A(f)x exists in X if the map
A idg X
Gm,keGngSpeckG—)ngXgX

extends to a map Ax:Al — X (in which case it does so uniquely by separatedness
of X), where we regard Gy, x as the open subscheme A} \ {0} of A}. If lim, ¢ A(r)x
exists, we let lim;_,o A(t)x denote the k-point A:(0) of X. For n € Z-,, we have
that lim, ¢ A(¢)x exists if and only if lim,_,¢ A (¢)x exists, so it makes sense to define
this notion for a rational one-parameter subgroup A € T'Q(G). The k-points of X
such that lim, .o A(¢)x exists are in bijection with the k-points of the attractor X*-+.
Thus it follows readily from [36, Theorem 1.4.8 and Remark 1.4.9] that we have an

identification:
Q-Filt(X,x) = {A e TG) | }in(q) A(t)x exists}/ ~, (2.1)
where A ~ A’ if there is g € P(A)(k) such that A8 = A’.

We conclude this section with a couple of facts about maps induced on sets of

filtrations.

PROPOSITION 2.2.20. Let : X — Y be a schematic proper morphism of algebraic stacks over
an algebraic space B satisfying Assumption 2.2.5. Let k be a field, let x € X (k) and y € Y (k)
be k-points, and let f(x) — y be an isomorphism. Then the induced maps Z - Filt(X, x) —
Z-Filt(Y,y) and Q-Filt(X, x) — Q- Filt(Y, y) of sets of filtrations are byjective.

Proof. Itis enough to deal with the case of integral filtrations. An element of Z - Filt(¥, y)
is a pair (A, @) fitting in a commutative diagram
AL /Gpy —2— Y
T
Spec(k)
and similarly for Z - Filt(X, x). Fix such a (A, «) € Z-Filt(¥, y). Now form the fibre

product
X/Gm,k E— Allc/Gm,k

r
| 12
x —7 Ly
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The base change isindeed of the form X /G, x for a scheme X because f is schematic,
and X/Gpx — A} /Gy is given by a G,y g-equivariant map X — A;. There is a

commutative solid square

(Allc \ O)/Gm,k . Allc/Gm,k

X/Gm,k —_— Allc/Gm,k
and an 1somorphism r o u — x. An element of Z - Filt(X, x) mapping to (A, u) is

specified by a lift & of the square 2.2 in the 2-categorical sense. Thus we want to

prove that there is a unique such lift. There i1s a unique lift g of

ALNO — Al

l K llAl

X~ Al

by properness, see [72, Tag 0BX7]. We just need to prove that g is G, x-equivariant.

Equivariance amounts to the commutativity of

Gm,k X Allc — A,lc

lgm Xgl \Lg

Gm,kXX — X.

Both compositions agree when restricted to Gy, x x (A; \ 0), which is schematically

dense in G, x X A;. Thus, by separatedness of X — A}, the square commutes. [

PROPOSITION 2.2.21. Suppose f: X — ¥ is arepresentable and separated morphism of algebraic
stacks over an algebraic space B satisfying Assumption 2.2.3. Let k be a field, let x € X (k) and y €
Y (k) be k-points, and let f(x) — y be an isomorphism. Then the induced maps Z - Fllt(X, x) —
Z-Flt(¥Y,y) and Q -Filt(X, x) — Q -Filt(Y, y) of sets of filtrations are injective.

Proof. Itis enough to prove the claim for integral filtrations. If 1, A, are two filtrations
of x that give the same filtration of y, we can form a commutative diagram
Speck ;}w X
1l /,/’// lAf
AL/Gos B2 Xy X
Since A 1s a closed immersion and 1: Speck — A}c /G k 1s a schematically dense

open immersion, there is a unique dashed arrow filling the diagram, which gives the

isomorphism between A; and A,. O]


https://stacks.math.columbia.edu/tag/0BX7
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2.3 NORMED STACKS

We now recall from [36] the notion of a norm on graded points of a stack. If G 1s
an algebraic group, norms on graded points of BG are in bijection with norms on

cocharacters of G (Proposition 2.3.10).

DEFINITION 2.3.1 (Nondegenerate graded point). Let X be a quasi-separated alge-
braic stack, let k be a field and let x: BG,, , — X be a Z"-graded point. We say that
the graded point x 1s nondegenerate if ker(G;), , — Aut(x|[speck)) 1s finite.

Suppose that X is defined over some algebraic space B and it satisfies Assump-
tion 2.2.3. We say that a connected component Z of Grad” (X)) is nondegenerate if there
1s a field k and a point x € Z(k) with x nondegenerate.

Remark 2.3.2. If Z 1s a nondegenerate component, then by [36, Proposition 1.3.9] we
have that for a/l fields k and points x € Z(k), the point x is nondegenerate.

We recall the notion of norm on graded points of a stack from [36, Definition
4.1.12].

DEFINITION 2.3.3 (Norm on graded points). Let X be an algebraic stack over an
algebraic space B, satisfying Assumption 2.2.3. A (rational quadratic) norm q on graded
points of X (or simply a norm on X) 1s a locally constant function

q:|Grad(X)| — Qxo

such that for every field k and every nondegenerate Z"-graded point x: BG,, , — X,
the induced map ¢,: I'% (G, 1) = Qs the quadratic form of a rational inner product
on the finite free Z-module T'% (G, 1) of cocharacters of G, ;.

A normed algebraic stack 1s an algebraic stack endowed with a norm on graded

points.

Let us clanify what the map gx 1s. If A:Gpuix — G, 1s a cocharacter, the

.. A .
composition BGy, 24 BG;, , % X defines a point p € |Grad(X)|, and we let

qx(A) = q(p).

Example 2.3.4. We give two examples of norms on graded points that will also be
discussed later.

1. Let G be an algebraic group over an algebraically closed field k, with a max-
imal torus 7 and Weyl group W. Then norms on graded points of BG are
in bijection with W-invariant rational quadratic inner products on the set of
rational cocharacters I'®(T’) of T (Proposition 2.3.10).
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2. Let C be a smooth projective curve over the complex numbers, and let Bun(C)
denote the stack of vector bundles on C. There 1s a natural norm ¢ on cocharac-
ters of Bun(C), defined as follows. A point x € Grad(Bun(C))(C) corresponds
to a Z-graded vector bundle @, E,. The norm ¢(x) is defined by

q(x) = ) n*rk(Ey).

nez
Thus in this case the norm on graded points ¢ encodes the information of the

rank of vector bundles in a way that is intrinsic to the language of algebraic

stacks. See Section 3.6.4 for more on this example.

Remark 2.3.5. A norm on graded points ¢: |Grad(X)| — Q extends canonically to a
map

q:|Grado(X)| — Q
by setting q(%)&) = n%q()t), for a rational graded point %/\.

Remark 2.3.6 (Notation for norms). If X 1s endowed with a norm on graded points ¢
and A € Gradg(X)(k) i1s a graded point, with k a field, then we will often denote

1Al = Vg (Q).

In some circumstances we can pull back a norm under a morphism.

PROPOSITION AND DEFINITION 2.3.7 (Pulling back norms). Let X and ¥ be alge-
braic stacks over an algebraic space B, satisfying Assumption 2.2.3. Let f: X — ¥
be a morphism such that the relative inertia J y — X has proper fibres (for example
if f is representable or separated). Let ¢ be a norm on ¥ and denote f*g the com-
position |Grad(X)| — |Grad(¥)| 45 Q . Then f*q is a norm on X, called the
pulled back norm.

If X is endowed with a norm ¢’, we say that the morphism f is norm-preserving if
fra=4"
Proof. We need to see that if u: BG), ; — X is nondegenerate, then so is f ou. Let
X = Ulspeck € X (k) be the point that u grades. We have induced algebraic group

homomorphisms

Aut(x) —— Aut(f(x)).
The kernel of r is proper over Spec(k), since it is the fibre over x of the relative inertia

morphism, and ker s 1s finite by hypothesis. We have a sequence

kerl —%— kerl/kers —% 5 kerr
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where a is finite and b is a closed immersion. Thus ker/ is proper over k, and therefore

finite, because G , is affine. This proves that f o u is nondegenerate. [l

The notion of norm on graded points of an algebraic stack is a generalisation of

the classical notion of norm on cocharacters of a group.

DEFINITION 2.3.8 (Norm on cocharacters of a group). Let G be a smooth affine
algebraic group, over a field k, that has a k-split maximal torus. A (rational quadratic)
norm on cocharacters of G is a map ¢:T'2(G) — Q that is invariant under the action
of G(k) on T'Z(G) by conjugation and such that for every k-split torus T of G, the

restriction of ¢ to I'Z(T) is the quadratic form of a rational inner product on T'Z(T).

Now fix a smooth connected linear algebraic group G over a field k. Any two
maximal k-split tori are conjugate by an element of G(k) [21, Theorem C.2.3], and
there exists one such torus for dimension reasons. The Weyl group W(G,T) =
Ng(T)/Zg(T), for a k-split torus T, is a finite constant group scheme [21, Proposi-
tion C.2.10], so we identify it with a finite abstract group. By conjugacy of maximal
k-split tori and [65, Lemma 2.8], it follows that T%Z(T)/W(G,T) = T'2(G)/G(k) if

T is a maximal k-split torus of G. Thus we deduce:

PROPOSITION 2.3.9. If T is a k-split maximal torus of G, then the data of a norm on cocharacters

of G is equivalent lo a rational quadratic inner product on TZ(T), invariant under the action of

W(G, T). 0

The link with the concept of a norm on graded points is given in the following

well-known proposition.

PROPOSITION 2.3.10. Suppose G has a k-split maximal torus T. Then norms on BG are in

natural byection with norms on cocharacters of G.

Proof. Let W = W(G, T) be the Weyl group. Then, by [36, Theorem 1.4.8], we can
explicitly describe the stack of graded points as

Grad(BG)= | | BL®).
AeTZ(T)/W
where L(A) 1s the centraliser of a choice of representative of A. Thus |Grad(BG)| =
I'Z(T)/ W, and the identification is compatible in the sense thatif A:G,, — G is a
cocharacter, the point in |Grad(BG)| defined by BA: BG,, — BG is the class of A in
I'Z(T)/W = T%(G)/G(k). To conclude, just note that if T — T'is a map of k-split
tori with finite kernel, then I'%(T) — I'%4(T") is injective, so I'?(T) inherits an inner
product if T'Z(7") has one. [
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Norms on cocharacters are a source of norms on quotient stacks.

PROPOSITION 2.3.11 (Norms on quotient stacks). Suppose G has a k-split maximal torus
and acts on a quasi-separated algebraic space X of finite type over k. If G is endowed with a norm on

cocharacters q, then X /G s naturally endowed with a norm on graded points.

Proof. Since p: X/G — BG is representable, the pullback p*q is a norm on X/G by
Proposition and Definition 2.3.7. []

DEFINITION 2.3.12 (Norm on Gradg(X)). Let X be an algebraic stack over an alge-
braic space B satistying Assumption 2.2.3 and endowed with a norm on graded points
qg. We denote Grad(q) (resp. Gradg(g)) the norm on Grad(X) (resp. Gradg (X))

given as the pullback of ¢ along the forgetful morphism u: Grad(X) — X (resp.
Gradg(X) — X), which is representable.

It follows from Proposition 2.3.7 that Grad(g) is a norm on Grad(X). If X is a
normed stack, we will always regard Grad(X) (resp. Gradg (X)) as a normed stack,
endowed with the norm Grad(g) (resp. Gradg(g)).

2.4 LINEAR FORMS ON STACKS

We now recall the notion of linear form on graded points of a stack from [36] and

show how to get linear forms from line bundles.

DEFINITION 2.4.1 (Linear form). Let X be an algebraic stack over an algebraic space
B, satisfying Assumption 2.2.3. A ratwonal linear form £ on graded points of X (or simply a

linear form on X) 1s a locally constant function
£:|Grad(X)| — Q

such that, for every field k and every Z"-graded point BG;, ;, — X, the induced map

r Z(Gr’; «) — Q on cocharacters of the torus is a Z-module homomorphism.

IfA: BG,, x — X i1s a graded point, we denote by either (A, £) or £(A) the value
of £ at the point of Grad(X) defined by A.

Remark 2.4.2. A linear form £: |Grad(X)| — Q extends canonically to a map
£:|Gradg(X)| - Q
by setting (%k, £) = %()L, L), for a rational graded point %)L.

Line bundles are an important source of linear forms. The following definition

essentially comes from [41] and [36].
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DEFINITION 2.4.3 (Linear form associated to a line bundle). Let X be an algebraic
stack over an algebraic pace B, satisfying Assumption 2.2.3, and let &£ be a line bundle
on X. Define a map

(—, £):|Grad(X)| - Q
as follows. If g € |Grad(X)]| is represented by a field k and a map A: BG,, x — X,
let (g, £) = (A, L) := —wt(A* L), the opposite of the weight of the one-dimensional

representation A*E of G, k.

Remark 2.4.4 (Sign conventions). Our sign convention for weights is as follows. Let
k be a field. We denote by Opg,, ,(n), for n € Z, the representation of G, x with
underlying vector space k and such that t * 1 = " for t € k*. By definition,
wt (DBGm,k("l) = n.

The total space of Opg,, , (1) 1s A(Opg,, (1)) = SpecBGm!k (Sym(Ogg,, )")- If
we let Gy, ¢ act on Aj by the formula r s = t"s, for any k-algebra R, t € G, x(R) =
R* and s € A (R) = R, then A(Opg,, (1)) = A, /G for this action. If we write
A, = Speck[x], the standard coordinate x has weight —n.

Let G be a linear algebraic group over k acting linearly on a finite dimensional
vector space V, and let p:P(V)/G — BG,, be the map P(V)/G = (V \ {0})/G x
G, — B(G x Gy,) — BGy,, where Gy, acts by scaling on V. Then p*(Opg,, (1)) =
Opwv),c(1) 1s the standard ample line bundle on P(V)/G. Let A:G,,x — G be
a one-parameter subgroup, and let x € P(V)(k) be a point fixed by A, defining a
graded point A: BG,, x — P(V)/G. The point x corresponds to a one-dimensional
subspace L C V invariant by A. Thus there is n € Z such that A(#)v = t"v for all
k-algebras R, v € R ®, L and ¢t € R*. In other words, L is regarded as a G, x-
representation and we let n = wt L. We can identify L = A% (Opy);6(—1)). Thus

our sign conventions are such that (A, Opv)/6(1)) = —wt(LY) = n.

PROPOSITION 2.4.5. Let X and &£ be as in Definition 2.4.3. Then (—, L) is well-defined and

a linear form on X.

Proof- If k'|k 1s a field extension, inducing a map g: BG,, v — BG,, , and U is a line
bundle on BG, ¢/, then wtU = wt(g*U), so (—, £) 1s well-defined.

To see that (—, £) 1s locally constant on |Grad(X)|, it is enough to prove that
for any map f:Spec A — Grad(X) with A any commutative ring, the composition
|Spec A| — |Grad(X)| — Q of | f] and (—, £) islocally constant. Let h: BG4 — X
be the map corresponding to f. We may assume that 2*&£ is trivial when restricted
to Spec 4, so h*&£ is an A-module direct sum decomposition A = @, . A,. Let 1,
be the degree n part of 1 € A. Each A, is generated by 1, as an A-module. On
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the nonvanishing locus D(1,) of 1,, we have that the restriction 4,|pa,) = Alpa,)
and A,|pa,) = 0ifm # n. Thus SpecA = | |,cz D(1,), and the composition
|D(1,)] — |Grad(X)| RN Q 1s constant with value —n.

Now let a: BG,, , — X be a Z"-graded point. The pullback a*£ corresponds
to a character y € I'z ((G;’i’k), and the map I'Z (an,k) — Q that (—, £) induces 1s
just the pairing A — —(A, y). Itis thus linear. [

Remark 2.4.6. Definition 2.4.3 naturally extends to rational line bundles £ € Pic(X)®z
Q.

Now suppose that X is an algebraic stack over an algebraic space B satistying

Assumption 2.2.3, and endowed with a norm on graded points g.

DEFINITION 2.4.7 (Canonical linear form of a norm). The canonical linear form £, on
Gradg(X) induced by ¢ is the linear form on graded points of Gradg(X) defined
as follows. A graded point u € Grad(Gradg(X))(k) lying over a point A/n €
Gradg(X)(k), with A € Grad(X)(k) andn € Z-,, givesamap o = (i, A): BGi’k —

X and ¢ gives an inner product on the set I'Z (an’k) of cocharacters of an,k. Let

e1, > be the standard basis of T'Z (G;’k) We define

1
(A»£q> = ;(el,eZ)q'

Remark 2.4.8. Note that £, determines ¢, since for a graded point A: BG,, x — X, if
0: Ban,k — BGy, x is induced by an,k — Gui: (t,1') = tt’, then g(1) = £4(X 0 0).

DEFINITION 2.4.9 (Algebraic norm). We say that the norm ¢ on X is algebraic if the
canonical linear form £, on Gradg(X) 1s induced, on each connected component Z
of Gradg(X) by a rational line bundle on Z.

Remark 2.4.10. If g 1s an algebraic norm on X and f:¥ — X is a morphism with
proper relative automorphism groups, then the pulled back norm f*g (Proposition
and Definition 2.3.7) 1s algebraic. Indeed, if £, = (—, M) for a rational line bundle
M on Gradg(X), then £ s+, = (—, Gradg(f)*M). We will tacitly use this fact in the

sequel.

2.5 O-STRATIFICATIONS

We now discuss the notion of ®-stratification for algebraic stacks, which is a generali-

sation due to Halpern-Leistner of the Hesselink—Kempf-Kirwan—Ness stratification
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in GIT [55, Chapter 12] and of the stratification by Harder—INarasimhan type for
vector bundles on a curve [10]. We follow [36] with some modifications. We use the
stack Filtg (X) of rational filtrations instead of Filt(X') and we work with a reformu-
lation of the original definition of ®-stratification that is closer to our definition of
sequential stratification (Definition 3.3.1). We will focus on ®-stratifications induced by a
pair (£, q), where g 1s a norm and £ 1s a linear form on graded points of a stack X.

We fix an algebraic stack X over an algebraic space B satisfying Assumption
2.2.3. The following is a variant of [36, Definition 2.1.2].

DEFINITION 2.5.1 (®-stratification). Let I be a partially ordered set. A (weak) ©-
stratification of X indexed by I' 1s a family (S.).er of open substacks of Filtg (X) satis-
fying:
1. Yor every ¢ € I', the composition . — Filtg(X) 2 Xisa locally closed
immersion (resp. locally finite radicial?).
2. The evy(|S.|) are pairwise disjoint and cover | X|.
3. Foreveryc € I, the stratum S, is the preimage along gr: Filtg (X) — Gradg(X)
of an open substack Z, of Gradg(X), called the centre of S.
4. For every ¢ € T, the set [X<c| = U, <. evi(|S¢|) is open in |X|, and it thus
defines an open substack X <. of X.

Remark 2.5.2. If 0: Gradg(X) — Filtg(X) denotes the “split filtration” map, then for
all ¢ € T the centre of 8. is Z, = 67!(S,) and thus it is uniquely determined.

The strata S, in a ®-stratification (S.)cer are locally closed ®-strata in the fol-

lowing sense.

DEFINITION 2.5.3. A locally closed ®-stratum of X 1s an open substack § of Filtg(X)
that is the preimage along gr of an open substack Z of Gradg(X) (its centre) and such

that the composition § — Filtg(X) s Xisa locally closed immersion.

The following explains the relation between our definition of ®-stratification and

Halpern-Leistner’s original one [36, Definition 2.1.2].

PROPOSITION 2.5.4. Let I be a totally ordered set. Let (S¢)cer be a (weak) O-stratification of
X. If each stratum S, is contained in the closed and open substack Filt(X) C Filtg(X) of integral
Siltrations, then (S¢)cer and (X <¢)cer define a (weak) O-stratification in the sense of /36, Definition
2.1.2]. Conversely, any (weak) O-stratification in the sense of |36, Definition 2.1.2] defines a (weak)
O-stratification.

?We say that a morphism ¥ — Z is locally finite radicial if it factors as ¥ — U — Z with ¥ — U
finite and radicial and U — Z an open immersion.
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Proof. Let (S¢)cer be a (weak) ®-stratification of X in the sense of Definition 2.5.1. It
1s enough to show that each §,. i1s a (weak) ®-stratum of X, [36, Definition 2.1.1],
that 1s
1. Each §, — Filtg(X) factors through Filtg(X<.) and S, — Filtg(X<.) 1s an
open and closed immersion.
2. The composition §, — Filtg(X<.) - X<, 1s a closed immersion (resp. finite
and radicial).
Then the conditions in [36, Definition 2.1.2] are trivially satisfied by construction.
Note that Halpern-Leistner also demands the S, to be integral and I' to be a total
order.

We have a diagram

Z, — Gradg(X) — X

Se — Filtgp(X) —— X
and S, — X factors through X .. Therefore Z, — X also factors through X, and

thus Z, C Gradg(X<.) since the formation of Gradg 1s compatible with immersions.

Since the natural square

Filtg(X<.) —— Filtg(X)

l lgf
Gradg(X<.) —— Gradg(X)
is cartesian [36, Proposition 1.3.1 (3)] and S, = gr '(Z.), we have S. C Filtg(X<.).

Now the composition §, — Filtg(X<.) — X< is a locally closed immersion
(resp. locally finite radicial) and has closed image. It is thus a closed immersion (resp.
finite and radicial). Since Filtg(X<.) = X<, 1s representable and separated, the map
S — Filtg(X<.) 1s also a closed immersion (resp. finite and radicial). Since §, —
Filtg(X <) 1s also an open immersion, it has to be an open and closed immersion.

For the converse, if (S¢)cer and (X<¢)cer define a ®-stratification in the sense
of [36, Definition 2.1.1], just note that §, — Filtg(X<.) being an open and closed
immersion implies that §. = gr™!(Z,) for some Z. C Gradg(X<.) open and closed,
because Filtg(X<.) and Gradg(X<.) have the same connected components [36,
Lemma 1.3.8]. The other conditions of Definition 2.5.1 are readily seen to be satis-

fied. ]

Remark 2.5.5. If each S, intersects only a finite number of connected components of

Filtg(X), then it becomes integral after scaling up, that 1s, after replacing §. by its
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image under the “rising to the nth power” map Filtg (X) — Filtg(X) for big enough
n. After suitably subdividing each §., the condition 1s always satisfied.

A O-stratification of X assigns, for each geometric point x of X, a canonical

rational filtration of x:

DEFINITION 2.5.6 (HN filtrations, [36, Lemma 2.1.4]). Consider a ®-stratification
(Sc)cer of X, and let x:Spec(k) — X be a field-valued point. There is a unique
¢ € I' such that the image of S, — X contains the point of |X| defined by x; and
there 1s a unique, up to unique isomorphism, lift of x to ., which gives a filtration
A € Q-Filt(X, x) called the Harder—Narasimhan filtration (or the HN filtration) of x.

Remark 2.5.7. In the case of a weak ©-stratification, the HN filtration of a k-point is
defined over a finite purely inseparable extension of k. We will only use the case of

O-stratifications.

The following is a reformulation of [36, Definition 2.3.1], convenient for our

purposes.

PROPOSITION AND DEFINITION 2.5.8 (Induced ®-stratifications). Let X’ be an alge-
braic stack over an algebraic space B, satisfying Assumption 2.2.3, and let 4: X' — X
be either a closed immersion or a base change of a map between algebraic spaces like
in Proposition 2.2.14. Let (S;)cer be a (weak) ®-stratification of X. For each ¢ € T’
let h*$, be the pullback

Filtg(X") — Filtg(X).

Then the family (h*S.)cer 1s a (weak) ®-stratification of X’ called the ®-stratification
induced by h and (S;)cer.

Proof. 'This is the content of [36, Lemmas 2.3.2 and 2.3.3] in the case of integral

filtration, from which the case of rational filtrations follows easily. [l

Now we fix a rational quadratic norm ¢ and a rational linear form £ on graded
points of X. We regard ¢ and ¢ as maps |Gradg(X)| — Q by Remarks 2.3.5
and 2.4.2. Moreover, g and £ induce functions on |Filtg (X)| by precomposing along
lgr| : |Filtg(X)| — |Gradg(X)| that we will still denote ¢ and ¢.

The norm g and the linear form £ give rise to two other interesting functions.
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DEFINITION 2.5.9 (Associated numerical invariant [36, 4.1.1 and 4.1.14]). We define
the numerical invariant . associated to ¢ and £ to be the function p: |Gradg(X)| — R
such that
1. on the open and closed substack 0: X — Gradg(X) defined by the “trivial
grading” map, pu takes the value 0; and

14
2. on |Gradg(X)]| \ | X], we set u = —.
* NG
We extend p to a function on |Filtg (X)| by taking the composition
|Filtg (X)) LN |Gradg(X)| —— R,

which we will still denote pu.

DEFINITION 2.5.10 (Stability function [36, 4.1.1]). The stability function M*:|X| —
[0, oo] associated to p is defined by

M"(x) == sup{u(d) | A € |Filtp(X)], evi(A) = x}.
Remark 2.5.11. In [36], the stack Grad(X) is used instead of Gradg(X). This is not

an important difference because the numerical invariant p is scale-invariant.

DEFINITION 2.5.12 (Semistable locus). The semistable locus | X*| with respect to the

linear form £ on X is the subset
{x € |X|| £(A) <0, forall A € |Filtg(X)| with evy(X) = x} C |X].

If the semistable locus |X*| 1s open, then it defines an open substack of X denoted
X,

Remark 2.5.13. If k is a field and x:Speck — X is a point, to see whether x is
semistable it suffices to check that £(1) < 0 for A € Q-Filt(X, x|g). This follows
from Filtg(X) — X being representable and locally of finite presentation and £ be-
ing locally constant on Filtg (X).

DEFINITION 2.5.14 (O-stratification defined by a linear form and a norm). We say
that the pair (€, q) defines a (weak) ©-stratification if the following holds:
1. The semistable locus |X*| C |X| 1s open. If s: X — Filtg(X) 1s the “trivial
filtration”, which 1s an open and closed immersion, we denote $o = 5(X*), an
open substack of Filtg (X) isomorphic to X*.
2. For all ¢ € Q-y, the subset [$.]| := {A € |Filtg(X)|| (A,£) = 1and u(A) =
M*(evi(L)) = /c} of |Filtg(X)] is open, and thus it defines an open substack
S¢ of Filtg (X).
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3. The family (S¢)ceq-, is a (weak) O-stratification of X indexed by Qx, referred
to as the ®-stratification induced by (€, q).

Remark 2.5.15. It (£, q) defines a ®-stratification, then for all ¢ € Q5o we have the
equality |X<.| = {x € |X]|| M*(x) < /c} of |X], using the notation of Defini-
tion 2.5.1. In particular X* = X-o, and note as well that the centre Z, of the

minimal stratum 8§y = X* is canonically isomorphic to X*.

Remark 2.5.16. In Halpern-Leistner’s definition, the stack Filt(X) is used instead of
Filtg(X). This is not an important difference, as we now explain. In [36, Defini-
tion 4.1.3], the ®-stratification depends, in principle, on the choice of a complete
set of representatives for 7o (Filt(X))/N*, although two different choices give rise to
isomorphic locally closed ®-strata. Since mp(Filtg(X))/N* = mo(Filt(X))/N*, and
since two connected components a and b of Filtg(X) and Filt(X) respectively that
represent the same class are isomorphic via the action of N*, we can instead take a
complete set of representatives in mo(Filtg(X)). We are using canonical set of rep-
resentatives for the unstable strata, namely the components of Filtg(X) on which ¢
takes the value 1. This observation, together with Proposition 2.5.4, implies that the
pair (£, g) defines a ®-stratification in the sense of [36, Definition 4.1.3] if and only
if it does so in the sense above, and that in that case the locally closed ®-strata that
we get are isomorphic to Halpern-Leistner’s. However, Definition 2.5.14 has the
advantage that it does not depend on noncanonical choices. Moreover, for Conjec-
ture 1.7.1 it 1s important to take the canonical choice of HN filtration and not just

consider it up to scaling,

Remark 2.5.17 (Conventions on HN filtrations). Suppose that (¢, g) define a ®-strati-
fication of X. For a filtration A € Filtg (X)(k), where k 1s some field, we denote

A= { Al
A, Al =o0.

We have A = A. Since Q> acts on Filtg(X), by open and closed immersion, the
assignment A X gives an involution u: Filtg(X) — Filtg(X) commuting with
evy: Filtg(X) — X. Denoting S = ((S,) for ¢ € Qso, we have that (EC)C%O
defines a ®-stratification, that we call the ®-stratification associated to (£, ¢) with di-
rect convention, while we refer to the ®-stratification (S¢)ce@., In Definition 2.5.14 as
the one with mverse convention. Unless otherwise stated, we will use the inverse conven-

tion in this thesis for ®-stratifications induced by a linear form and a norm on graded
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points.

Remark 2.5.18 (Characterisation of the HN filtration). It follows from the definitions
that, if (£, ¢) defines a ®-stratification on X, then the HN filtration with inverse con-
vention (or simply wmwverse HN filtration) of a field-valued unstable point x € X (k) 1s the
unique A € Q-Filt(X, x) such that (A,£) > 1 (equivalently, (A,£) = 1) and for all
y € Q-Filt (X, x[f) such that (y, £) > 1 we have [|A[|* < [|y|*.

The HN filtration of x with direct convention (or simply direct HN filtration) 1s the
unique n € Q - Filt(X, x) such that (1, £) > |n]|? (equivalently, (n, £) = ||n||*) and such
thatforall y € Q- Filt (X, x|g) with (y, £) > ||y||* we have [|y||* < ||n]|>. It can also be
characterised as the unique element of Q - Filt(X, x) (equivalently, of Q - Filt (X, xg))

maximising the function
1
y = (0 =Sy
(see [38]). Note that, contrary to the case of the inverse HN filtration, this char-

acterisation of the direct HN filtration treats semistable points and unstable points

uniformly.

PROPOSITION 2.5.19 (Compatibility with pullback). Let X' be an algebraic stack over an
algebraic space B, satisfying Assumption 2.2.5, and let h: X' — X be either a closed immersion or a
base change of a map between algebraic spaces like in Proposition 2.2.14. Suppose that the pair (£, q)
defines a O-stratification (S¢)ceso. Then (h*L, h*q) defines a O-stratification of X', equal to the
induced stratification (h*S.)ceq-, of Proposition and Definition 2.5.6.

Proof. The claim follows at once from the observation that, for every field k and point
x € X'(k), the induced map Q - Filt(X’, x) — Q-Filt(X, h(x)) is a bijection, com-
patible with the values of (¢, ) and (h*¢, h*q). [

2.6 O-STRATIFICATIONS FOR STACKS PROPER OVER A NORMED
GOOD MODULI STACK

We now get to the main result (Theorem 2.6.4) about existence and properties of
O-stratifications that we will use. It is an extension of [36, Theorem 5.6.1] where we
also establish existence of good moduli spaces for the centres of the strata, along with
other improvements. We first introduce the notion of positive linear form on graded points,
a slight variant of [36, Definition 5.3.1].

DEFINITION 2.6.1 (Positive linear form). Let X and ¥ be algebraic stacks over an
algebraic space B, satisfying Assumption 2.2.3. Let f:¥ — X be a proper repre-
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sentable morphism and let £ be a linear form on graded points of ¥. We say that £ is
[ -positve provided that for all fields k and all diagrams

P! /Gpy —— Y

| lf 2.3)

BGpi — X

such that the induced map ]P’kl/(Gm,k — BG, 1 X x Y 1s finite, where the action of G,
on PP} is given by t[a, b] = [ta,b] in projective coordinates and we denote 0 = [0, 1]

and oo = [1, 0], we have

L@l10y/Gps) < UPli0o/Gps)-

Remark 2.6.2. Note that if a square (2.3) satisfying that P} /G — BGui Xx Y is
finite exists, then the graded point BG,, x — X is nondegenerate.

Example 2.6.3. If £ is a rational line bundle on ¥ that is f-ample and { = (—, £),
then £ is f-positive. Indeed, for all commutative diagrams as in Definition 2.6.1,
the pullback ¢*&£ 1s ample relative to IF’kl/ Gmx — BGy,k, and the claim follows
after embedding P/ in a bigger projective space and looking at the weights of the

corresponding G,, x-representation.

THEOREM 2.6.4. Let X be a noetherian algebraic stack with affine diagonal and a good moduli
space w2 X — X, endowed with a norm on graded points q. Let f:Y — X be a proper representable
morphism and let £ be an f -positive linear form on graded points of Y. Then

1. The pair (£, f*q) defines a O-stratification (S¢)ceq-, of Y.

2. For every ¢ € Qxo, the centre Z. has a good moduli space Z, — Z.. We denote ¥ = Z
and Y* = Z.

3. For ¢ € Qxq, let X be the union of connected components of Gradg(X) wntersecting the
image of Z. — Gradg(Y) — Gradg(X). Then X. is quasi-compact and has a good
moduli space X — X,.

4. For every ¢ € Qxo, the induced map Z. — X, is proper

5. If & = (—, &) for an f-ample rational line bundle £ on Y, then Y — X s projectie. If in
addition the norm on graded points q 1s algebraic (Definition 2.4.9), then for all ¢ € Qs the
map Z. — X, 1s projective.

Remark 2.6.5. The fact that we get a ©-stratification instead of a weak ®-stratification
implies in particular rationality of HN filtrations. This comes at the expense of de-
manding X to have a good moduli space instead of an adequate moduli space [3],

which is the less restrictive notion in positive characteristic.
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Remark 2.6.6. The proof of Theorem 2.6.4 expresses Z, — X, explicitly as Proj of a
graded algebra on X..

Remark 2.6.7. Let k be an algebraically closed field and let G be a smooth linearly re-
ductive algebraic group over k. Then every norm on cocharacters of BG 1s algebraic
by [28, Proposition 2]. In particular, if X 1s of the form X = U/G for a separated
noectherian algebraic space U endowed with a G-action and if the norm g on X is

induced by a norm on BG, then ¢ is algebraic.

Example 2.6.8. Let X be as in the statement of the theorem, and let f: ¥ — X be
the blow-up of X along a closed substack Z. Let & = f~!1(Z) be the exceptional
divisor. The ideal sheat Oy(—E&) of the exceptional divisor is f-ample. Therefore we
may apply the theorem with £ = (—, Oy(—&)) to get a O-stratification of ¥. In this
case, the semistable locus ¥* is the saturated blow-up of X along Z [27, Definition 3.2],
by [27, Proposition 3.17] and [36, Theorem 5.6.1, (2)].

More generally, if f is projective and £ = (—, £), with £ an f-ample line bundle.
Then ¥* is the saturated Proj [27, Definition 3.1], ¥* = Projy (B,en f+(£2")).

Proof of Theorem 2.6.4. Note that X satisfies Assumption 2.2.3 with B = X (Exam-
ple 2.2.4). Let u denote the numerical invariant defined by (¢, f*g).

Step 1. The numerical invariant [ is strictly ®-monotone over X [36, Definition 5.2.1] and strictly
S-monotone [36, Definition 5.5.7] over X.

We first recall the definitions of ®-monotonicity and S-monotonicity. Let R
be a discrete valuation ring over X with uniformiser 7, residue field k and field of
fractions K. Let STg = Spec(R[s,t]/(st — m))/G,,, where s has weight 1 and ¢ has
weight —1 [8, Section 3.5.1]. Let V be the stack @ (resp. the stack STg), and let
V' =V \{(0,0)}. The numerical invariant u is said to be strictly ®-monotone (resp.
strictly S-monotone) if, for every such DVR R and for every morphism v: V' — ¥

such that v|gg,, x 1s nondegenerate and p(v|gg,, x) > 0, there exists a diagram

ﬂ:y

satistying the following properties:
1. The algebraic stack W is reduced and irreducible, the morphism v has quasi-
finite relative inertia, and the morphism p 1s proper, relatively representable by

Deligne—Mumford stacks and it is an isomorphism over V.
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2. For any commutative square

P! /G —— W

l lp (2.4)

BGm’k L) 1%

such that the induced map ]P’kl/Gm,k — BG, x xy W is finite and g is a pos-
itive multiple of the canonical graded point {(0,0)}/G,,x — V, we have the
inequality

1@ © @l03/G, 1) < (T © @lo0}/Gy i)- (2.5)

We follow the argument in the proof of [36, Proposition 5.3.3]. Suppose given a

morphism v: V' — ¥Y. Since it has a good moduli space, the stack X is ®-reductive [8,

Definition 3.10] and S-complete [8, Definition 3.38] by [8, Theorem 5.4]. This

means that any morphism V' — X extends uniquely to a morphism V — X. There-

fore the morphism f o v: V' — X extends to a map u:V — X. Let ‘W be the
schematic image of V' inside the pullback V x, x, s ¥. We have a diagram

W —>Y
Ll
Ve >V X

v
\
u

and we want to show that the two conditions above are satisfied. The first condition
follows trivially by construction. To check the second, suppose given a commutative
square (2.4) as in the statement of the second condition. Since [V o ¢l0y/G,. || =
[V © @|{00}/Gum « I, the norm being induced from X, the inequality (2.5) is equivalent
to
£ 0 ¢l10y/G i) < £V 0 Plioo}/Gpu)-

The map P} /G x — BGpy i xx ¥ is also finite, so the inequality follows from £ being
[ -positive.
Step 2. The pair (£, f*q) defines a weak O-stratification.

Since ¥ is quasi-compact, the numerical invariant pu trivially satisfies the HN-
boundedness property, defined in [36, Proposition 4.4.2]. Therefore (£, f*q) defines

a weak O-stratification if u is strictly ®-monotone [36, Theorem 5.2.3]. Thus the

claim follows from Step 1.

Step 3. The weak O-stratification defined by (£, f*q) is a O-stratification.
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Checking that a finite morphism U — V is a closed immersion can be done
after base change along all geometric points Speck — V. Since the stratification
is preserved by base change along any map X’ — X Proposition 2.5.19, we may
assume that X = Speck is the spectrum of an algebraically closed field. If Spec k is of
characteristic 0, then the weak ®-stratification 1s a ®-stratification by [36, Theorem
5.6.1]. Suppose k is of positive characteristic p. The stack X 1s of the form X =
Spec A/ G, where G is a linearly reductive group over k, by 2.1.5. Therefore we
have ¥ = Y/G, where Y — Spec A is G-equivariant and projective. By Nagata’s
Theorem [24, Chapter IV, Section 3, Theorem 3.6], the identity component G° 1s a
group of multiplicative type and p does not divide the order of G/G°. By [36, Lemma
2.1.7, (2)] it is enough to prove that for any ¢ € Q¢ and for any k-point A of ., the
induced map ¢: Lie(Auts, (1)) — Lie(Auty(ev;(A)) on Lie algebras is surjective. The
filtration A is contained in some open substack of Filtg (Y) of the form Y**/P(y) for
some one-parameter subgroup y of G, by [36, Theorem 1.4.8], and it corresponds to
a point z € Yt (k). Thus Auts, (1) = Stabp(,)(z), while Autx(ev;(1)) = Stabg(2).
Both groups have the same identity component, equal to Stabge(z)°, since G° 1s

contained in P(A). Thus the map ¢ on Lie algebras is actually an isomorphism.
Step 4. The semustable locus ¥ has a good moduli space ¥* — Y* and Y* — X is separated.

By [8, Theorem 5.4], X 1s ®-reductive and S-complete. Therefore p is strictly
®-monotone and strictly S-monotone over X by Step 1. By [36, Theorem 5.5.8], the
semistable locus ¥* is ®-reductive and S-complete over X. Therefore it is enough
to show, by [8, Theorem 5.4], that the stabiliser of every closed point of ¥* is lin-
early reductive. Let k be an algebraically closed field and let x € ¥*(k) be a closed
point. By [8, Proposition 3.47], the automorphism group Aut(x) is geometrically
reductive. If the characteristic of k is 0, then Aut(x) is also linearly reductive. If k
1s of positive characteristic p, then f(x) specialises to a k-point y closed in the fibre
of m: X — X, whose stabiliser Aut(y) is thus linearly reductive. By Nagata’s Theo-
rem [24, Chapter IV, Section 3, Theorem 3.6], the identity component Aut(y)° is
a group of multiplicative type and p does not divide the order of Aut(y)/ Aut(y)°.
Since Aut(x) is a subgroup of Aut(y), the same holds for Aut(x) and it is thus linearly

reductive.
Step 5. The map Y — X s proper.

Since ¥ — X is proper and X — X is universally closed [2, Theorem 4.16], we
have that ¥ — X is universally closed. Now the Semistable Reduction Theorem [8,
Corollary 6.12] implies that ¥* — X i1s also universally closed. Therefore Y* — X
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is universally closed. Since it is also separated, by Step 4, and of finite type, because

f and = are, it is proper.
Step 6. The map Y — X s projective if £ = (—, £) for a rational line bundle £.

We may scale &£ up to assume that it is a line bundle, since this does not change
the semistable locus. Then we have, by [36, Theorem 5.6.1, (3), (b)], that

Y = Projy (e fu(@nen 227)) .

Step 7. For all ¢ € Qxo, the stack X is quasi-compact and has a good moduli space Xe — X..

Since Z. is quasi-compact, and because of the existence of a norm on graded
points on X, we have by [36, Proposition 3.8.2] that X, is quasi-compact. The claim
follows from Lemma 2.6.10.

Step 8. The centres Z. have good moduli spaces Z, — Z for all ¢ € Q¢so and Z. — X is
proper.
For ¢ = 0, the claim is the content of Step 4 and Step 5. If ¢ € Q, let Z, be the

union of those connected components of Gradg(¥) intersecting Z.. Again, because
of the existence of a norm on graded points on X and ¥, we have by [36, Proposition
3.8.2] that Z. is quasi-compact. Let f: Z. — X. be the restriction of Gradg(f) to
Z. and X.. By Proposition 2.2.16, the map £, is representable and proper.
Letus denote £|z the pullback of the linear form £ on ¥ along Z. — Gradg(¥Y) —

Y. We denote £ £+, the linear form on Gradg (¥) induced by the norm f*¢ on ¥ (Def-
inition 2.4.7), and £ y+4|z  its restriction to Z.. Note that Lreglz, = (Jo)* (Lglx.) 18
the pullback of the linear form £, |x,. on X.. We will consider the skifled linear form

be =Ltz —clrylz, (2.6)
on Z.. We will use the following result, whose proof can be found in [38].

THEOREM 2.6.9 (Linear Recognition Theorem). The centre Z is the semistable locus inside
Z. with respect to the shified linear form L. on Z..

Therefore, we have a representable proper morphism f;: Z. — X, and a linear
form £, and a norm on graded points g|x. on X.. By steps 4 and 5 applied to f,
in place of f, it is enough to show that €. 1s f.-positive. For this, suppose given a

commutative square

P! /G —— Z,

L

BG o —— X.
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where the induced IP’k1 /Gmi = BGp i Xx, Z. is finite. We want to show that

Le(@l10y/G i) < Le(Plioo/Gps)-

First, note that

(Lreqlz.) (@l103/Gmi) = La(8) = (Lreqglz.) (©ltc0}/Gomr)-

On the other hand, the map Ze — X, X Y is proper, since Ze > Xeand Y —> X
are proper; and also affine, since Z, — ¥ and X, — X are affine. Thus the induced

map P} /G, x — BGp i xx ¥ is finite. Therefore we have

Le(Plioo}/Gmr) — Le(@l(03/Goms) =
Uz (0lioo}/Gms) — Lz, (2l103/G i) > O

because £ 13 f-positive.

Step 9. If £ = (—, L) for an f-ample line bundle £ and q s algebraic, then for all ¢ € Qxq the

map Z. — X, is projective.

We begin by showing that the pullback M := (Gradg(¥Y) — ¥Y)* £ is relatively
ample with respect to g = Gradg(f): Gradg(¥) — Gradg(X). For this, we may
assume that £ is a line bundle and we want to show that the canonical map ¥ —
Proj (B, cn &+(M®")) is everywhere defined and an open immersion (although it is
actually an isomorphism by properness of g). This can be checked étale locally on
Gradg(X). Chose a surjective, affine and strongly étale morphism p: Spec A/GL,, —
X (Theorem 2.1.3). Pulling back along p we get a cube

Llicc Y*°/L(2) i > LLyec(Spec M/ LX)
Ja/ ‘ —d - l
Gradg(¥) l > Gradg(X)

Y/GL, \‘L > Spec A/GL,
Yy / ; /

where we are using [36, Theorem 1.4.7] for the description of the stack of graded

points of a quotient stack. Here, Y 1s a scheme acted on by GL, with an equivariant
map into Spec A. We are denoting C = I'Z(T)/ W, where T is the standard maximal
torus of GL,, and W is the Weyl group. For A € T'%(T), Y*° and (Spec A)*° denote
the fixed point loci by the cocharacter A, and L(A) is the centraliser of A in GL,.
The arrow d 1s an étale cover of Gradg(X). Thus we want to show that a* M 1s

ample relative to b. In fact, since the (Spec A)** are affine, it is enough to show that
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a* M|yx.o is ample on the scheme Y*°. Now, a*M|yr.0 = (£|y) |y».0, the line bundle
£|y is ample and Y*° — Y is affine, so a*:M|ya.0 is ample too. This shows that M
is relatively g-ample. In particular, if we let M. = M|z , then M, is relatively ample
with respect to fe.

Since g is algebraic, the linear form £ s+4|z_1s induced by a rational line bundle
of the form f*N, where N is a rational line bundle on X.. Thus £, is induced by
the rational line bundle M, — cf. N, which is relatively f.-ample because M, is.

Therefore the claim follows from Step 6 applied to f. in place of f. [
In the proof we used the following lemmas.

LEMMA 2.6.10. Let X be a noetherian algebraic stack with affine diagonal and a good moduli space
w: X — X. For every quasi-compact open and closed substack Z of Gradg (X), the composition

Z — Gradg(X) > X
is affine. In particular, Z has a good moduli space Z which is affine over X .

Proof. Let Spec A/GL, — X be affine, surjective and strongly étale (Theorem 2.1.3).

We have a cartesian diagram

Gradg(Spec 4/GL,) —— Gradg(X)

Spec A/GL, > X

and Gradg(Spec 4/GL,,) is a disjoint union of schemes of the form Spec(4)*:°/L(})
with A a rational cocharacter of GL,,. We conclude by Lemma 2.6.11 and descent.

]

LEMMA 2.6.11. Let A be a commutative ring, and consider an action of GLy on X = Spec A
(over Z) such that X / GLy has a good moduli space. Let A: G, — GLy be a cocharacter. 'Then the
natural map X*°/ L(A) — X /GLy is affine, where X*+° is the fixed point locus of the G, -action
on X induced by A and L(A) is the centraliser of M.

Proof. There is a cartesian square

GLy xtW x40y x
|- |
X*0/L(A) —— X/GLy

where GLy x*® X0 i5 the stack quotient of GLy x X*° by the diagonal action of
L(}). Since the action is free, GLy xX® X% is an algebraic space. Now, L(1) is
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isomorphic to a product of GLy, ’s and it is thus geometrically reductive [3, Definition
9.1.1]. Since GLy x X*° = Spec B is affine, the L(A)-invariants give an adequate
moduli space GLy xI® X*0 — Spec (BE®W) [3, Theorem 9.1.4]. By universality
for adequate moduli spaces [7, Theorem 3.12], we get an isomorphism GLy xt®
X409 = Spec BEW, Therefore GLy xE® X*:0 i5 affine and we are done by descent.

]

Remark 2.6.12. Since L(A) is geometrically reductive and X*° is affine, taking L(1)-
invariants gives an adequate moduli space for X*°/L(1). However, unless 4 is of
characteristic 0, an extra argument is needed to show that the adequate moduli space

1s indeed a good moduli space.

2.7 FORMAL FANS AND THE DEGENERATION FAN

The set Z - Filt(X, x) of filtrations of a point x in an algebraic stack X can be en-
dowed with some extra structure closely related both to fans in toric geometry and
to spherical buildings of reductive groups. This extra structure can be encapsulated
using Halpern-Leistner’s combinatorial notion of formal fan [36, Definition 3.1.1],
yielding the degeneration fan DF (X, x)e [36, Definition 3.2.2]. We recall these notions
here, with slightly modified conventions. We then study some special properties of the
degeneration fan in the case when X has a good moduli space. In Chapter 6, we will
define the degeneration fan DF (L) of an artinian lattice L, in analogy with DF(X, x).. The
degeneration fan DF(X, x), can detect whether x 1s polystable (Proposition 2.7.14),
while DF(L), can detect whether L is complemented (Proposition 6.5.34). This will
be used in the proof of the comparison between the iterated balanced filtration and
the iterated HKKP filtration (Theorem 7.5.9).

DEFINITION 2.7.1 (Category of cones). Let A be a subring of R, endowed with the
inherited order. We let Cone, be the subcategory of the category of A-modules
whose objects are the finite free A-modules A”, withn € N, and where a map ¢: A" —
A™ 1s a homomorphism such that ¢ (A'éo) C AZ,. We denote Cone := Conez.
It 1s naturally a subcategory of Coneg consisting of maps ¢: Q" — Q™ such that
e(Z") CczZ™.

DEFINITION 2.7.2 (Formal fan). An A-linear formal fan F, is a functor F,: Cone’; —
Set.

If F, is an A-linear formal fan, we denote F,, = F(A"). A Z-linear formal fan

will simply be called a formal fan, while by rational formal fan we mean a Q-linear formal
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fan. A-linear formal fans form a category, the corresponding functor category.

Remark 2.7.3. Note that in [36, Definition 3.1.1] a different category of cones is used
where A = Z always and only injective homomorphisms ¢: Z" — Z™ are considered.

This yields a slightly different category of Z-linear formal fans.

If F, 1s a formal fan, then the multiplicative monoid Z- acts on each F, —if
| € Z~, multiplication by / gives a map Z" — Z" in Cone, which in turns gives a
map F, — F,. We can localise this action by setting FnQ = colimyez_, Fy, which is
the set of symbols a/l with a € F, and [ € Z~, and were we identify a/l = a’/l" if
there is m € Z¢ such that ml’a = mla’. Yor a map ¢: Q" — Q" in Coneg, there
exists some k € Z- such that k¢ sends Z™ into Z". We define ¢*: FQ — FQ by the
formula ¢*(a/l) = (kg)*(a)/(kl). This gives a rational formal fan FQ, that we will
refer to as the rational formal_fan associated to F .

The following definition is [36, Definition 3.2.2] with slightly modified conven-
tions (see Remark 2.7.3).

DEFINITION 2.7.4 (Degeneration fan). Let X be an algebraic stack satisfying As-
sumption 2.2.3 and let x € Speck — X be a geometric point. The degeneration fan
DF(X, x). 1s the formal fan given by DF(X, x), = Hom ((@Z, 1), (X, x)), the set of
pointed morphisms from (0%, 1) to (X, x).

In principle, Hom ((8%, 1), (X, x)) is a groupoid, but because X has separated
inertia, it 1s equivalent to a set. Note that we consider all morphisms A: (®7,1) —
(X, x) and not just nondegenerate ones, 1.e. those for which the induced homo-
morphism G, ; — Aut(A(0)) has finite kernel. The associated rational formal fan
DFQ(X, x), will be called the rational degeneration fan of x. The definitions are such that
DF(X,x); = Z-Filt(X, x) and DF?(X,x); = Q-Filt(X, x), and we will use both
notations indistinctively.

For y € DFQ(X,x)n, we denote vy, ..., v,y € DFQ(X,x)l the pullbacks of
y along the maps Z — Z" given by the standard basis of Z". We have the follow-
ing explicit description of the degeneration fan of a quotient stack, extending Re-
mark 2.2.19.

PROPOSITION 2.7.5. Let k be a field, let G be a smooth affine algebraic group over k admutting
a split maximal torus, let X be a separated scheme over k endowed with an action of G and let
X = X/G. Let x € X(k) and let x' € X(k) be a point representing x. For a homomorphism
v: Gy, — G, which is given by commuting cocharacters y1, .. ., Yn, we say that lim yx” exists if

themap G? . — X:t v+ y(t)x' extends to A}, in which case the extension is unique by separatedness
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of X. Then

DF(X.x), = {y:Gp, ; — G| lim yx’ exists}/ ~,
wherey ~ y& ifg € P(y)(k). Here P(y) is the attractor |26, Definition 1.3.2] for the conjugation
action of Gy, on G induced by .

Proof. 'This follows directly from [36, Theorem 1.4.8]. [

PROPOSITION 2.7.6. Let X be an algebraic stack satisfying Assumption 2.2.3, and assume that
X has a good modult space w: X — X. Let x: Spec(k) — X be a geometric point. Then the map
DF(X,x), — DF(X,x)]:y = (v1y, ..., vnY) ts igective for all n € Z~o and a byection for
n = 2. The same holds for DF®(X, x),, — (DF(X, x),)".

Proof- It 1s enough to prove the result for DF(X, x).. Since DF(X, x). only depends
on the fibre of the good moduli space of X containing x, we may assume by Corol-
lary 2.1.5 that X = X/GLn, where X = Spec A is afline. Let x" € X(k) be a point

representing x. By Proposition 2.7.5 we have
DF(X,x), = {y: G, = GLy| lim yx' exists}/ ~ .

Since X is affine, lim yx’ exists if and only if lim y; x” exists for all i. To see this,
we look at the Z"-grading @;ez»A; = A that y induces on A. Let ¢: A — k be the
homomorphism defining x. We have that lim yx’ exists if and only if ¢(4;) = 0 unless
I € Z%,, and that lim y; x" exists if and only if ¢(4;) = 0 unless /; > 0. From this the
statement follows. In particular, we have P(y) = P(y1) N--- N P(yn).

Now suppose that y":G;, , — GLyk 1s such that y; and y; define the same
element of DF(X, x); for each i, that is, there are g; € P(y;) such thaty/ = y#'. The
y; are contained in some maximal torus 7" of P(y). If T is another maximal torus of

1

P(y) containing the y; and g € P(y) is such that gTg™' = T, then, for each i, yf

and y/ are commuting representatives of the same element of DF(X, x)., so y¥ = y/.
Therefore y# = y’. This proves injectivity of DF(X, x), — (DF(X, x)1)".

Now, if a1, a2 € DF(X, x)1, then there 1s a maximal torus of GLy x contained in
P(a1) N P(az) [20, Theorem 10.3.6]. Thus there are two commuting representatives
of @ and &, which gives y € DF(X, x), such that v1y = @3 and v2y = as. L]

For a,b € N, we denote (Z) the homomorphism Z — Z?:1 + (la,1b), which is
a Map in Cone.

DEFINITION 2.7.7 (Sum of two filtrations). Let X be an algebraic stack satisfying

Assumption 2.2.3 and assume that X has a good moduli space. Let x: Spec(k) —
X be a geometric point. For A1,A, € DF(X, x); (resp. DFQ(X,x)l), let y be the
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unique element of DF(X, x), (resp. DFQ(X, X)) such that v;y = Ay and vy = A,.
We define the sum Ay + A, = (i)*y, which is again an element of DF(X, x); (resp.
DF2(X, x)1).

Remark 2.77.8. The sum in DF(X, x); satisfies the following properties:

l. VA, u e DF(X,x)1, A+pu=pn+2,

2. VA e DF(X,x);, A+0=A4,

3. Ya,b € Z>¢p,YA € DF(X,x)1, (a+b)A=ali+ bA.
The same properties hold for the sum in DFQ(X, x)1. Thus we can see DF(X, x)4,
+,0) (resp. (DFQ(X ,X)1,+,0)) as a commutative magma with zero on which Zx,
(resp. Qxo) acts in a compatible way. Note that the addition + on DF(X, x); need

not be associative.

DEFINITION 2.7.9. Let X be a good moduli stack satisfying Assumption 2.2.3 and let
x:Spec(k) — X be a geometric point. We say that yq, ..., y, € DF(X, x); commute if
there 1s y € DF(X, x), such that v;y = y; fori € {1,...,n}. In that case, y is unique
by Proposition 2.7.6 and we denote y = y; B --- B y,.

An apartment of DF (X, x); 1s a subset S C DF(X, x); such that any finite subset
of § commutes and S 1s maximal with this property.

Similar definitions apply to DF?(X, x);.

Remark 2.7.10. Using the language of the proof of Proposition 2.7.6, we have that
if y1.....yn € DF(X,x); are represented by one-parameter subgroups y/: G, x —
GLy then y,..., ¥y, commute if and only if y,...,y, factor through a common
torus (that 1s, if they commute as one-parameter subgroups of GLy k). If T 1s a max-
imal torus of GLyk, then the set St of filtrations y € DF(X, x); that can be repre-
sented by a one-parameter subgroup of 7' is an apartment, and all apartments are of
the form St for some 7. Sum and multiplication of scalars in St coincide with the
corresponding operations in the set I'Z(T') of cocharacters of T. Therefore, the sum
of filtrations inside a given apartment is associative. Thus if yy, ..., y, are filtrations
in the same apartment and ay, ..., a, € Zxo, then the expression a;y; + -+ anyn 1s

unambiguously defined.

From the description of filtrations used in the proof of Proposition 2.7.6, we easily

deduce the following,

PROPOSITION 2.7.11. Let X be a good moduli stack satisfying Assumption 2.2.3 and let x €
X (k) be a geometric point. Let h: Z"™ — Z™ be a map in Cone gwen by a matrix (a;j)1<i<m and

1<j<n
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lety =y, B .- B yy € DF(X, X)m. Then the pullback of y along h 1s

h™y = (Zan%‘) BB (Zain%‘) , [

Remark 2.7.12. From Propositions 2.7.6 and 2.7.11 we see that the degeneration fan
DF(X, x). of a geometric point in a good moduli stack determines and is determined
by the following data:

1. The set DF(X, x); of integral filtrations.

2. The apartments of DF(X, x);.

3. The sum of filtrations in DF(X, x);.

4. The multiplication of scalars a € Z>( in DF(X, x);.

Remark 2.7.13. The degeneration fan DF(X, x). of a geometric point in a good mod-
uli stack 1s analogous to the spherical building of a reductive group G [74]. The
apartments of DF(BG, pt); coincide with the apartments of the spherical building of
G in the sense of Tits. Note however that DF(BG, pt). does not contain the infor-
mation of which are the chambers of the building.

On the other hand, if X is a toric variety for a torus 7" and x is a point in the
open orbit, then DF® (X/T,x)e 1s the fan of X without a choice of embedding into
['Q(T). See [36, Section 3.2.1].

We say that u € DF(X, x); is an opposite of A € DF(X,x); if A + u = 0. An
element A € DF(X, x); may have several opposites (see Remark 6.5.33 and Proposi-
tion 7.1.3).

The degeneration fan encodes geometric information about the stack around a

point. The following proposition is an example of this.

PROPOSITION 2.7.14. Let X be an algebraic stack satisfying Assumption 2.2.5 and assume that
X has a good moduli space w: X — X. Let x: Spec(k) — X be a geometric point. Then x s
polystable (that is, it is closed in the fibre w~ 17t (x)) if and only if every element of DF(X, x); has

an opposite.

Proof. We can write 7' (x) = Spec A/G by Corollary 2.1.5, where G is linearly
reductive and x 1s given by a closed point x” € (Spec A)(k) whose stabiliser is G.

If x 1s closed, then DF(X, x), 1s isomorphic to the degeneration fan of a point
of BG. Every element A of DF(X, x); has thus an opposite, which is given by the
inverse of a cocharacter of G defining A.

If x 1s not closed, then there 1s A € DF(X, x); such that A(0) 1s closed [8, Lemma
3.24]. Choose a representative A’ € I'Z(G) of A such that (1’)! represents an op-
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posite of A. This gives a map u:A; — Spec A corresponding to A’ and a map
v: A} — Spec A corresponding to (A')~!. The two maps glue to give w: P} — Spec A.
The image of w 1s a single point, since the target is affine. Thus A(0) = A(1), a con-
tradiction. ]






CHAPTER 3

SEQUENTIAL STRATIFICATIONS AND THE
ITERATED BALANCED FILTRATION

The goal of this chapter is the construction of the balancing stratification for every noethe-
rian normed good moduli stack X with affine diagonal (Theorem 3.5.2 and Defini-
tion 3.5.3) and derive from it the definition of the iterated balanced filtration of a point
of X (Definition 3.5.8). From this, we define the refined Harder-Narasimhan stratification
induced by a norm and a linear form on a stack by reducing to the centres of the
®-strata (Definition 3.5.10).

We start by defining a first approximation of the iterated balanced filtration,
simply called the balanced filtration (Definition 3.1.6). We then construct a stack of
sequential filtrations Filtge (X) for a stack X, and define a notion of sequential strati-
Sication (Definition 3.3.1), roughly a weak analogue of ®-stratification with the stack
Filtgeo (X) used instead of Filtg(X). For the purpose of using induction in the con-
struction of the balancing stratification, we introduce the concept of central rank of a
stack (Definition 3.4.1) and show that it increases after taking the centre of an unstable
stratum in a blow-up (Lemma 3.4.7). After our main construction (Theorem 3.5.2),
we prove some functorial properties of the balancing stratification (Proposition 3.5.5).
We finish the section with a collection of natural examples of normed good moduli
stacks in moduli theory, including GIT quotients, moduli of Bridgeland semistable

objects and moduli of K-semistable Fano varieties.

3.1 THE BALANCED FILTRATION

Let X be an algebraic stack over an algebraic space B, satistying Assumption 2.2.3.
Let Z — X be a closed substack, let k be a field, let x be a k-point of X and let
A € Q-Filt(X, x) be a rational filtration of x. We would like to formalise the idea of

57
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velocity at which A(¢) tends to Z when ¢ tends to 0. For that, we first write A = y/m
with y € Z - Filt(X, x) an integral filtration and m € Z~,. We then form the pullback

R/Gur — Z
[
AL/Gpy —L— X
of Z — X along y, which is given by a G, x-equivariant closed subscheme R of

A}, thus necessarily of the form R = Spec(k[x]/(x")) for some n € N U {oo}. The
following concept is used by Kempfin [53].

DEFINITION 3.1.1 (Kempf’s intersection number). We define Kempf’s intersection number
(or simply Kempf’s number) to be (A, Z) :==n/m € Qo U {o0}.

The definition does not depend on the presentation A = y/m because if | € Z~.,
then (/y, Z) = In. More generally, the linearity property (cA, Z) = c(A, Z) holds for
all c € Q~9. We have (A, Z) = oo precisely when x is in Z, and (A,2Z) = 0 if and
only if evg(A) is not in Z. If x is not in Z but evo(A) 1s in Z, then (A, Z) is a positive
rational number that can be thought of as the velocity at which A approaches Z.

PROPOSITION 3.1.2. Suppose x s not in Z. Let p:Blg X — X be the blow-up of X along
Z, let £ be the standard p-ample line bundle on Blg X, and let x" € Blg X (k) be the lft of x
o Blz X. Let A" € Q-Filt(Blz X, x") be the unique lift of A to a rational filtration of X', which
exists by Proposition 2.2.20. Then (A', £) = (A, Z).

Proof. By linearity of (—, Z), we may assume that A is integral. By definition, £ is the
ideal sheaf of the exceptional divisor & = p~!(Z). We have a diagram

R/Gp > & > Z

Or —2— Blz X —2— X,
where R = Speck|[x]/(x") for some n € N, the variable x having weight —1. There
is a natural injection £ — Opj, x. Pulling back along A" we get a map (A')*£ —
O, whose image 4 = (x") is the ideal sheaf of R/G,, k. Since there is a surjective
map (A)*£ — 4 and both source and target are line bundles, the map should be
an isomorphism. Thus (A')*£ = 4 = Oe,(—n), where Og,(—n) is the pullback

of Upg,, ,(—n) along the structure map ©r — BGy, x, because x" has weight —n.
Therefore (A, £) = —wt (((k’)*:ﬁ) |BGm.k) =n = (A, Z), as desired. ]
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The following result is a generalisation of Kempf’s Theorem [53, Theorem 3.4]

to stacks with good moduli space. See also [36, Example 5.3.7].

THEOREM 3.1.3 (Kempf). Let X be a noetherian algebraic stack with affine diagonal and a good
moduli space w: X — X. Let k be a field, let Z — X be a closed substack and let x be a k-point
of X \ Z. Then:
1. Thentersection | Z|N }n_ln(x) ‘ is nonemply if and only if there is a filtration A € Z - Filt(X, x)
with evo(A) in Z.
2. Suppose that X is endowed with a norm on graded points. If |Z|N !n_l (x) | # O, then there
s aunique A € Q -Filt(X, x) with (A, Z) > 1 and such that for all y € Q - Filt(X, x|z)
with (y, Z) = 1 we have |A|| < [y |-

Remark 3.1.4. Note that we do not require k to be perfect as in the original Kempf’s
Theorem. This 1s possible because we are working with good moduli spaces instead

of adequate moduli spaces, that are more general in positive characteristic.

Proof. By replacing X by 7~ !'7(x) we may assume that X = Speck. By Corol-
lary 2.1.4, X = Spec A/GL, x, where A 1s a k-algebra of finite type.

We first show Item 1 assuming k is algebraically closed. Suppose Z # @. Since
X has a unique closed point [2, Proposition 9.1], we also have that {x} N |Z]| is
nonempty. By [53, Theorem 1.4], there exists A € Q - Filt(X, x) such thatev; (1) = x
and evp(A) 1s1n Z.

Now we show Item 2 for any k. We are given a norm on graded points on X. Let
x" be a lift of x to the blow-up Blz X. By Theorem 2.6.4 and Example 2.6.8 there
is a O-stratification on Blz X. By Proposition 2.2.20 we have Q-Filt (X, x[) =
Q - Filt (Blz X. x'|g), and by Item 1 in the algebraically closed case and Proposi-
tion 3.1.2 we have that x’ is semistable if and only if |Z| = @. If x’ is unstable, then
its HN filtration is the unique A € Q - Filt(X, x) in Item 2, also by Proposition 3.1.2.

By choosing any norm on cocharacters of GL, x and pulling it back to X, we

see that Item 2 readily implies Item 1 for any k. []

We now shift attention to the case where Z is the locus X™* of maximal di-
mension of stabiliser groups of X, whose definition we recall below. Suppose X is
noetherian with affine diagonal. For each d € N, the set {x € |X|| dim Aut(x) > d}
1s closed [25, Exposé VIb, Proposition 4.1]. Therefore, by quasi-compactness of X,

1t makes sense to define:

DEFINITION 3.1.5 (Maximal stabiliser dimension). Let X be a noetherian algebraic
stack with affine diagonal. The maximal stabiliser dimension d(X) € N of X is the max-
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imal dimension of the stabiliser group of a point of X. For the empty stack we set
d(@) = —o0.

As a topological space, |[X™™| = {x € |X|| dimAut(x) = d(X)}, and it i3
a closed subset of |X|. It 1s a nontrivial result [27, Proposition C.5] that if X is a
noetherian good moduli stack with affine diagonal, then |X™*| can be given a nat-
ural structure of closed substack of X, denoted X™* and called the maximal dimen-
ston stabiliser locus of X. It can be characterised étale locally by the property that, if
X = X/G, where X is an algebraic space and G — SpecZ is an affine flat group
scheme of finite type that is either diagonalisable or a Chevalley group, with fibres of
dimension d(X), then X™ = XG° /G, where G, is the reduced identity component
of G [27, Section C.2]. In general, the functorial definition of X™* is as follows. A
map f: T — X factors through X™* if and only if the pullback f*dx of the inertia
of X has a smooth closed subgroup all whose fibres are connected and of dimension
d(Xx).

One reason why Edidin—Rydh’s stack structure on X™** is better behaved than
the reduced structure is that it behaves well with respect to base change. If ¥ — X is
a closed immersion and d(¥) = d(X), then ¥ = ¥ x X™*. Similarly, if ¥ has a
good moduli space, ¥ — X is representable, étale and separated, and d(¥) = d(X),
then Y™™ = Y x o XM, See [27, Proposition C.5]. We get to the main definition of

this section.

DEFINITION 3.1.6 (The balanced filtration). Let X be a normed noetherian algebraic
stack with affine diagonal and a good moduli space 7: X — X. Let x: Speck — X be
a field-valued point and denote ¥ = 7' (x). We define the balanced filtration Ay,(x)
of x to be the unique element A of Q - Filt(X, x) satisfying (A, F™*) > 1 and such
that for all filtrations y € Q - Filt(X, x|¢) with (y, ™) > 1 we have [|A| < ||y||.

Note that we have an identification Q - Filt(X, x) = Q - Filt(¥, x) and that exis-
tence and uniqueness of the balanced filtration is guaranteed by Theorem 3.1.3. The
balanced filtration of x is 0 precisely when x is closed in ¥ or, equivalently, when x
lies in & ™4,

In the case where d(¥) = d(X), from the fact that X™* N ¥ = F™* it fol-
lows that (A, ™) = (A, X™*). By Proposition 3.1.2, if x is not in X™** then the
balanced filtration of x coincides with the inverse HN filtration of x in the blow-up
Blymax X. We have a ®-stratification (S.)ceq-, of Blyms X by type of inverse HN fil-
tration (Theorem 2.6.4), and thus a stratification of X where the strata are X™** and

the S \ & with ¢ > 0, where & 1s the exceptional divisor. This can be seen as a strati-
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fication of X by type of balanced filtration. Our goal is to refine this stratification by
iterating the blowing-up process from the centres Z. of the strata S, (Theorem 3.5.2).
The iterated strata will naturally live inside a stack of sequential filtrations, defined
in the following section.

We finish this section with a useful technical fact that we will need later. We
thank Daniel Halpern-Leistner for pointing out that Kempf’s theorem can be used

to prove it.

PROPOSITION 3.1.7. Let k be an algebraically closed field, let G be a linearly reductive algebraic
group over k and let X = Spec A be an affine scheme of finite type over k, endowed with an action of
G. Suppose that there is a point xo € X (k) fixed by G and that the map X /G — Speck s a good
moduli space. Then the maps

1o(Grad(X/G)) — mo(Grad(BG))

and
79(Gradg(X/G)) — mo(Gradg(BG))

induced by X/ G — BG are byective. In particular; every norm on graded points of X /G 1s the
pullback along X /G — BG of a unique norm on graded points of BG.

Proof. 'The morphism BG,.q — BG is finite and a universal homeomorphism so,
by [36, Proposition 1.3.2], the induced map Filt(X/G,.q) — Filt(X/G) 1s a uni-
versal homeomorphism too. Since gr: Filt(X/G) — Grad(X/G) induces a bijec-
tion on connected components [36, Lemma 1.3.8], and similarly for X/Gq, we
have that 7o(Grad(X/Geq)) = mo(Grad(X/G)) is a bijection. As a particular case,
70(Grad(BG,eq)) — mo(Grad(BG)) is a bijection. Therefore, we may replace G by
G.cq and assume that G 1s smooth.

It is enough to prove the claim for Grad. By Example 2.2.13, the statement is
equivalent to the fixed point locus X% being connected for every a: G,, x — G. Let
y € X*°(k) be a point different from x¢ and let A € I'®(G) be a representative of
the balanced filtration of y in X/G for some choice of norm on graded points of G.
For every t € G, (k), the conjugate cocharacter A*® is also a representative of the
balanced filtration of y. Therefore A and A*® are conjugate inside P(4) and, since
this holds for all t € G, x(k), we have that @ factors through P(4). If T} and T, are
maximal tori inside P(A) containing @ and A respectively, there is g € P(4)(k) such
that gT,g~! = Ty. Then a and A8 commute, so the morphism A' — X:¢ > A8(r)y
(extended by taking the limit when 7 tends to 0) factors through X*° and connects y
and xg. []
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3.2 STACKS OF SEQUENTIAL FILTRATIONS

The main goal of this section 1s to define a stack Filtgee (X) of Q*°-filtrations (or sequential

[iltrations) for a suitable algebraic stack X. Here, the symbol Q% denotes the direct
sum Q®N of countably many copies of Q with lexicographic order. We start with a
simpler version of the stack Filtgeo (X).

DEFINITION 3.2.1 (Stack of Qf_-filtrations). Let X be an algebraic stack over an al-
gebraic space B, satisfying Assumption 2.2.3. We define the stack Filtgz (X) of Q"-
Siltrations of X with lexicographic order to be the limit of the diagram

Filtg (X) Flth Gradg(X) Filtg Gradg, LX)
Gradg(X) GradZ 0(X) Gradg H(X).

Thus Filtgy (X) 1s just the fibre product

Filtg (X X Filtg Gradg (X X X Filtg Grad’ 1(X).
al )Grad@(X) Q ol )Gradé(X) Gradgy (%) e Q (%)

We define, for each n € Z-, a map Filtgy (X) — Fith{«+1 (X) by

Fﬂt@ﬁx (X) Fﬂt@ﬁj 1(X)

| [
Filtgy (X) XGraaz ) Gradg(X) —=% Filtgr (X) Xgrad, ) Filtg Gradgy (X),

where 0: Gradg (X) — Filtg Gradg (X) is the “trivial filtration” map. If X satisfies
Assumption 2.2.3, then so does Gradg o(X), so by [36, Proposition 1.3.9] and the
argument in [36, Proposition 1.3.11], the morphism o is an open and closed immer-
sion. Thus each of the maps Filtgr (X) — FﬂtQﬁ)—J—l (X) 1s an open immersion. We
also have morphisms Gradg (X) — Gradg Gradg (X) = Gradn+1(X) given by the

“trivial grading” maps, that are also open and closed immersions.

DEFINITION 3.2.2 (Stack of sequential filtrations). Let X be an algebraic stack over
an algebraic space B, satisfying Assumption 2.2.3. We define the stack Filtge (X) of
Q> -filtrations (or sequential filtrations) of X as the colimit

Fﬂtho (X) = COlimn€Z>0 FlthﬁX(X)

in the 2-category Stg,,r of stacks for the fppf site of schemes. Similarly, we define the
stack Gradge (X) of Q*°-graded points of X as

Gradge(X) = colim,ez., Gradg (X).
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As a direct application of Lemma 2.2.10, we get:

PROPOSITION 3.2.3. Let X be an algebraic stack over an algebraic space B, satisfying Assumption
2.2.3. Then the stacks Filtgeo (X)) and Gradgee(X) are algebraic, naturally defined over B, and
also satisfy Assumption 2.2.3. ]

Remark 3.2.4. Here we are regarding Q> as having lexicographic order. It would be
more precise to use the notation Filtgee (X) for what we called Filtge (X), to distin-
guish it from a stack of Q*-filtrations with product order, which can also be defined.

Since we will not use such a stack, our notation will not be problematic.

For each n, we have an associated graded map gr: Filtgz (X) — Gradfé(x ), de-
fined as the composition of the projection Filtgy (X) — Filtg Grad?’Q_l(X ) and the
associated graded map Filtg Gradgl(x ) = Gradg (X). These maps glue to a mor-
phism gr: Filtge (X) — Gradge(X). Similarly, we get an “evaluation at 1” map
evy: Filtgee (X) — X, a “forgetful” map u: Gradge(X) — X, and a “split filtration”
map o: Gradgee (X) — Filtge (X)) as in Section 2.2. We will also consider the “trivial
filtration” map X — Filtge (X)), defined as the composition of the usual trivial fil-
tration map X — Filtg(X) and the map Filtg(X) = Fﬂthlex(X) — Filtge (X) given
by the colimit. It is an open and closed immersion. Similarly, we have a “trivial

grading” map X — Gradge~(X), and it is also an open and closed immersion.

PROPOSITION 3.2.5. Let X be an algebraic stack over an algebraic space B, satisfying Assumption
2.2.3. Then the “evaluation at 1” map evy: Filtgeo (X) — X s representable and separated.

Proof. It is enough to prove that Filtgr (X) — X is representable and separated for

each n. There is a cartesian square
Filtgn+1(X) —— Filtgn (X)
L |
Filtg Gradjy(X) —2— Gradfy(X)
for each n, where b, 1s the “evaluation at 1” map. Thus by [36, Proposition 1.1.13],

the map a, is representable and separated, being a base change of b,. Expressing

evy: Filtgy (X) — X as a composition of the a,, we get the result. []

Remark 3.2.6. One can define stacks Filtz (X) and Gradze (X) in a similar vein. The
monoid (N, -, 1) acts on these stacks, and Filtge (X) and Gradge(X) are obtained

from these by localising the action as in Definition 2.2.7.
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Remark 3.2.7. The formation of Filtge (X) 1s functorial in X. If f: X — ¥ is a mor-
phism, then there is an obvious induced map Filtge (f): Filtge (X) — Filtge (¥).

Remark 3.2.8 (Stack of polynomial filtrations). Our definition of the stack Filtgeo (X) as
a colimit of the stack Filtgyz (X) 1s justified by the fact that the poset Q* can be written

as the colimit Q*° = colim, Q}. where the maps are QJ. — le: (ag,...,an—1) —
(ao, . ..,an-1,0). Alternatively, we can consider the diagram where the maps are
Q. — Qrt':(ap,....an-1) + (0,ap,...,ay—1), and the colimit is now Q[¢], the

set of polynomials in one variable with rational coefficients, where p < g if p(n) <
q(n) for n > 0. We define the stack Filtg(X) of polynomial filtrations of X to be the
colimit of the corresponding diagram of open and closed immersions Filtgz (X) —

Fithltzj-l (X), which are given as the composition

FﬂtQﬁX(X) - FﬂtQﬂ,x (GradQ(X)) = GradQ(X) X Gradg (X) FﬂtQﬁ,X (GradQ(X))
oxid

25 Filtg(X) Xardg ) Filtgy, (Gradg(X)) = Filtg+1 (X).

Everything we have said about Filtge (X) applies also to Filtg (X) with similar ar-

guments.

The stack of sequential filtrations behaves well with respect to pullback from an

algebraic space.

PROPOSITION 3.2.9. Let X — B and X' — B’ satisfy Assumption 2.2.3, and let
X' — X
X — X

be a cartesian square, with X, X' algebraic spaces. Then

Filtgee (X') 2= Filtgee (X) Xev, 5 X == Filtgeo () xx X'.

Progf- Since Filtgee (X') is an increasing union of the stacks Filtgs (X'), it is enough
to show the analogue claim for these stacks. For n = 1, this is Proposition 2.2.14. For

n > 1, we have
X' Xt 0y Filig () = X 56,00, Fit1 () Xy a1 56 vy Filip(Gradfy ' (50))
= Filtgy-1 (X') Xy a1 o0y G1ad ™ (X7) X1 (30 v, Fil (Gradgl(X))
= Filigy1(X") Xy Gray? (e Fit ((Gradiy™ (X)) = Filtgy1 (X')

again by Proposition 2.2.14. ]
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PROPOSITION 3.2.10. Let X be an algebraic stack defined over an algebraic space B, satisfying
Assumption 2.2.3, and let X' — X be a closed immersion. Then

Filtgee (X) 2 Filtgeo () Xev, 2 X'

Proof. 'The statement follows in the same way as Proposition 3.2.9, but using Propo-
sition 2.2.15 nstead of Proposition 2.2.14. [l

PROPOSITION 3.2.11. Let X be an algebraic stack over an algebraic space B, satisfying Assump-
tion 2.2.3. Then there is a cartesian diagram
Filtgeo (X)) —— Filtgee Gradg(X)
l ’ ll
Filtg(X) ———— Gradg(X)
Proof. The claim follows from cartesianity of the diagram
FﬂtQﬁjl (X) —— Filtgr Gradg(X)
Lk
Filtg(X) —>—— Gradg(X)

by taking the colimit when n tends to oo. ]
We define Q*°-flag spaces in analogy with Definition 2.2.17.

DEFINITION 3.2.12 (Q*°-Flag spaces). Let X be an algebraic stack over an algebraic
space B, satisfying Assumption 2.2.3, and let x: 7 — X be a scheme-valued point.
We define the space of Q™ -flags Flaggoo (X, x) of x as the fibre product

Flaggoe (X, x) —— T
I
Filtgeo (X) ——— X,

which 1s, by Proposition 3.2.5, a separated algebraic space over T locally of finite

presentation.
In the case of a field-valued point x, it 1s reasonable to talk about Q*°-filtrations.

DEFINITION 3.2.13 (Q*°-filtrations of a point). Let X be an algebraic stack over an
algebraic space B, satisfying Assumption 2.2.3. Let k be afield and let x: Speck — X
point. We define the set Q- Filt(X, x) of Q™ -filtrations (or sequential filtrations) of x to
be Q- Filt(X, x) = Flagge (X, x)(k), the set of k-points of the space of Q*-flags
of x.
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Remark 3.2.14. The set Q°-Filt(X, x) can be described as follows. An element A of
Q°- Filt(X, x) 1s uniquely determined by a sequence (A,),en Where

1. Ao € Q-Filt(X, x),

2. Ay € Q-Filt(Gradg (X), grA,—y) forn > 1, and

3. A, =0forn > 0.!
The trivial Q*°-filtration corresponds to the sequence where A, = 0 for all n. In
general,

N :=min{n| A; =0, Vi > n}

1s the minimal natural number such that A 1s in F ithg (X) C Filtge(X). The de-

scription follows at once from the definition of FﬂthN‘(x ) as a fibre product.

Remark 3.2.15. If f: X’ — X is either a closed immersion or a base change from a map
of algebraic spaces, andif x € X' (k) is a field-valued point, then, by Propositions 3.2.9
and 3.2.10, we have a canonical bijection Q - Filt(X', x) = Q - Filt(X, f(x)). We will
use this fact throughout.

Remark 3.2.16 (Sequential filtrations on quotient stacks). Let k be a field, and consider
a quotient stack X = X /G where X 1s a separated scheme of finite type over k and G
is a linear algebraic group over k. Let x € X (k) be a k-point and call also x € X (k) its
image in X. From Remarks 2.2.19 and 3.2.14, it follows that we have an identification
of the set Q*°- Filt(X, x) of sequential filtrations of x with the set of sequences (A,)nen
where

1. each A, € I'e(G);

2. for alln,m € N, A,, and A,, commute;

3. An = 0forn > 0;

4. for every n € Z-, the iterated limit

lim A,,(z,,)( im A1 (fn_1) ( lim /\o(to)x) )
t,—0 t to—0

n—1—>0

exists in X;
subject to the equivalence relation that identifies (A,),en ~ (A} )nen if there are g, €
PLGo A,_1)(An) such that (A,)887—1780 = )’ for alln € N. To see this, note that we
can explicitly describe components of Gradg (X) as X0 200 /1 (Lo, -, Ayp), where
Ao, -+, Ay, are commuting rational cocharacters of G, X 20-:4n.0 denotes the fixed-
point locus by Ag, -+, A, and L(Ag,---,A,) 1s the centraliser of Ag, -+, A, inside G,
and we can apply Remark 2.2.19 to these quotient stacks.

"Here, 0 denotes the trivial filtration in Q - Filt(Grada(X ),gri,—1), see Definition 2.2.18.
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3.3 SEQUENTIAL STRATIFICATIONS

In this section, we give the definition of sequential stratification, and we study some pull-
back and pushforward operations for sequential strata. All algebraic stacks are de-

fined over an algebraic space B and are assumed to satisfy Assumption 2.2.3.

DEFINITION 3.3.1 (Sequential stratification). Let X be an algebraic stack and let T’
be a partially ordered set. A sequential stratification (or Q*°-stratification) of X indexed by
I' is a family ($;);er of locally closed substacks of Filtge (X) such that:

1. Each composition r;: §; — Filtge (X) — X 1is a locally closed immersion.

2. The r;(|8;|) are pairwise disjoint and cover | X|.

3. Yor eachi € T', the union |, ; r; (}S,D 1s open in | X|.
A'sequential stratification defines a canonical sequential filtration for every point.

DEFINITION 3.3.2 (Induced sequential filtration). Let X be an algebraic stack and
let (3;)ier be a sequential stratification of X indexed by a poset I'. For a field-valued
point x € X (k), we define the sequential filtration A of x induced by the stratification (S;)ier
as follows. Leti € I' be the unique element such that x: Spec k — X factors through

S; — X. We have cartesian squares

Speck ——— §;
| I
Flaggeo (X, x) —— Filtge (X)

N

Speck ———— X,

and we define A to be the top left downward arrow A: Spec k — Flagge. (X, x), which
is by definition an element of Q*°- Filt(X, x).

Remark 3.3.3 (Sequential and polynomial ®-stratifications). This definition is not quite
the analogue of the notion of ®-stratification for Q*-filtrations. That would require
in addition that each §; 1s open in Filtge (X) and is the preimage of an open substack
of Gradge(X), but these conditions do not hold for the balancing stratification, that
we will construct later (Definition 3.5.3). We may call this stronger notion sequential
O-stratifications. Similarly, if we use the stack Filtg[(X) of polynomial filtrations (Re-
mark 3.2.8) instead of Filtge (X), we get a notion of polynomial O-stratification. The
stratification of the stack of pure coherent sheaves on a polarised projective scheme

over a noetherian base by polynomial Harder-Narasimhan filtration [66] should be
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a polynomial ®-stratification. Another example should be given by the stratifications

for moduli spaces of principal p-sheaves considered in [32].

DEFINITION 3.3.4 (Pulling back sequential stratifications). Let f: X’ — X be a mor-
phism of algebraic stacks such that

Filtgeo (X/) — Filtges (X)

-
ev 11 levl

X’ > X

is cartesian (for example a closed immersion or a base change from a map of algebraic
spaces, see Propositions 3.2.9 and 3.2.10). Let (8;);er be a sequential stratification
of X. Yor eachi € I', set f*S; := Filtge (X') XFiligoeo (%) Si> Which is a locally closed
substack of Filtgeo (X’). Then (f*S;)ier 1s a sequential stratification of X', called the

pulled back sequential stratification.

To see that ( f*S;);er 1s indeed a sequential stratification, just note that we have
q J
f*8i = X' xx §; foralli € T'. We refer to the S; as sequential strata. More generally,

we define:

DEFINITION 3.3.5. A sequential stratum § of X 1s a locally closed substack of Filtgeo (X)
such that the composition

S — Filtge (X) - X
is a locally closed immersion. We refer to the morphism § — Filtge(X) as the

Structure map.
Remark 3.3.6. If a: § — Filtgee (X) 1s a morphism such that the composition
S — Filtgee (X) — X

1s a locally closed immersion, then a is a locally closed immersion as well, since
evy: Filtgee (X)) — X 1s representable and separated, so its diagonal is a closed im-

mersion.

It will be useful to have a few ways of constructing sequential strata from given

ones.

DEFINITION 3.3.7 (Pushforward along a locally closed immersion). If : X — ¥ is
a locally closed immersion and § is a sequential stratum of X, then we define a se-
quential stratum ¢,$ as follows. As a stack, (,§ = §, and the structure map 1s the
composition

$ — Filtge (X) — Filtge(Y),
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which is a locally closed immersion because Filtge (1) is>. The map § — ¥ factors as

S - X — ¥, so1itis alocally closed immersion.

DEFINITION 3.3.8 (Induction of a sequential stratum from centre of a ®-stratum).
Suppose S is a locally closed ®-stratum of an algebraic stack X, with centre Z (Defi-

nition 2.5.3), and let $’ be a sequential stratum of Z. We define a sequential stratum
ind%c (8) of X, as follows. As a stack, ind%c () 1s the pullback

indX(§)) —— §’
The structure morphism a is obtained by pulling back the square

§" — Filtgee Gradg(X)

! |

Z — > Gradg(X)

along Filtg (X)) LN Gradg(X), obtaining a square of the form

ind} (§') —%— Filtgeo (X)

| |

§ — Filtg(X)

by Proposition 3.2.11. The induced morphism indj (§’) — X is the composition of
the locally closed immersions ind%c (8') > § and § — X, and it 1s thus also a locally

closed immersion.

DEFINITION 3.3.9 (Pushforward along a blow-up). Let p: ¥ — X be a blow-up with
exceptional divisor & C ¥. Let § be a sequential stratum of ¥. We define a sequential
stratum p« (S \ &) of X as follows. If r:§ — ¥ is the locally closed immersion, then
we set p«(S\ &) = 8§ \ r71(&) as a stack. The structure map is the composition

S\r (&) = § — Filtge (¥) — Filtge (X).
We have a diagram

$\ r~1(8) —— Tiltgeo(Y) — Filtgee (X))

| | |

Y\ é& ; > Y > > X.

2The fact that Filtg and Gradg preserve closed immersions [36, Proposition 1.3.1] easily implies
that Filtgee (1) 1s a closed immersion.
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The map a 1s a locally closed immersion, and p o b is an open immersion. Thus
S\ r (&) - X is alocally closed immersion. By Remark 3.3.6, the structure map

1s also a locally closed immersion.

3.4 CENTRAL RANK AND BG} -ACTIONS

The concept of central rank of an algebraic stack introduced here will be fundamental in
our construction of sequential stratifications for good moduli stacks (Theorem 3.5.2).
Naively, the central rank of X 1is the maximal 7 such that all stabiliser groups of X
contain a central torus of rank n. The correct implementation of this idea is Defini-
tion 3.4.1 below. Let X be an algebraic stack over an algebraic space B, satisfying

Assumption 2.2.3, and assume further that X is noetherian and has affine diagonal.

DEFINITION 3.4.1 (Central rank). We define the central rank z(X) € N of X to be
the biggest n € N such that there is a union Z of nondegenerate components of
Grad”"(X) (Definition 2.3.1) such that the composition Z — Grad”(X) % X isan

isomorphism. For the empty stack we define z (@) = oc.

Remark 3.4.2 (Relation with Donaldson—Thomas theory). The concept of central rank
is important in extending Donaldson—Thomas theory to non-linear moduli prob-
lems, that 1s, to moduli stacks not parametrising objects in an abelian category.
Donaldson—Thomas invariants were first defined by Thomas [73] for moduli spaces
X* of semistable sheaves on a Calabi—Yau threefold in the case where all semistable
sheaves are stable. In [49, Definition 8.1], Joyce defines a stack function [50], denoted
€, on the stack X* of semistable objects in a suitable abelian category with stability
condition. In the case of sheaves on a Calabi—Yau threefold, when € is integrated
against the Behrend function [11] it gives rise to a generalised Donaldson—Thomas
invariant, defined also when there are strictly semistable sheaves [51]. In upcoming
work with Bu and Kinjo [17], we generalise Joyce’s € function to general algebraic
stacks, not necessarily parametrising objects in an abelian category. The concept of
central rank plays an important role in our theory, particularly in the proof of the

no-pole theorem [49, Theorem 8.7] in this new setting.

The stack BG}, is a group stack. It turns out that the data of a BG), -action on
a stack X satisfying Assumption 2.2.3 is equivalent to the data of a section s: X —
Grad” (X) of u: Grad”(X) — X such that s is a closed and open immersion. This
is [35, Corollary 1.4.2.1] in the case of the monoid stack A!/G,,, but the same proof
works for BG/,. We say that the BG] -action is nondegenerate if all components of s(X)
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are nondegenerate. If m: BG), x X — X 1s the action map, then the action is nonde-
generate if, for all x € X (k), the homomorphism GLi— Aut(x) induced by m has
finite kernel.

Using the stack Gradg (X) instead of Grad” (X)) we can talk about rational BG},-

actions.

DEFINITION 3.4.3. A rational BG},-action on X is a section s: X — Gradg (X) of
u: Gradg (X) — X

that 1s a closed and open immersion.

Remark 3.4.4. It 1s tacitly understood that an isomorphism u o s ~ idyx is part of the

data of a section s.

LEMMA 3.4.5. Suppose that X has a good moduli space w: X — X, and let p:Y — X be a
blow-up. Then any (rational) BG), -action on X lifts canonically to Y.

Proof. We prove the lemma for integral actions, the proof for rational actions being
identical after replacing Grad with Gradg. The BGJ -action corresponds to a sec-
tion 5: X — Grad"(X) of Grad”(X) — X that is an open and closed immersion.
With this language, what we want to show is that the preimage ¥’ of s(X) along
Grad”(¥) — Grad"(X) is a closed and open substack of Grad”(¥) such that the
composition ¥ — Grad” (¥) — ¥ is an isomorphism.
If X 1s of the form X = Spec 4/GLy, then
Grad™(X) = | | (Spec A)*° /L),
A€Hom(GJ,, T)/W
where T is the standard maximal torus of GL; and W is the symmetric group of
degree / [36, Theorem 1.4.7]. Thus X 1is isomorphic to a union of connected com-
ponents of one of the stacks (Spec 4)*°/L(1), with A: G — GL; having finite kernel.
Any blow-up p: ¥ — X is then of the form Y /L (1) with /\(an) acting trivially on Y.
This proves the lemma in the case X = Spec 4/GL,;.
For general X, the claim can be checked étale locally on X, since for X' — X

representable and étale, the square
Grad”(X') —— Grad"(X)
X’ > X

is cartesian [36, Corollary 1.1.7], and since blow-ups commute with flat base change.

We can cover X by representable étale neighbourhoods of the form Spec A/GL,
(Theorem 2.1.3), which proves the lemma for general X. ]
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Remark 3.4.6. It should not be essential that X has a good moduli space for Lemma 3.4.5,

but this is all we will need.

LEMMA 3.4.7. Let X be a normed noetherian good modul stack with affine diagonal. Let p:Y —
X be a blow-up of X at some closed substack, and let & be the exceptional divisor. The stack Y s
endowed with the ©-stratification induced by the norm on X and the p-ample line bundle Oy(—8&)
(Theorem 2.6.4 and Example 2.6.8). Let Z be the centre of some unstable stratum of Y. Then
z2(X) < z(Z,).

Proof. Letn = z(X). There 1s a nondegenerate BG), action on X that, since p is a
blow-up, lifts canonically to ¥ by Lemma 3.4.5. The BG, action gives a closed and
open immersion ¥ — Grad” (¥).

Since Z. 1s the centre of a stratum, it comes equipped with a rational BG,,-action
inherited from a closed and open immersion Z, — Gradg(¥). Scaling up, we get a
closed and open immersion Z, — Grad(¥) and thus an integral BG,,-action on Z..
Applying Grad to the closed and open immersion ¥ — Grad”"(¥) and composing
with Z, — Grad(¥), we get a closed and open immersion Z, — Grad"™!(¥), which
gives a BG,, x BGJ, -action on Z..

Let x € Z.(k) be a k-point for some field k. The BG,, x BG},-action provides
cocharacters A, By, ..., B, of the centre Z(Aut(x)). Since the Bq,..., B, come from
X, we have (B;, Oy(—€)) = 0, where € is the exceptional divisor, while since Z, is the
centre of an unstable stratum, we have (A, Oy(—&)) > 0. Therefore A(G,,) is not con-
tained in the image of (B1, ..., Bx): G, — Aut(x), and thus (A, B1, ..., Bx): G —
Aut(x) has finite kernel. Therefore z(Z.) > n + 1, as desired. [

3.5 THE BALANCING STRATIFICATION AND THE ITERATED
BALANCED FILTRATION

We now get to the main construction of the thesis, namely the balancing stratification for
normed good moduli stacks (Theorem 3.5.2), and the canonical sequential filtration it
defines for every point (the wterated balanced filtration, Definition 3.5.8). We also show that
the balancing stratification 1s preserved under certain pullbacks (Proposition 3.5.5).
Here 1s the idea of the construction. If X is a normed noetherian good moduli
stack, and all stabilisers of X have the same dimension, then we want the balancing
stratification of X to consists only of the stratum X™**. Note that, while X™* — X
could fail to be an isomorphism, it 1s a surjective closed immersion in this case. Now, if

XM does not cover X, then the blow-up ¥ = Blyma X 1s endowed canonically with
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a O-stratification (S¢)ceq-,- By an inductive argument, the balancing stratification is
defined for the centres Z, with ¢ > 0. Thus the §. inherit the stratification along the
associated graded map S, — Z.. Denoting & C ¥ the exceptional divisor, each of
the locally closed substacks §. \ & of X with ¢ > 0 is thus stratified. The stack Sy \ &
equals X \ 777 (X™*), and thus it has a good moduli space and we can assume by
induction that its balancing stratification is defined. In this way, the union of the strata
of each of the . \ & for all ¢ > 0, together with X™**, defines a stratification of X by
locally closed substacks, and this is the balancing stratification of X. In this section
we make this idea precise by keeping track of the structure of sequential stratum of
each of the pieces and proving that the inductive argument can be made to work.

We now introduce the indexing poset labelling the stratification.

DEFINITION 3.5.1 (Indexing poset for the balancing stratification). We define a to-

tally ordered set I as follows. As a set, I' consists of the sequences

((dOa CO)’ (dl, Cl), cees (dn» Cn))

with

n €N,
do>dy>--->d,inN,
d; >iforall0 <i <n,
Coy---sCn—1 € Qxo,

5. ¢, = o0.

= 0 N —

As a poset, we write

((do, o). - -, (dn, cn)) < ((dg, €q), - - -+ (dpys Cpp))

if there is 0 < i < min(n, m) such that (d;,c;) = (d},c}) for j <i and either d; < d]

ord; =d/ and ¢; < ¢;. This makes I a totally ordered set.
If ¢ € T', we use the notation

o= ((d(()x’cg) EREE! (d;?(a)’cg(a))) .

THEOREM 3.5.2 (Existence of the balancing stratification). 7here is a unique way of as-

signing, to every normed noetherian good moduli stack X with affine diagonal, a sequential stratification

(8X )a or ¢ X indexed by T in such a way that the following properties are satisfied for every such X:
1. The stratum indexed by (d(X), 00) is S(jﬁ(x)’ o0y = X, wuth structure map

XM % — Filtge (X)),

where the second arrow is the “trivial filtration™ morphism.
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2. Let w: X — X be the good moduli space and let U = X \ w1 (X™). Denote j: U —
X the open immension. Then for all @ € T with d¥ < d(X) we have $X = j.(SY).

3. Let p:Y = Blymax X — X be the blow-up of X along X™ and let & be the exceptional
dwisor. Let Z be the centres of the O-stratification (with inverse convention, see Remark 2.5.17)
on Y induced by the norm on X and the line bundle Oy(—8&) (Example 2.6.8). The Z. are
endowed with the induced norm and are thus also normed noetherian good moduli stacks with
affine diagonal by Theorem 2.6.4. Then, for all c € Qs and for all @ € T such that the
concatenation ((d(X), c),a) of (d(X), c) and o also belongs to T', we have the equality

Y .
S(D(Cd(.'x,'),c),a) = D« (mdzc (Saz )\ 8) .

Moreover; for every o € T such that S is nonempty, we have:
4. d§ <d(X); and
S.d¥ =1+ z(X), forall0 <i < n(a).

Proof. First we note that if X is empty, then the only stratification is given by $X* = @
for all @, and 1t satisfies the required properties.

For a stack X as in the statement of the theorem, define the number N(X) =
d(X) — z(X). We will use induction on N(X).

Assume X # @ and let U be as in 2. Then clearly d(U) < d(X) and z(U) >
z(X), so N(U) < N(X). It Z, 1s as in 3, with ¢ > 0, then d(Z;) < d(X), because
Z. — X is representable, and z(Z.) > z(X) by Lemma 3.4.7. Thus N(Z.) < N(X).
Therefore the statement of the theorem makes sense if we fix an N € N and we
restrict to the class of normed noetherian good moduli stacks X with affine diagonal
and with N(X) < N. We prove the theorem for this class of stacks by induction on
N.

If N =0, and N(X) = 0, then the identity component of every stabiliser group
of a point of X is a split torus of dimension d(X). Therefore | X™™| = |X| and
Ség(x)’ o) = X 1s the only nonempty stratum. This gives the desired sequential
stratification.

Fix N > 0 and assume the theorem is true for N — 1. For X with N(X) = N,
define $X as in the statement of the theorem when d¢ < d(X), which makes sense
because N(U) < N and N(Z.) < N. Define §* = @ otherwise. We show that
(8X)qer is a sequential stratification of X.

Denote ry: 8* — X the induced locally closed immersions. First we show that
the ry (}Soﬂ) are pairwise disjoint and cover X. For p € |X|, there is a unique
p’ € {x} that is closed in 7~'7(p) [2, Proposition 9.1]. One and only one of the
following situations takes place:
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1. The dimension dim Aut(p’) < d(X). In this case p € |U| and it is contained
in exactly one of the j,S¥ = $X with d* < d(X), by induction hypothesis.
9. We have dim Aut(p) = d(X) and p = p'. Then p € | X™| = ‘sggx)’oo) and
this 1s the only stratum containing p.
3. Again, dim Aut(p’) = d(X), but this ime p # p’. In this case, p € |X] \
(U] U | X™>]) and there 1s a unique point ¢ € |¥|\|&| mapping to p. The point
g lies in a unique stratum S, (¢ € Qx¢) of the O-stratification of ¥. There exists a
map A: O — X with A(0) = p’and A(1) = p for some field k [8, Lemma 3.24],
and Kempf’s number (1, X™*) > 0 is positive because A(0) € |X™*| and
A(l) ¢ | X™*| (Definition 3.1.1). The filtration A lifts uniquely to A: © — ¥
(Proposition 2.2.20), and (A, Oy(=§&)) = (A, X™*) > 0 (Proposition 3.1.2).
Therefore g is unstable in ¥ and thus ¢ > 0. Since the §Z¢ stratify Z,, the
ind%c (82¢) stratify S, so ¢ is contained in ind%C (82¢) for a unique & € T and
thus p is contained in a unique p« (ind%c (82¢) \ 8) It 1s left to check that
((d(X),c),a) € T. This follows because d* > i + z(Z.) > i + 1 by 5 and
Lemma 3.4.7.
Now we check that |$% | = Up=a 78 (‘S?D is closed foralle e T'. If o =
(d(X), 00), then }Sifx| = @, which 1s closed. If @ = ((d(X),c),a’) with ¢ € Qo,

then
[$%%] =p<gr_l( JulJ |Sc/|) U 26

which is closed by induction and because p is proper. If d§ < d(X), then [$%,| =

§2e

>o/

|SX | U |7~ (X™)], which is also closed by induction and because 7 is universally
closed.

It is left to show properties 4 and 5. The former is true by construction. The
latter is true fori = 0 because d(X) > z(X), and itis true if d§ < d(X) by induction,
using the result for U. The remaining case is when « 1s of the form o = ((d(X), ¢), ).
Then SO%“ # & and thus df, | = dl-“/ >i+z(Z:) >i1+ 1+ z(X) by induction and
by Lemma 3.4.7. O

DEFINITION 3.5.3 (The balancing stratification). Let X be a normed noetherian
good moduli stack with affine diagonal. The balancing stratification of X 1s the sequential
stratification (S(fc)aer of X from Theorem 3.5.2.

Remark 3.5.4. It 1s not hard to construct, using the convex-geometric picture intro-

duced later (Corollary 5.2.18), that for every a € T there 1s a normed good moduli
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stack X with §* # @. We can in fact take X to be of the form X = AZ/an,k, with
k any field.

The balancing stratification is well-behaved under certain pullbacks.

PROPOSITION 3.5.5 (Compatibility with pullback). Let f: X' — X be a norm-preserving
morphism between normed noetherian good moduli stacks with affine diagonal. Let w: X — X and
7't X" — X' be the good moduli spaces. Assume further that f is either

1. a closed immersion, or

2. 1t fits in a cartesian diagram

X/%X

X ' x.
Then the balancing stratification on X' is the pullback along f (Definition 3.3.4) of the balancing
stratification on X, that is, for all o € T we have 8 = f*SX.

Proof. We prove the statement by induction on N(X) = d(X) —z(X). The base case
1s N(X) = —oo, corresponding to the empty stack, for which the statement is obvious.

We have an upper semicontinuous function r on |X| given by
ri|X| — N

p —— d(@ ' (p)),

where d(—) denotes “maximal stabiliser dimension” (Definition 3.1.5). For d € N,
let X<4 be the open subspace of X with |X<4| = {p € |X|| r(p) < d} and let
X<q = 171 (X<4). In the case where X’ = X<4 and f is the inclusion X<; — X,
the result follows from Item 2 in Theorem 3.5.2.

Note that in both cases we have X, = f~!(X<4) for all d € N. To prove the
statement for given o € T', we may assume d (X) = dy by replacing X by X<4¢ and
X' by X’Sdg = [T X<qg). If d(X') < d(X), then $X¥ =@ = f*(8X). Thus we
may assume d = d(X) = d(X'). We prove that SlfC' = f*$ in this case.

First, we have (X')™> = f~1(X™*) by [27, Proposition C.5], since in both cases
S 1s stabiliser-preserving (that is, the map dx» — f*Jx between inertia stacks is an
isomorphism). Therefore 8(95:00) = f*S(ig’oo). We may thus assume ¢ = ¢ € Q-
and write ¢ = ((d, c), B) with B € I". In both cases we have a diagram

Y L 5 X' xxy Y —— Y

~ 1 |

X — X
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with ¢ a closed immersion. The ©-stratification (5))ceq.o0 on ¥’ is the pullback of
the ®-stratification (S¢)ce@., on ¥ by Proposition 2.5.19. Let ¢ > 0, let Z. be the
centre of S, let Z/. be the centre of §/, and let g: Z, — Z. be the natural map. By
cartesianity of the square

zZ, £ 2z,

[,

y L Ly
we see that g is a composition of a closed immersion and a base change of a map
between the good moduli spaces of Z/, and Z.. By induction, since N(Z.) < N(X),
we have Sﬂzé‘ = g*(Sg:c). It follows from Item 3 in Theorem 3.5.2 that X = f*(5).
[l

Remark 3.5.6. A crucial ingredient that makes Proposition 3.5.5 possible is that the
closed substack structure of the maximal dimension stabiliser locus 1s compatible with
pullbacks. It would not hold if we had used the reduced substack structure on | X™|

instead.
We will often use the following form of Proposition 3.5.5.

COROLLARY 3.5.7 (Compatibility with fibres). Let X be a normed noetherian algebraic stack
with affine diagonal and a good moduli space w: X — X, let k be a field and let x: Speck — X be
a point. Let F = = w(x). Then the balancing stratification of F is the pullback along ¥ — X
of the balancing stratification of X. ]

The balancing stratification defines, for every point x of the stack X, a canonical

sequential filtration of x.

DEFINITION 3.5.8 (Iterated balanced filtration). Let X be a normed noetherian good
moduli stack with affine diagonal, let k be a field and let x € X (k) be a k-point. The
iterated balanced filtration Ay, (x) € Q-Filt(X, x) of x 1is the sequential filtration of x
induced by the balancing stratification of X (Definition 3.3.2).

Remark 3.5.9. By Corollary 3.5.7, in order to compute the iterated balanced filtration
apoint x € X (k), itis enough to compute the balancing filtration of x inside the fibre
F = n'x(x). If k is algebraically closed, then ¥ is of the form Spec 4/G, where
G 1s the stabiliser of the closed point of ¥, by Corollary 2.1.5. Then Spec A4 can be
embedded G-equivariantly inside a finite dimensional representation V' of G, and by
Proposition 3.5.5, we can compute the iterated balanced filtration of x in V/G. This

seems to reduce the problem to the case of a stack of the form V/G. However, the
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choice of embedding ¥ — V/G is not canonical. Moreover, at each step of the blow-
up procedure, new fibres of good moduli spaces have to be taken and embeddings
into vector spaces need to be chosen, making things difficult to track. Nevertheless,
we will develop a bookkeeping device, chains of stacks, in Chapter 4 that will allow us
to give combinatorial descriptions of the iterated balanced filtration in two cases: the
quotient of a vector space by a torus (Chapter 5) and moduli of objects in abelian

categories (Chapter 7).

In the presence of ®-stratifications whose centres have good moduli spaces, we

can use the refined

DEFINITION 3.5.10 (Refined Harder-Narasimhan filtration). Let X be an algebraic
stack over an algebraic space B, satisfying Assumption 2.2.3, and endowed with a
linear form £ and a norm ¢ that define a ®-stratification (S.)ceq-,, where we use
the direct convention (see Remark 2.5.17). Suppose that all the centres Z, are quasi-
compact with affine diagonal and have good moduli spaces, so that each Z. has a
well-defined balancing stratification. The refined Harder-Narasimhan stratification of X

induced by £ and ¢ is the sequential stratification

SE,) = (indf, (s2))
( (c.0) (c,0)€QxoxT Z"( * ) (c,0)€QxoxT

of X, indexed by the poset Qs x I' with lexicographic order. The refined Harder-
Narasimhan filtration A (x) of a field-valued point x € X (k) 1s the sequential filtration
Amn(x) € Q- Filt(X, x) induced by the refined Harder-Narasimhan stratification of
X (Definition 3.3.2).

It is clear from the definition of induced sequential stratum (Definition 3.3.8)

that (Sx )
©®) ) (c,0)eQ=oxT

1s indeed a sequential stratification of X.

Remark 3.5.11. More generally, we can consider a stack X as in Definition 3.5.10,
endowed with a norm ¢ and a ®-stratification (S;);e; (not necessarily induced by
some linear form and ¢) indexed by some poset / such that all the centres Z; are
quasi-compact and have affine diagonal and a good moduli space. Again, we have
the canonical sequential stratification (ind%ci (Sfl))( JeIxr refining (S;);er, and a
corresponding sequential filtration for every point of ZD(CX

Remark 3.5.12 (Derived stacks). The concept of good moduli space for derived Artin 1-
stacks has recently been introduced in [1], and blow-ups along the substack of points
with maximal stabiliser dimension in this context have been studied in [42]. On the

other hand, ®-stratifications are also available in derived geometry [35]. Therefore
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we expect that the theory of balancing stratifications extends to normed derived Artin
stacks X with good moduli space. However, in view of Proposition 3.5.5 we anticipate
that the iterated balanced filtration a point x of X that one gets from this theory only

depends on the classical truncation of X.

3.6 EXAMPLES

In moduli theory there are many natural instances of normed good moduli stacks,

for which the balancing stratification 1s defined. We collect here a few examples.

3.6.1 STACKS PROPER OVER A GOOD MODULI STACK

Assume the framework of Theorem 2.6.4, that is, X is a normed noetherian good
moduli stack with affine diagonal, f:¥ — X is representable and proper and ¢ is
an f-positive linear form on ¥. Then we have a @-stratification ($.)ceq-, of ¥ and
every centre Z. 1s again a normed noetherian good moduli stack with affine diagonal.
Therefore the norm on X and the linear form £ induce a refined Harder-Narasimhan
stratification on ¥ (Definition 3.5.10) and a refined Harder-Narasimhan filtration for

every point of ¥.

3.6.2 GEOMETRIC INVARIANT THEORY

Let k be a field, let G be a linearly reductive affine algebraic group over k admit-
ting a split maximal torus 7', with Weyl group W, and endowed with a norm on
cocharacters (Definition 2.3.8). Let A4 be a finite type k-algebra and consider an ac-
tion of G on Spec A. The quotient stack X = Spec(A4)/G has a good moduli space
X — Spec(A49). Given any G-equivariant projective morphism f:Y — Spec A and
an ample linearisation on Y (that is, a line bundle on Y /G ample with respect to
h = f/G:Y/G — Spec(4)/G), the previous example applied to & gives a refined
Harder-Narasimhan stratification of Y/ G, indexed by Qs x I'. For every k-point
y € Y(k), the refined Harder-Narasimhan filtration A,;yn(y) of y can be seen as a
sequence Ag, ..., A, € I'®(G) of commuting rational cocharacters of G, considered
up to certain equivalence relation, by Remark 3.2.16.

This stratification was first defined by Kirwan [58] in the case where k = C, 4 =
C and Y — Spec C is smooth, building on the ideas introduced in [56]. The indexing
set used in [58] 1s different from the one used here, and it depends on the quotient
presentation of Y/G. The strata obtained in [58] are open and closed substacks of

the strata defined here, which does not make a substantial difference. This further
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partition of the strata arises in two different ways. First, instead of the ®-stratification
(S¢)ceqs, of Y/ G considered here, indexed by Qxo, the stratification considered by
Kirwan is indexed by I'®(T)/W (see also [55]). The set I®(T)/W can be seen
as parametrising certain unions of connected components on Gradg(Y/G) by [36,
Theorem 1.4.8], and the strata obtained in this way are closed and open substacks
of the §.. The same kind of difference on indexing sets appears each time a blow-
up 1s performed in the construction. Also, each time a locus of maximal dimension
stabilisers is considered, for example (Y*/G)™, Kirwan writes it as a disjoint union
of loci of the form G ((Y SS)R) /G, where R is a reductive subgroup of G of maximal
dimension such that (Y*)® is nonempty. This further refines the indexing set and the
stratification, but again only breaking down the strata into pieces that are closed and
open.

Even in the case considered in [58], the fact that the balancing stratification has
the structure of a sequential stratification is a novelty of our approach. The definition

of the iterated balanced filtration (Definition 3.5.8) is new also in this case.

3.6.3 QUIVER REPRESENTATIONS

Let Q be a quiver with set of vertices Q, set of arrows Q; and source and target
maps s,t: Q1 — Qp. Let d be a dimension vector for Q and consider the moduli
stack Rep(Q, d) of representations of Q with dimension vector d over an algebraically
closed field k of characteristic 0. A central charge Z for Q is defined by a family (a;)ieg,
with a; € Q ®iQ-¢ C C. For a finite dimensional representation £ of Q we set
Z(E) = ) jcq @i dim E;. This defines a linear form ¢ and a norm g on Rep(Q,d) as
follows. A graded point g: BG,, v — Ree(Q,d) corresponds to a representation E

with dimension vector d and a direct sum decomposition E = @ .., E.. We then
set
L(g) =Y _ —cRe Z(E.) (3.1)
cEZ
q(g) =Y *>ImZ(E.). (3.2)
cEZ

The linear form £ comes from the rational line bundle on Rep(Q, d) given by the ra-
tional character [];c o, detgi‘;’; of [0, GLa;. By Section 3.6.1, the stack Rep(Q, d)
has a refined Harder-Narasimhan stratification induced by £ and ¢, and every repre-
sentation E € Rep(Q, d)(k) has a well-defined refined Harder-Narasimhan filtration.

We remark that semistability with respect to £ 1s precisely a King stability con-

dition [54]. We can also see £-semistable representations as Bridgeland semistable
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representations of slope /2. The iterated balanced filtration of a semistable rep-
resentation E coincides with the iterated weight filtration (or HKKP filtration) of
E defined by Haiden—Katzarkov—Kontsevich—Pandit in [33]. This fact is proven in
Chapter 7. Hence the balancing stratification of Rge(Q, d)* can be seen as a strati-
fication by type of HKKP filtration.

3.6.4 VECTOR BUNDLES ON A CURVE

Let C be a smooth projective curve over C and consider the stack Bun(C), 4 of vector
bundles on C of rank r and degree d. The stack Bun(C), 4 has a norm on graded
points g given by the rank and a linear form £ given by the degree as follows. A
graded point g: BG,, ¢ — Bun(C), 4 corresponds to a vector bundle E of degree d
and rank r and a direct sum decomposition E = .., E. as sum of subbundles. We

set

q(g) =Y ¢’ rk(E.)

cEZ
and

(g) = Y cdeg(E,).

cEZ
The pair (¢, g) defines a ®-stratification of Bun(C), 4 all whose centres are quasi-

compact and have good moduli spaces (see [44], [4] and [36]). Therefore the refined
Harder-Narasimhan stratification (Definition 3.5.10) of Bun(C), 4 is defined. This
produces, for every vector bundle £ € Bun(C), 4(C), a sequential filtration of E that
refines its Harder—Narasimhan stratification.

Let u(E) = rk(E)/ deg(E) denote the slope of the vector bundle E. There are
two different notions of semistability on Bun(C), 4. The usual one is given by u:
E 1s p-semistable if for all subbundles F C E we have w(F) < u(E). The other
1s semistability with respect to the linear form £, in the sense of Definition 2.5.12.
The two notions do not agree unless d = 0. Indeed, semistability of E with re-
spect to £ 1s equivalent to the Harder-Narasimhan filtration being trivial. If E is
pn-semistable, then its Harder-Narasimhan filtration 1s 0 = E¢ < E; = E together
with the label w(E;/Eg) = w(E). If w(E) is not 0, then this filtration is not triv-
1al, since our notion of filtration cares about the labels. Thus the semistable objects
with respect to £ are the p-semistable objects of slope 0. If d # 0, then the ®-stratum
Bun(C)?, € Bun(C),,4 of p-semistable vector bundles, although being unstable with
our conventions, is still special, since it is an open stratum, it is isomorphic to its centre

via the associated graded map, and it admits a good moduli space.
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In this setting, a coarser version of the balancing stratification of Bun(C);’; was
defined and studied by Kirwan [57]. Each stratum in Kirwan’s stratification is a
connected component of a locally closed substack of the form |, $ (D(Cn o)) fOrn €
N and ¢ € Q59 U {oo}, where X = Bun(C)},. Therefore Kirwan’s stratification
can be thought of as the stratification by type of balanced filtration. Kirwan calls the
filtrations associated to this stratification balanced 5-filtrations of maximal triviality.

In Chapter 7, we show that the iterated balanced filtration for a semistable vector
bundle E coincides with the iterated HKKP filtration of the lattice of semistable
subbundles of E of the same slope. Hence the (not iterated) HKKP filtration of E

corresponds to Kirwan’s balanced §-filtration of maximal triviality of E.

3.6.5 BRIDGELAND SEMISTABLE OBJECTS

Let X be a projective scheme over an algebraically closed field k of characteristic 0,
and consider a Bridgeland stability condition [15] given by the heart € C D(X) of a
t-structure on the derived category of X and a central charge Z: KJ*™(D"(X)) — C,
where K3"™(DP(X)) is the numerical Grothendieck group. Let 4 = Ind(€) be the
ind-completion of €. Under certain natural assumptions on (€, Z), good moduli
stacks of Bridgeland semistable objects can be constructed as open substacks of M4,
the moduli stack of objects in 4 defined in [8, Section 7] following [9]. We assume
that Z is algebraic in the sense that Z (Db(X )) C Q @ iQ, that Z factors through
a finite free quotient of K" (DP(X)), that € satisfies the generic flatness condition
and that certain boundedness conditions also hold (see [36, Theorem 6.5.3] and [8,
Example 7.29] for details). Under these assumptions, M 4 1s an algebraic stack with
affine diagonal locally of finite type over k.

For a numerical class v € K§"(D"(X)), there is an open and closed substack
M, C My of objects in class v and, by our boundedness hypothesis, there is a quasi-
compact open substack M’ of Bridgeland semistable objects. From the general results
in [8], it follows that M;’ admits a (proper) good moduli space [8, Example 7.29]. The
imaginary part of the central charge defines a norm ¢ on graded points of M4 as in
the previous examples, and the real part defines a linear form £. If g: BG, x — M4
corresponds to E = @ ..z E. in €, then we define

q(g) = Y P ImZ(E,)
ceZ

and

L(g) =) —cRe Z(E.)

ceZ
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as above (this is the norm used in [36, Chapter 6] to define the numerical invariant
on M,, by [36, Lemma 6.4.8]). Therefore M}’ is naturally a normed good moduli
stack, noetherian and with affine diagonal, and thus the balancing stratification and
the iterated balanced filtration of every point are defined.

For E € M (k), the iterated balanced filtration of E coincides with the HKKP
filtration of the lattice of semistable subobjects of E of the same slope. This follows
from Theorem 1.6.1.

More generally, £ and ¢ define a Harder-Narasimhan stratification of M, all
whose centres are quasi-compact and have a good moduli space, so the refined
Harder-Narasimhan stratification of M, (Definition 3.5.10) 1s defined. This produces
a refined Harder-Narasimhan filtration for every point of M,. We warn the reader
that with our conventions M;’ is the minimal stratum for the Harder-Narasimhan
stratification, and not in general the semistable locus with respect to £, similarly to

the case of vector bundles on a curve explained above.

3.6.6 K-SEMISTABLE FANO VARIETIES

Let k be a field of characteristic 0. It has recently been established that there 1s an
algebraic stack X,EV of finite type over k with affine diagonal parametrising families
of K-semistable Fano varieties over k of dimension n and volume V', and that X,If’V
admits a proper good moduli space [5, 13, 14] (see [76] for a book account of these
results). The L?-norm of a test configuration [13, Section 2.3] defines a norm on
graded points of XEV [76, Lemmas 2.36 and 8.44], and thus the balancing stratifi-
cation of X,IEV 1s defined.

The stack X,y of Fano varieties of dimension n and volume V' has a ®-stratification,
defined in [13], whose semistable locus is X,IEV. This ®-stratification is not in-
duced by a linear form and a norm. Nevertheless, since X, y does have a norm
on graded points, it may be possible to apply Remark 3.5.11 to define a refined
Harder-Narasimhan stratification of X, . However, at the time this thesis is being
written, it is not known whether the centres have good moduli spaces, apart from the
K-semistable stratum.

It is plausible that the iterated balanced filtration of a smooth K-semistable Fano
variety X over C is related to the asymptotics of the Calabi flow on X. This would

provide a refinement of the results in [18, 19].
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3.6.7 G-BUNDLES AND GAUGED MAPS

Let C be a smooth projective over C and let G be a connected reductive group. The
notion of semistability for principal G-bundles over C was defined in [68]. A moduli
space of semistable G-bundles on C was constructed in [69,70] using GI'T. The stack
of semistable G-bundles Bung (C)* 1s thus an open substack of the stack Bung (C) of
all G-bundles that admits a good moduli space. A choice of norm on cocharacters of
G induces a norm on Bung (C) as follows. Let T be a maximal torus of G with Weyl

group W, then we have identifications

Grad(Bung(C)) = Hom(BG,, ¢, Hom(C, BG)) = Hom(C, Hom(BG,, ¢, BG))

= || Homx@.C)= || Bun,g(C)
AeTZ(T)/W AeTZ(T)/W

by [36, Theorem 1.4.8]. Therefore there is a natural map
70(Grad(Bung (C))) — no(Grad(BG)) = T'Z(T)/ W,

along which we can pull back the norm on BG to get a norm on cocharacters of
Bung(C). This gives Bung(C)* a natural structure of normed good moduli stack,
and therefore defines the iterated balanced filtration for any semistable G-bundle. We
expect the Yang—Mills flow for G-bundles [10] to be related to the iterated balanced
filtration, in analogy with [34], which deals with the case G = GL, c.

The moduli stack of G-bundles 1s a special case of the general framework of
gauged maps studied in [37]. For a projective-over-affine scheme X over C endowed
with an action of G and n > 0, Halpern-Leistner and Fernandez Herrero define a
stack MY (X) parametrising families of Kontsevich stable maps from C to the quotient
stack X/G. Taking X = Spec C and n = 0 recovers the moduli stack of G-bundles on
C. For suitable numerical invariants y, the semistable locus MS (X )" admits a good
moduli space. The numerical invariant u depends on a choice of norm on cochar-
acters of G, that then gives a norm on graded points of MY (X) similarly to the case
of G-bundles [37, Definition 2.21]. Therefore MZ(X)*** is a normed good mod-
uli stack and the balancing stratification of M (X)*** is defined. The construction
in [37] works over a general noetherian base S of characteristic 0 with affine diago-
nal. In this setting one still gets a noetherian normed good moduli stack M (X )~
with affine diagonal, and its balancing stratification is thus defined. More generally,
MS(X) has a O-stratification whose centres have good moduli spaces [37, Section
5.2], so the refined Harder-Narasimhan stratification of MS (X) is defined.



CHAPTER 4

CHAINS OF STACKS

We introduce the formalism of chains of stacks (Definition 4.1.1) as a tool to compute
the iterated balanced filtration. For every chain of stacks there is an associated se-
quential filtration (Definition 4.1.3). We give two different constructions of chains.
The first, the balancing chain (Construction 4.2.1), is very close to the balancing strati-
fication and it computes the iterated balanced filtration. The second, the torsor chain
(Construction 4.3.1) is more closely related to combinatorial versions of the iterated
balanced filtration. The main theorem of this chapter states that the torsor chain
also computes the iterated balanced filtration (Theorem 4.3.4). This fact will be used
to relate the iterated balanced filtration to convex geometry (Theorem 5.2.16 and

Corollary 5.2.18) and to artinian lattices (Corollary 7.5.11).

4.1 CHAINS

Let k be a field. A k-pointed stack 1s an algebraic stack X together with a k-point
x:Speck — X. k-Pointed stacks form a 2-category as follows. A morphism (X, x) —
(Y, y) of k-pointed stacks 1s a morphism f: X — ¥ of stacks and a 2-isomorphism
a: f ox — y. The composition of (f,a): (X,x) - (¥,y) and (g,8): (¥,y) = (Z,2)
is (go f, Bo(1g*)), where * denotes horizontal composition. If (f, ), (f/,a'): (X, x) —
(Y, y) are morphisms of k-pointed stacks, a 2-morphism (f, ) — (f', &) 1s a 2-
morphism y: f — f’ such that

xo f —=T— xo f’

N

commutes.

DEFINITION 4.1.1 (Chain). A chain (X, Xn, Yn, Un)nen of k-pointed stacks is data:

85
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1. For each n € N, a k-pointed normed stack (X, x,), where X, is of finite pre-
sentation over Spec k with affine diagonal and such that X,, — Speck 1s a good

moduli space.
2. For each n € N, a Q-filtration y, € Q - Filt(X,, x,) of x,.
3. Tor each n € N, a representable, separated and norm-preserving morphism

Un: (Xn41, Xnt1) = (GradQ(xn)’ gr Yn)-

We say that the chain (X, Xn, ¥, Un)neN 1s bounded if there is N € N such that,
for all n > N, we have that y, = 0 and u, induces an isomorphism between X,
and X, seen as the closed and open substack of Gradg (X,) of “trivial gradings”.

A morphasm (X, x,, Vi, uy) —> (Xn, Xn, Yn, Un) of chains consists of morphisms

Ja: (X, x)) = (X,, x,) of pointed stacks, together with isomorphisms f(y,) — V¥

of filtrations and 2-commutative squares

(Xh 412 X0 4 1) —2 (Gradg(X)), gry,)

fn+1l lGrad@(fn)

(Xnt1: Xng1) —— (Gradg(X,). grya)

of pointed stacks.

Suppose that (X, Xn, Y, Un)neN 18 @ bounded chain. For n € N, we define a
map ¢,: Xy41 — Gradgrl(xo) by

cn = Gradg (ug) © Grada_l(ul) 0. 0Up.
By Proposition 2.2.21, ¢, induces an injection
Q-Filt(Xy+1, Xn+1) > Q- Filt(Grad?é“ (Xo)s ¢n(Xn+41))-

Define A,41 € Q -Filt(Gradgrl(Xo), ¢n(Xn+1)) to be the image of y,4; under this
injection. Define also A¢ := yp € Q - Filt(Xo, xo).

LEMMA 4.1.2. There is a canonical isomorphism ¢, (Xp+1) = r Ay, for alln € N.

Proof. Forn = 0, co(x1) = up(x1) =~ gryo = grip is given by uy as a pointed map.

For n > 0, we have
grkn = gr (FﬂtQ(cn—l)(Vn)) = Grad@(cn—l)(gr Yn)
Grad@(cn—l) (Un(Xn+1)) = cn(Xnt1)s

as desired. ]
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Note that there is N € N such that A, = 0 for n > N, because the chain is

bounded. The lemma gives canonical isomorphisms
Q- Filt(Gradg™" (Xo), ¢a(xn+1)) = Q- Filt(Gradg™ (Xo), gr A»)
for alln. Therefore, by Remark 3.2.14, (A,),en defines an element of Q- Filt(Xy, xo).

DEFINITION 4.1.3 (Sequential filtration of a chain). The Q*-filtration associated to the
bounded chain (X, X,, Y, Un)neN 18 (An)nen € Q- Filt(Xy, xo).

4.2 THE BALANCING CHAIN

We now construct a chain closely related to the balancing stratification.

Construction 4.2.1. Let X be a normed noetherian algebraic stack with affine diagonal
and a good moduli space 7: X — X. Let x: Speck — X be a k-point, with k a field.
We define, a chain (X, X,,, ¥n, Un)nen over k as follows.

We set (X9, x0) = (77 '(7(x)), x), which has good moduli space Speck. For
n € N, assume X, and x, are defined. We now define X, +1, xy+1, ¥» and u, in
terms of X,, and x,. We consider two cases:

Case 1. 'The point x, 1s closed in X,,. We then define X, 11 = X,, Xp41 = Xn,
vn = 0 the trivial filtration in Q - Filt(X,, x,,), and

Up: (xn—}—l, xn+1) - (GradQ(xn), ar Vn)

given by the “trivial grading” map.

Case 2. The point x, is not closed in X,,. Then we consider the blow-up p: 8 =
Blymax X, — X, where X" 1s the closed substack of points with maximal dimen-
sion stabiliser [27, Appendix C]. In fact, | X"**| is a singleton consisting of the unique
closed point of |X,| [2, Proposition 9.1], which is different from x, by assumption.
Thus the point x,, lifts uniquely to a point of B that we still denote x,,.

By Theorem 2.6.4 and Example 2.6.8, 8 has a ®-stratification induced by the
natural p-ample line bundle on 8 and the norm. Let § be the locally closed ©-
stratum containing x, and let Z be its centre (Definition 2.5.1). Let y, € Q - Filt(8, x,)
be the Harder—Narasimhan filtration of x, in 8 (Definition 2.5.6) and let x,4+; =
gry, € Z(k). We identify Q - Filt(8, x,) = Q - Filt(X,, x,) by Proposition 2.2.20,
and under this identification y, is the balanced filtration of x, in X, (Definition 3.1.6
and Proposition 3.1.2). By Theorem 2.6.4, Z has a good moduli space nz: Z — Z.

We set X,+1 = ngl(nz (xn+1)). We define u, to be the composition

Grad
tn: Xonss — Z <> Gradg(B) —222 Gradg (),
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which is representable and separated, since applying Gradg preserves representabil-
ity and separatedness, and the first two maps are immersions.

The stack X, inherits a norm from X, along the composition
Xnt+1 — Gradg(X,) — X,.

By commutativity of
Filtg(8) —— Filtg(X,)

grl lgr

Gradg(8B) —— Gradg(X,)
we get a pointed morphism u,: (X,+1, Xp4+1) = (Gradg(X,), gr yn).

DEFINITION 4.2.2 (The balancing chain). Let X be a normed noetherian good mod-
uli stack with affine diagonal, let k be a field and let x € X (k) be a k-point. The
balancing chain of (X, x) 1s the chain (X, X,, ¥n, Un)nen of k-stacks constructed in Con-

struction 4.2.1.

Remark 4.2.3. The following properties of the balancing chain are clear from Theo-
rem 3.1.3:

1. Yor every n € N, we have y, = 0 1if and only if x, is closed in X,,.

2. Yor every n € N, we have that evy(y,) 1s the unique closed point of X,,.

LEMMA 4.2.4. Assume the setup of Definition 4.2.2. For every n € N such that x,, s not closed in
Xon, we have that z(X,) > z(Xo) + n, where z(—) denotes central rank (Definition 3.4.1).

Note as well that z(Xg) > z(X).

Proof. Letn € N and suppose that x, is not closed in X,,. Then z(X,+1) > z(X,) by
Lemma 3.4.7. The results follows by induction. [

COROLLARY 4.2.5. Assuming the setup of Definition 4.2.2, the balancing chain of (X, x) s
bounded.

Proof. If it was not bounded, then for every n € N we would have that x, is not closed
in X, and thus that z(X,) > n by Lemma 4.2.4. This would contradict the bound
z2(Xn) < d(Xo), where d(—) denotes maximal stabiliser dimension (Definition 3.1.5).

]

PROPOSITION 4.2.6. Let X be a normed noetherian good moduli stack with affine diagonal, and let
x € X(k) be a field-valued point. Then the sequential filtration of x associated to the balancing chain
of (X, x) (Definitions 4.1.3 and 4.2.2) equals the iterated balanced filtration of x (Definition 3.5.8).
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Proof. Let (X, Xn, Yn, Un)nen be the balancing chain of (X, x), and let
Abe(x) € Q- Filt(Xg, x9) = Q - Filt(X, x)

be its associated sequential filtration. Note that, by Corollary 3.5.7, the iterated bal-
anced filtration A;,(x) of (X, x) equals that of (X, x).

We prove the statement by induction on N(X) = d(X) — z(X). If N(X) =
0, then x 1s closed in Xy and therefore A;,(x) = Ap.(x) = 0. If x 1s not closed
in X then, using the notation of Construction 4.2.1, yo € Q-Filt(Xy, x) 1s the
balanced filtration of x (Definition 3.1.6). From Proposition 3.2.11, we get a map
@: Q- Filt(X1, x1) — Q>-Filt(Gradg(Xo), gr yo) — Q- Filt(Xo, xo) that, in the

notation of Remark 3.2.14, can be written as

(Ao,kl, . ) = (Vo,ko,kl, . )

By construction of the balancing chain, we have Ap.(x) = ¢@(Apc(x1)), and by con-
struction of the balancing stratification, we have A;,(x) = ¢(Ai,)(x1). By Lemma 3.4.7,
N(X1) < N(Xo). Therefore A, (x1) = Apc(x1) by induction, and hence Ay, (x) =
Abe(X). [

Remark 4.2.77. One could define chain similar to the balancing chain but where one
replaces X, with {x,} (with reduced structure) at each step, and Proposition 4.2.6

would still be true by the same reasons.

4.3 THE TORSOR CHAIN

We introduce a second chain whose construction is similar to that of the balancing
chain, but where at each step the exceptional divisor is replaced by the natural G,,-
torsor over it. Then we prove (Theorem 4.3.4) that this new chain also computes the

iterated balanced filtration.

Construction 4.3.1. Let X be a normed noetherian algebraic stack with affine diagonal
and with a good moduli space 7: X — X. Let k be a field and let x € X (k) be a
k-point. We construct a chain (¥,, y,, 7, Un)nen inductively as follows.

We set (Yo, yo) = (w(7r~1(x)), x). Suppose that (Y,, y,) is defined. We define
NMns Vn and (Y41, yn+1) in terms of (¥, yu).

Case 1. The point y, 1s in ¥"*. In that case, we set 7, = 0, (Y41, Vnt+1) =
(Y, yn) and v (Yns1, Ynt+1) = (Grado(¥,), grn,) the “trivial grading” map.

Case 2. 'The point y, 1s not in ¥**. Then y, lifts uniquely to 8 := Blymx Y,

which is canonically endowed with a linear form on graded points, coming from the
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exceptional divisor, and with the induced norm on graded points (Theorem 2.6.4 and
Example 2.6.8). We let n,, € Q - Filt(Y,,, y») be the HN filtration of y, in 8. Let § be
the locally closed ®-stratum of 8 containing y,, and let Z be its centre. Let & be the
exceptional divisor and N — & the natural G,, -torsor, thatis, N 1s the complement
of the zero section inside the total space of the normal cone to ¥ — ¥,,. If £ 1s the
ideal sheaf of the exceptional divisor &, then N = A((£]g)")*, where A(—)* denotes

total space minus zero section.

LEMMA 4.3.2. The “forget the grading” map h: Z — B factors through & — B. As a conse-
quence, the open immersion Z — Gradg (B) factors through the closed immersion Gradg (&) —
Gradg(B). In particular; the induced map Z — Gradg (&) is an open immersion.

Proof. The centre Z carries a canonical rational BG,,-action, which endows every
quasi-coherent sheaf M on Z with a Q-grading M = P.cq M. To see how this
grading originates, let us assume for simplicity that the BG,,-action is integral. Then
for any morphism f:7 — Z there is an associated map g:7 x BG,, — Z. The
pullback g*M is a G,,-equivariant sheaf on 7', that is, a Z-graded sheaf on T, and
the underlying sheaf'is (T — T x BG,,)*g*M = f*M. Thus f*M has a canonical
Z-grading for every f, and this gives the Z-grading for M itself.

Let £ be the ideal sheaf of &. Since Z is the centre of a stratum, unstable with
respect to the linear form (—, £), we must have that the Q-grading on A*&£ is con-
centrated in degree —1. Indeed, we know that for every map Spec! — Z, with [ a
field, the pullback (Spec! x BG,, — Z)*h*Z is concentrated in degree —1. Thus by
Nakayama’s lemma, (h*£). = Oforallc € Q \ {—1}.

On the other hand, the structure sheaf @z is concentrated in degree 0. There is
amap £ — Og because £ 1s an 1deal sheaf. Pulling this map back along &, we get
a homomorphism 7*£ — Oz that must be 0 for degree reasons. Therefore i factors
through & — B. Since Gradg (&) = & xg Gradg(B), the lemma follows. ]

Let M be the fibre product

M — N
zZ —— &

’

and let y,4+1 be any k-point of M lying above grn,. Any two choices of y,4; are
related by a unique G, x-torsor automorphism of M — Z. Now M has a good
moduli space wyu: M — M because M — Z is affine and Z has a good moduli

space. Finally, we let Y, 11 = 73/ Ty (V1)) and vp: (Yni1s Yar1) = (M, yny1) =
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(Z, grn,) — (Gradg(Xny), grn,). We are abusively denoting 7, both the filtration of

Xxn In X, and in B, and by gr 7, the associated graded point in the two cases.

DEFINITION 4.3.3 (Torsor chain). Let X be a normed noetherian good moduli stack
with affine diagonal, let k be a field and let x € X (k) be a k-point. The torsor chain of
(X, x) 1s the chain (Y, yu, Mn, Vn)nen of k-stacks from Construction 4.3.1.

THEOREM 4.3.4. Let k be a field and let (X, x) be a k-pointed normed noetherian good moduli
stack with affine diagonal. Then the torsor chain of (X, X) is bounded and its associated Q*°-filtration
(Definations 4.1.3 and 4.3.3) equals the iterated balanced filtration of (X, x) (Definition 3.5.8).

Proof. Let (Xn, Xn, Yn.Un)nen be the balancing chain of (X, x) and let (¥, yu, 74,
Un)neN be the torsor chain. The iterated balanced filtration is well-behaved under
field extension by Proposition 3.5.5, and the torsor chain also commutes with base
field extension by a similar argument. Therefore, we may assume that k i3 alge-
braically closed.

By Corollary 2.1.5, Xo = Ro/Go, where Ry 1s an affine scheme and Gy 1s the
stabiliser of a k-point py of Ry which is also the unique closed Go-orbit of Ry. By
Proposition 3.1.7, the norm on graded points of X is induced by a norm on cochar-
acters of Gy. The stack X, can be written as X, = R,/G,, with R, affine and G,
the stabiliser of a k-point p, of R, which is also the unique closed G,-orbit; and the
norm on X, 1s induced by a norm on cocharacters of G,.

We start by introducing some natural extra structure on the balancing chain.
Let N the smallest natural number such that yy = 0. For every n < N, there are
line bundles £, 1, , £,,, on X, constructed inductively as follows. If n < N, then
Lnt1i = (Xng1 = Xp)* Ly foralli =1,...,n. The map X,4+1 — X, we are con-
sidering is the composition of u,: X,+1 — Gradg(X,) and the “forget the grading”
map Gradg(X,) — X,. Using the notation of Construction 4.2.1, we have a rela-
tively ample line bundle £g = Og(—&) on the blow-up 8 = Bl X, and we let
Lntin+1 = (Xpy1 — B)*Lg, where the morphism considered 1s the composition
Xn+1 = Z — Gradg(B) — B.

There is also a natural non-degenerate rational BGJ, -action on X, for eachn <
N. Indeed, if this action has been constructed for X,,, with n < N, we construct it
for X,+1 as follows. Again, we use the notations of Case 2 in Construction 4.2.1.
By Lemma 3.4.5, the rational BG}, -action on X, lifts canonically to a rational BG, -
action on B. Since Z is an open substack of Gradg(8B), it has a natural BG]} x BG,,-
action, and it is nondegenerate by the argument in the proof of Lemma 3.4.7. This

action now restricts to the closed substack X, of Z.
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Let 7,, be a maximal torus of G,,. It follows from [36, Theorem 1.4.8] that the ra-
tional BGJ, -action on X, is given by rational one-parameter subgroups i, ..., B, of
the centre Z(G,) that act trivially on R,. Indeed, the BGJ, -action is given by an ele-
ment f € Hom(G;, ;. T»)®zQ and a connected component C of the fixed point locus
RE% such that the induced “forget the grading” map C/Lg,(B) C Gradg(X,) — X,
1s an isomorphism. Since R, has a point fixed by G,, it must be Lg,(8) = G,, and
consequently C = R,, from what we see that (81, ..., 8,) = B has the desired prop-
erty.

The blow-up 8, = Blym=x X, can be written as 8, = B,/G,, with B, the blow-
up of R, along a closed subscheme R given by X"**. The centre of the locally
closed ®-stratum of B, containing the lift of x,, to B, is Z, = Z,/Lg, (Bn+1), where
Bnt1 € T'Q(T,) corresponds to gry, and Z, is an open subscheme of the fixed point
locus BY"+'°°. The group G, is the stabiliser of a point of Z,,, so it is identified with a
subgroup of Lg, (Br+1) containing B, ..., Bn+1 inits centre. With this identifications

we regard the B; as independent of n.

Clarm 4.3.5. Yoralln < N,forall1 < j < n, we have the equalities (8;, £1+1,0+1) =0
and (Bn+1, Lnt+1,n+1) = 1. Therefore (B;, £,,j) =6 forn < N andi < j <n.

The first equality follows from the fact that the B4, ..., B, act trivially on R, and
thus also on the normal cone to R}**. The second follows from the definition of y,

as the minimiser of ||—|| subject to (yn, £1+1,n+1) = 1, and the fact that gr y, is given

by Bnt1-
Claim 4.3.6. For alln < N and all 1 <i # j < n, we have (B;, 8,) = 0, where (—, —)

denotes the inner product in I'®(T},) defined by the norm on cocharacters of G,,.

We prove the claim by induction. Let n < N. By the Linear Recognition The-
orem 2.6.9, a point z € (B,)P»+1:* belongs to Z, if and only if it is semistable with

respect to the shifted linear form, which in this case is

1
by = (= £8,) = 775 Bnt1. )
2 1B P
where £ g, 1s the relatively ample line bundle on 8,. Since f; fori < n all fix z,
1
we must have £,(8;) < 0 and ¢,(—B;) < 0, but £,(8;) = ———(Bn+1,B:) and

| Bn+11I?
L,(—pi) = —w(ﬁnﬂ, Bi), 80 (Bn+1, Bi) = 0. This proves the claim.
Let us deng;rel Vo = A(LY,)* Xx, -+ xx, A(L, )", where A(—)* denotes total
space minus zero section. There is a natural quotient presentation V, = V,,/G,,

where V, = A(£) Ir,)* XR, *** Xr, AL} ,|r,)*, which is a G} -torsor over R,, and
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in particular carries a G} , -action. Let 7, = im(B4, ..., B,x) C Z(G,). Note that this

is well-defined even if the B; are rational cocharacters and not necessarily integral.

Clazm 4.3.7. The torus T, acts on V}, via a homomorphism §,: T, — G . Moreover,

8, 1s an 1sogeny.

Recall that the torus 7,, acts trivially on R,. The G/, -torsor V,,/T, — R, /T, =
R, x BT, is given by amap r: R, x BT, — BGj, ;, which is in turn given by a map
Ro — Hom(BT,, BG,, ;). We have the equality

Hom(BT,. BG,,) = | | BG"
aeHom(T},,G"

m.k
because T, is a split torus and by [36, Theorem 1.4.8]. Therefore, since R, is con-
nected, r corresponds to a pair (R RN BGy, ,.8,), where o corresponds to the

Gy,-torsor V, — Ry and 8, € Hom(T’,G} ). We recover r as the composition

,Bé, . ST .
Ry x BT’ .50, BG) , x BG] ;, — BGj] ,, the last map being muluplication.

"The homomorphism §, induces a map D(8x)@:T'e(Gy, ;) — To(7,). If we take
Bi.....Bn as a basis of I'g(7,) and the standard basis of Lo(G,, 1), then D(d,)q 1s
given by the matrix (B;, £, ;), which we have shown is upper triangular with 1’s in

the diagonal. Therefore D(8,)g is an isomorphism and §, is an isogeny.
Claim 4.3.8. Let X, = R,/(G,/T,) and let D, = ker§,. Then V,/(G,/D,) = X,.

The group (G,/D,)/(T,/Dy) acts on the stack V,, /(T, / D,) and there is a natural

isomorphism

Va/(Gn/Dy) = (Va/(T,/Dn)) / ((Gu/ Du)/(T,/ Dn)) ,

by [71, Remark 2.4]. Since 7,,/D, = G, ; and ¥, — R, is a Gy,-torsor, we have
V./(T,/D,) = R,. Notung that (G,/D,)/(T,/D,) = G,/T,, we get the desired
1somorphism.

As a consequence of the claim, we see that the good moduli space of 'V, is Speck.

Claim 4.3.9. Let f,: V, — X, be the G” -torsor map. Then f,~}(XD1) = Ymax and
d(X,) =d(V,) + n.

Let p;, be a k-point of V,, mapping to p, along V, — X,. Necessarily G, p,, is
the unique closed orbit inside V,. Let H, be the stabiliser of p,. By [7, Theorem
10.4, (5) and (6)] together with the fact that the good moduli space of V, is Speck,
there is a locally closed H,-equivariant subscheme S, of V, containing x;, such that
Sn/H, — Vy1s an 1isomorphism. The map S, /(H,/D,) — V,/(Gn/D,) must also be
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an 1isomorphism. Since S, has a point fixed by H,,, the maximal dimension stabiliser
locus 1s V' = S,EH”)" /H,, where (H,), 1s the reduced identity component of H,
(see [27, Appendix C]). Similarly, (V,,/(G,/Dy))"™*> = (S,)H/Pn)e /(H,/D,). Since
D,, acts trivially on S,, we have (S,)®#»/Pn)e = S This proves that, denoting
Pn: Va — X, the obvious map, we have V" = p~1(X™)_ On the other hand, since
R, has a point fixed by G,, we have X = R,(,G")" /Gp. Since T, acts trivially on Ry,

X = R (G, /T = RO /(G,/ T)) so, denoting gn: X — X, we have

n
—~~Mmax

g (Ym) = 2. Hence ;7 (960) = g, (X, ) =0 (%, ) — V. For
the last statement, just note that d(V,) = d (Yn> and that d(X,) = d (Y,,) + n.
This proves the claim.

Suppose that n < N. Let x,, be a k-point of V,, mapping to x, along V, — X,.

Claim 4.3.10. The balanced filtration of (V,, x;) equals the balanced filtration of
(X, x,) under the injection Q - Filt(V,, x;) — Q - Filt(X,, x,).

We identify the balanced filtration of (X, x,) with B, € I'®(G,). Since B4 is
orthogonal to the cocharacters in T/, by Claim 4.3.6, and since X, — X, preserves
the substacks of maximal stabiliser dimensions, the image B, +1 € T9G,/T)) of
Bn+1 inside G,/ T, is the balanced filtration of (X, x,). Since pp:V, - X, is a
gerbe banded by the finite group D,, Q-Filt(V,,x!) = Q-Filt(X,, x,), and this
equality identifies the balanced filtrations of 'V, and X, because p; 1(Ynmx) = Y,
Therefore B,+1 1s also the balanced filtration of (V,, x),).

Let €, = BlymV, = C,/G,. Since V, — X, is flat, being a G/ -torsor, and

since f,71(XMa) = VYmax e have that the blow-ups form a cartesian diagram
c, —— YV,
| 12
B, — X,.

Let Z, be the centre of the locally closed ®-stratum of €, containing the lift of x;, to
C,.

Claim 4.3.11. There is a natural cartesian square
z, —V,
Z, —— X,.

We denote B,+1 = A for simplicity. As mentioned above, the centre Z, 1is the
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semistable locus inside 8} := B*°/L¢, (1) for the shifted linear form
1
RUE
where here £ := £g,[ g is the standard relatively ample line bundle on 8,, pulled
back to 8*. Similarly, Z/ is the semistable locus inside €} := C}°/Lg, (1) for the

form

(= &£)

(A’_)’

1
_ai Al = T, A‘a_ )

since £[es 1s the standard relatively ample line bundle on €,. First, note that the

natural square
e — e,
8} —— 8,

1s cartesian. This follows from cartesianity of the two squares

¢t ——, B8} —— 8,
l l and l l (4.1)
€, —— ¢, B, —— By,

where 8, = C,/(Ga/ D), €, = C}/L6,/p,(A), By = By/(G,/T}) and B, =
B}/ Lg, 1, (L), together with the isomorphisms €, =~ 8, and Ei = fz From
the compatibility of the standard relatively ample line bundles on €,, 8, and €, =
B, under pullbacks and from the shape of the shifted linear forms, it follows that
@) xg, € = (€1)* and B, xg B, = (B, and therefore Z, = (€})* =
(:B,)l“)SS X g, En = Z, Xx, Vn, as desired. This proves the claim.

We now show by induction that (V,, x,,) = (¥Y,, y,). For n = 0 there is nothing

/

to prove. If n < N and (V,, x;,) = (Y, yn), then ¥, is constructed as follows. We

take the standard relatively ample line bundle £¢, on €, and let M = A(L¢ |z,)".

!/

ws, and we let

We choose a point y,4; in M mapping to z = lim,,0A(t)x, € Z
(Y441, Yn+1) be the fibre of the good moduli space of N containing y,+;. Note that

by the previous claim,
Z, = AL, 1|2,)" Xz, - xz, AL, ,]2,)7,

so actually M = A(L,) 1z,)" Xz, -+ Xz, AL, ,|z,)" Xz, A(LZ |z,)*. The stack
Xn+1 18 the fibre of the good moduli space of Z, containing lim,_,¢ A(¢)x,, and from

the definitions we have V,41 = X,4+1 xz, M. Since we have seen that V,4, has for
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moduli space Speck, it must be the fibre of the good moduli space of M. Therefore
Vi1 = Y,41. By either choosing the lifts x;,, , appropriately or applying a torsor
automorphism of ¥,, we can arrange that y,1; = x,,_.

In particular, from these isomorphisms it follows that yy is closed in Y, so the
torsor chain is bounded. We have seen that the balanced filtration of V,, maps to the
balanced filtration of X,,. Therefore the maps ¥, — X, give a morphism of chains
(the compatibility of link morphisms ¥,4; — Gradg(Y,) and X,+1 — Gradg(X,)
naturally follows from the construction). Since ¥, = Xy, the sequential filtration of
the torsor chain equals the sequential filtration of the balancing chain, as we wanted

to show. O]



CHAPTER 5

THE ITERATED BALANCED FILTRATION AND
CONVEX GEOMETRY

Despite its seemingly convoluted definition in terms of repeated blow-ups and ©-
stratifications, we illustrate in this chapter how the iterated balanced filtration can be
explicitly computed in terms of convex geometry and convex optimisation for stacks

of the form V/G! , where V is a vector space. Even if we are only interested in

n
m,k>

nalisable groups, that 1s, groups of the form an‘fk X Mnyk X o0 fny k, Where [y, g 1S

actions by a torus G” ,, we will need to deal more generally with actions by diago-
denotes the group of n;th roots of unity over k. The reason is that these groups will
naturally appear as stabilisers. We recall some facts about diagonalisable groups at
the beginning of Section 5.2.

Suppose one is interested in the iterated balanced filtration of a geometric point
x:Speck — X in a normed good moduli stack X. By taking the fibre of the good
moduli space at x, we may assume that X — Speck is the good moduli space. If y 1s
the unique closed k-point of X', and G is the stabiliser of y, then X is of the form X =
Spec A/ G by Corollary 2.1.5. Since closed immersions have no effect in the iterated
balanced filtration, we may assume after embedding Spec 4 in a representation of G
that Spec A = V is a finite dimensional vector space on which G acts linearly, and the
point x is given by some vector x € V. From now, we assume that G is diagonalisable
(for example, G = G, ; is a split torus). Then the structure of G-representation V
is determined by a direct sum decomposition V = @, 1, ) Vx> where G acts on
V, by the character y. The state of x (named after [53]) is the finite set E = {y €
I'z(G)| py(x) # 0}, where p,: V — V, denotes the projection. Writing V = V'@V,
and considering the closed immersion V'/G = (V' x {po(x)}) /G — V/G, we may
assume that 0 ¢ E. We may simplify the situation further by considering A ¥ to be the

product of #(E) many copies of A}, endowed with the action of G via the characters

97
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in E. There is a G-equivariant linear closed immersion A% — V sending the point
(1,...,1) to x, so we may replace V/G and x with A%Z/G and (1,...,1). This is the
pointed stack associated to the state E (Definition 5.2.1).

We will be able to determine the balanced filtration of x in terms of its state 2.
To this aim, we develop a theory of polarised states (where, in addition to the set E,
we have the data of a character : G — G, k) purely in combinatorial terms. We
introduce a notion of filtration (Definition 5.1.3) and Q*°-filtration (Definition 5.1.5)
for states, and an analogue of the balancing chain and of the iterated balanced fil-
tration (Definition 5.1.19). We then define a functor (Definition 5.2.1) that associates
a pointed stack to every state, and we prove that the iterated balanced filtration of
the pointed stack coincides with that of the state (Corollary 5.2.18). Computing the
iterated balanced filtration of a state boils down to a simple convex optimisation prob-

lem.

5.1 POLARISED STATES

We develop here a combinatorial analogue of the theory of iterated balanced filtra-
tions. For the rest of this section, we fix a subring 4 of R with field of fractions K, and
we assume that A4 is a principal ideal domain. We endow 4 and K with the order
induced from R. The two most important cases for us are A = Z and K = Q, and
A = K = R. The first is important for the comparison between stacks and states,
while the second allows to formulate a more general conjecture on asymptotics of

gradient flows (Conjecture 5.3.5)

DEFINITION 5.1.1 (Polarised state). A polarised state 2 over Ais atriple 2 = (M, E, o)
where

1. M is a finite type A-module,

2. E C M \ {0} is a finite subset (the state), and

3. a € Mk (the polarisation).
We denote My = M ® 4 K, MY = Hom(M, A) and MY = MY ®4 K. A normed po-
larised state 1s a polarised state E = (M, B, o) together with a K-rational inner product

\Y
on Mg.

For the rest of this section, all polarised states considered will be defined over A.
Let & = (M, E, @) be a polarised state. We denote (—, —): MY x M — Z the duality
pairing. For A € M}, we let Hy = {f € Mg | (A, B) > 0} be the half-space defined
by A and 0H; = { € Mk | (A, B) = 0} the hyperplane defined by A. We will need a

few basic notions about convex geometry for which a sufficient source is [30]. A cone
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in Mk is a subset of the form Hy, N---N Hy, for Ay, ..., A, € My or, equivalently, of
the form (K>o)x1 + -+ + (K>o0) xx for x1,..., xx € Mg. We include the degenerate
cases {0} and Mg. If C 1s a cone, a face of C 1s a subset of the form C N dH,, where
A € MY is such that C C H,.

DEFINITION 5.1.2 (Semistable and polystable polarised states). We say that the po-
larised state Z is semustable if o 1s in cone (E), the convex cone generated by & inside
Mg. We say that B 1s polystable if it 1s semistable and the smallest face of cone (E)

containing « is cone (2) itself (that is, & 1s in the relative interior of cone (2)).

We are abusing notation by denoting the image of & inside Mk also by E. By

cone (E) we will always mean a subset of Mg.

DEFINITION 5.1.3 (Filtrations of a state). Suppose that E is semistable. The set of
K -rational filtrations (or K -filtrations) of E 1s

K-Filt(E) :={A e M{| (A, E) > 0and (A,a) = 0}.
We are using the notation (A, E) > 0 to mean that (A, y) > O holds forall y € E.

DEFINITION 5.1.4 (Associated graded state). Suppose that E is semistable and let
A € K-Tilt(Z). The associated graded state Grad,(Z) 1s the semistable polarised state
Grady(E) = (M, E,,a), where B, o := E N dH,.

Proof that Grad (£) us semustable. Since E C Hj, we have the equality cone(E)NdH, =
cone(E N dH;). Therefore o € cone(E, ). []

DEFINITION 5.1.5 (Sequential filtrations of a state). Let 2 = (M, E, «) be a semistable
polarised state. The set K -Filt(E) of sequential filtrations (or K*°-filtrations) of 2 1s the
set of those sequences (A,)nen In My satisfying

l. A, =0forn > 0, and

2. Ao € K-Filt(E) and, for all n € N, we have

An € K-Filt (Grady, , (---Grady, (Grady,(Z)):--)).

DEFINITION 5.1.6 (Morphism between states). A morphism ¢: 21 = (My, E1,01) —
B, = (M, B3, az) between semistable polarised states is a surjective homomorphism
@: My — M such that

1. for all y € B,, either () € E; or ¢(x) = 0; and

2. ay € cone (E, Nkerg).
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If 2, and E, are normed, we say that ¢ is a morphism between normed semistable
polarised states if the inner product on (M) is the restriction of that on (M,)} along
the inclusion (M)} — (M>)x defined by ¢.

With the obvious composition and identity, semistable (normed) polarised states

form a category.

LEMMA 5.1.7. Let 9: 21 = (M, E1,01) = Eo = (M,, B, a2) be a morphism between
semustable polarised states. Then the injection @ ¢: (M1) g — (M) induces amap K - Filt(2,) —
K -Filt(Z,) between sets of K -rational filtrations.

Proof. If A € K-Tilt(21) and y € E,, then (pg(A), x) = (A, 9(x)) = 0, since either
e(x) = 0or ¢(y) € E;. Likewise, (pf(4),az) = (A, p(a2)) = 0, since ¢(az) = 0 in
(My)k. Therefore g (A1) € K -Filt(E,). [

In the situation of Lemma 5.1.7, we will use the simpler notation ¢(1) := @} ().

PROPOSITION 5.1.8. Let 9: 21 = (M, By, 01) = E, = (M3, E, «2) be a morphism
between semustable polarised states and let A € K -Filt(21). The homomorphism ¢: My — M,
induces a map Grad, (¢): Grady(E,) — Gradyn)(E2) between associated graded states.

Proof. The first condition to be checked is that forall y € (E,);.0, we have ¢(y) = Oor

¢(x) € (ED)x,0- I (x) isnot 0, then ¢(x) € &y, and since (A, ¢(x)) = (¢(A), x) =0,
we have indeed ¢(x) € (E1)2,0. For the second condition, we have

oy € cone (E, Nkery) N dH,) = cone (Ez Nkerg N aH(p(;L))
= cone ((Ez)w(x),o N ker go) ,

as desired. ]

DEFINITION 5.1.9 (Chain of states). A chain of normed semistable polarised states 1s a se-
quence (Z,, An, Uy)neNn Where
1. for each n € N, B, 1s a normed semistable polarised state;
2. A, € K-Filt(E,) for eachn € N;
3. uy: Ep41 — Grady, (2,) is a morphism of normed semistable polarised states;
and

4. foralln > 0, A, = 0 and u,, 1s an 1somorphism (boundedness).

Suppose that (E,,A,, Un)nen 1s a chain of normed semistable polarised states.
We denote ¢,: 2,41 — Grad,,, (---Grad,, (Grad,,(Z2y))---) the map defined by

cn = Uy o Grady, (Up—y) 0--- 0 Grady, (--- Grady, (Grad,,(ug))---) .
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We are abusively denoting by A, the image of A, along the relevant maps between
sets of filtrations, but note as well that all these maps are injective. The sequence
(cn—1(An))nen (Where c_1(Ao) := Ag) 1s a K*°-filtration of E,.

DEFINITION 5.1.10 (Associated sequential filtration). The sequential filtration associated
to the chain (B, Ay, Un)neN 1S (Ch—1(An))neny € K -Filt (E). We will simply denote it
(An )n eN-.

DEFINITION 5.1.11 (Slice of a state). Let 2 = (M, E,«) be a semistable polarised
state. Let F be the smallest face of cone(E) containing «, let R be the submodule of
M generated by F N E,let M = M/R,letg: M — M’ be the quotient map, and set
B =¢q(E \ F). We define the slice of E to be the state 2’ = (M’, E’, 0) together with

the morphism ¢: &’

— Z given by ¢: M — M'. If E is normed, we regard E" as a
normed polarised state, where (M’)¥ inherits an inner product along the inclusion

gp: (Mg — Mg.

Note that E’ is semistable, since 0 belongs to any cone. We are again abusing
notation: the expression F N & denotes the subset of & consisting of the elements y

whose image in Mg is contained in F.

PROPOSITION 5.1.12. Let B = (M, B, «) be a semustable polarised state and let g: 2" — Z
be its slice. Then the map K -Filt(E') — K - Filt(E) induced by q is a bijection.

Proof: We use notation from Definition 5.1.11. Let A € K -Filt(E). Then cone(E) N
0H) 1saface of cone(E) containing o, so F' C cone(E)NdH,. Inparticular, (A, y) =0
for all y € F N E. Therefore A has a preimage A" along gy:(M')x — MY, and
(AMog(p) = (A, x) = 0forall y € E\ F,so A € K-Filt(E’). Hence the map

K -Filt(E’) — K -Filt(Z) is surjective. Since it is also injective, it is a bijection. [

DEFINITION 5.1.13 (Complementedness of a filtration). Let & = (M, E,«) be a
semistable polarised state and let 2" = (M’, E’,0) be its slice. Let A € K-Filt(E) =
K -Filt(2'). We define the complementedness (A, 1) € Ko U {00} of A to be
(A, ) = mf (4, x).
X€EB

PROPOSITION 5.1.14. et 2 = (M, E, ) be a semistable normed polarised state. "There is a
unique element A € K - Filt(Z) such that

1. (A, ) > 1, and

2. forally € K -Filt(Z) such that (y,1) > 1, we have ||A| < ||y|.
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Proof. We may assume 2 = E'.

If 2 = @, then A = 0 is the unique K-rational
filtration satisfying the conditions. Otherwise, P = {y € Mg | (y.x) > 1, Vx € B}
1s a nonempty closed convex set (actually, an intersection of translated half-spaces)
inside My = MY ®k R, so there is a unique element A € P minimising the norm
|—|. To see that A € MY, note that A lies in the relative interior of a face F of P.
The affine space F generates is of the form Vg + v, where V' is a vector subspace
of M¢, V'R = V ®g R and v € M. Since A is also the closest point to the origin
in Vg + v, we must have that A = v — p(v), where p is the orthogonal projection
p: Mg — Vg. Since the inner product on My is K-rational, p is defined over K, and

thus A 1s K-rational. O]

DEFINITION 5.1.15 (Balanced filtration of a state). Let 2 be a semistable normed
polarised state. The balanced filtration A1,(Z) of E 1s the unique A € K - Filt(Z) satisfying

the conditions of Proposition 5.1.14.

Remark 5.1.16. For a normed semistable polarised state & = (M, E, @), we have E' =
@ if and only if E is polystable, if and only if the balanced filtration A,(£) = 0.

DEFINITION 5.1.17. Let E be a normed semistable polarised state, and let A €
K -Filt(Z) be such that (A,[) > 1. We define a normed polarised state A;(Z) as
follows. Let ' = (M’, E’, 0) be the slice of E, let

Eni={xeM A x)=11c M,

andlet AY be the unique element of (M") g satistying (y, A¥) = (y, A) forally € (M')%,

where (—, —) denotes the inner product on (M')%. Finally, we set
Au(E) = (M, (EN)x1,AY).

The following theorem is an analogue for states of Theorem 2.6.9 in the case of

algebraic stacks and [33, Theorem 4.9] in the case of artinian lattices.

THEOREM 5.1.18 (Recognition of the balanced filtration for states). Let E be a normed
semistable polarised state. ‘Then the balanced filtration of E s the unique filtration A € K - Filt(E)
satisfying

1. (A1) > 1 and

2. the polarised state A ; (2 is semistable.

Proof. We use the notation of the proof of Proposition 5.1.14. By definition, the bal-

anced filtration A is the unique element in P minimising the function 1/2|—||?, whose
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differential at a point y € (M')g is precisely y¥ € (M’)r. By the Karush—Kuhn—
Tucker conditions' [59], for y € P we have y = A if and only if there are numbers

uy > 0foreach y € E'such that y¥ =)z uyx and u,, = 01if (y, y) > 1. But this

XEE
precisely means that yV € cone ((E/)y,l), 1.e. that A, (Z) is semistable. [

If A is the balanced filtration of E, then idy defines a morphism A (Z) —
Grad, (E) (note that (E'),,0 = @), and the quotient map M — M’ defines a mor-
phism Grad; (E’) — Grad, (). Therefore A, (Z) is equipped with a canonical map
Ay (E) — Grady(E).

DEFINITION 5.1.19 (Balancing chain of a state and the iterated balanced filtration).
Let E be a normed semistable polarised state. The balancing chain of 2 1s the chain

E ., An, Un)nen of normed semistable polarised states defined inductively as follows:

l. E¢:=E/;

2. for every n € N, A, is the balanced filtration of E,,, E,+; = (A;,(E,))’, and
Uy: Epe1 — Grad;, (E,) is the composition of (A, (E,)) — A, (E,) and the
canonical map A;,(E,) — Grady, (E,).

The terated balanced filtration of 2 is the sequential filtration A;,(ZE) € K -Filt(E)

associated to the balancing chain of E.

Proof that the balancing chain s well-defined. We need to check the boundedness condition
in Definition 5.1.9. We observe that, denoting & = (M, E,a), if o # 0 and ZE 1s not
polystable, then #(E’) < #(&). Therefore, eventually A, = 0, and hence E), = @ by
Remark 5.1.16, from where the chain stabilises. [

Remark 5.1.20 (Torsion). The torsion of M does not affect the iterated balanced filtra-
tion, but we allow for any finite-type A-module M in the definition of polarised state
in order to make the correspondence with stacks cleaner. Even if we are only inter-
ested in the case of a torus action, other diagonalisable groups that are not tori will
show up as stabilisers of points, and their group of characters can be any finite-type

abelian group.

Recall that, when minimising a convex differentiable function f:R” — R on a convex set R C R”
defined by inequalities g; (x) > 0, the Karush—Kuhn—Tucker conditions say that for x € U to be a
minimum of f, itis necessary and sufficient that the gradient V f(x) belongs to the span of the Vg; (x)
with g; (x) = 0.
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5.2 FROM STATES TO GOOD MODULI STACKS

We now define a functor from states to pointed stacks, and prove that both theories
of iterated balanced filtrations coincide. We fix a field k for the rest of this section.
All polarised states considered in this section will be defined over Z (i.e. A = Z).

We recall that a diagonalisable group G over k is an algebraic group of the form
G = Speck[M] for a finite-type abelian group M, where the multiplication is given
by the map k[M] — k[M] @k k[M]:m +— m ® m for m € M. The group G is
said to be Cartier dual to M, and we write G = D(M). The group of characters
of G is naturally identified with M, I'z(G) = M, and the Cartier duality functor
M — D(M) gives an anti-equivalence of categories between the category of finite-
type abelian groups and the category of diagonalisable groups, with inverse I'z(—).
We have D(Z) = Guk, D(Z/nZ) = pnx (the group of nth roots of unity) and
D(M, x M) = D(M;) x D(M,). Hence, by the classification of finite-type abelian
groups, any diagonalisable group is isomorphic to G, X fn, k X =+ X ln, k for some
no,! € N and ny,...,n; € Z~,. Yor detailed account of diagonalisable algebraic
groups, we refer the reader to [64, §12.c,d].

DEFINITION 5.2.1 (Stack associated to a state). Let & = (M, E,«) be a (normed)
polarised state. We define a k-pointed (normed) good moduli stack (Xz, xz) over k
and a line bundle £z on Xz as follows.

First, we denote Gz = D(M) the diagonalisable algebraic group over k Cartier
dual to M. The group of characters I'z(Gz) of Gg is identified with M. Let AY be
the product of #(Z) many copies of A;. Consider the action of Gz on A¥ through
the characters in &, that s, g - (xy)yez = (x(g)Xy) ez for g in Gz and (xy)yez In
AE. Let Xz == Af/Gg and xzg = (1,---,1) € AE(k). We also denote xz the
composition Speck =, Af¥ — X=z. We identify Mg = Pic(BGz) ®z Q, and thus
the polarisation « defines a rational line bundle £z = Ox. (¢) = (Xg — BGz)*«
on X=z. We denote £z the linear form on Xz associated to £z. If E 1s normed, the
data of the inner product on M is equivalent to that of a norm on cocharacters of
Gz. It thus defines a norm on graded points of BGz and also a norm on Xg by

pullback along Xz — BGz.

We fix a polarised state 2 = (M, &, «), and denote E° = (M, E, 0) the associ-
ated “unpolarised” state. We abbreviate (X, x) = (Xgz,xz) and G = Ggz.

PROPOSITION 5.2.2. There is a canonical byection

Q- Filt(X, x) = Q - Filt(2°).
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Proof. By Remark 2.2.19, the set Q-Filt(X, x) of rational filtrations of x in X is
identified with the set of those rational cocharacters A € My = I'?(G) such that
lim; o A(?)x exists in A,‘j‘. Since A(t)x = (ZM’X))XeE, the limit exists precisely when
(A,x) >0forall y € E. []

For y = (yy)yez € AE(k), we define the state of y to be the set B, = {y €
E| yy #0}. If welet B, = (M, 8y, a), then we have a closed immersion f: Xz, —
X given by
ZyYx» X € By
0, else,

f ((ZX)XGEJ/)X = {

and f maps xg, = (1,---,1) to y.

PROPOSITION 5.2.3. Let A € Q -Filt(X, x). Then the state of y = lim; o A(t)x 1s B, =
ENJH,;.

Proof. Again, A(t)x = (t%*¥),cz and thus

which implies the claim. ]
The state also determines the stabiliser of x.

PROPOSITION 5.2.4. Let K be the subgroup of M generated by the elements of E, and let C =
M/K. Let S = D(C) be the Cartier dual of C, which is equipped with an injection S — G. Then
S’ s the stabiliser group of x.

Proof. The group G acts on A via the characters y:G — G, x € E, each of
which can be seen as the Cartier dual of the map Z — T'z(G):1 — x. If E =
{X1.--.. xn}, then the stabiliser of x is the kernel of (y1,..., y»):G — GJ,, and its
group of characters 1s, by Cartier duality, the cokernel of the map Z" — M:e; — y;,
which 1s C. [

PROPOSITION 5.2.5. The point x is semustable in X for the linear form £z if and only if the

polarised state E s semustable.

Proof. Tt follows from Proposition 5.2.2, together with the fact that (A, Ox(x)) =
—(A, ) with our sign conventions (Remark 2.4.4), that x 1s semistable if and only
if for all A € Mg such that (A, ) > 0 (thatis, & C Hj) we have (1,a) > 0 (that is,
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« € H,). The result now follows from this and the fact that cone (E) is the intersec-
tion of those half-spaces Hj such that E C Hj (where we are again abusing notation

by identifying & with its image inside Mg). ]

PROPOSITION 5.2.6. Suppose that x is semistable (equivalently, Z is semistable) and let A €
Q-Filt(X, x). Then the imit y = lim,_,o A(t)x is semustable of and only of (A, o) = O.

Proof. We have equalities 9H; Ncone (E) = cone (IH; N E) = cone (&), the second
of which follows from Proposition 5.2.3. The result follows from Proposition 5.2.5

applied to Xz, which is a closed substack of X containing y. []

Note that X admits a good moduli space, and £z is trivially idx-positive (Def-
mition 2.6.1). Therefore Theorem 2.6.4 implies that the semistable locus X* =
(AZ)” /G with respect to £z has a good moduli space 7: X% — X.

PROPOSITION 5.2.7. There is a canonical byection Q - Filt(Z) = Q - Filt(X*, x).

Proof: Q- Filt(X*, x) 1s the subset of those A € Q - Filt(X, x) such that lim,_,¢ A(#)x 1s
semistable, while Q - Filt(Z) 1s the subset of those A € Q - Filt(E°) such that (A, a) =
0. Thus the result follows from Propositions 5.2.2 and 5.2.6. []

We can also characterise polystability in terms of the state:
PROPOSITION 5.2.8. The point x is polystable inside X** if and only if the state B s polystable.

Proof. The point x being polystable is equivalent to it being semistable and, for all
A € Mg such that (A, E) > 0 and y = lim; A(¢)x is semistable, having x = y. By
Propositions 5.2.3, 5.2.5 and 5.2.6, this condition is equivalent to having that E is
semistable and, for all A € M, having that the conditions & C H, and (A,a) = 0
imply that E C dH,. This means that the smallest face of cone (E) containing x is
cone (E) itself, that is, that Z 1is polystable. []

From now, we do not fix a particular polarised state E, and we stop abbreviating
(X,x) =(Xg,xg)and G = Gz.

DEFINITION 5.2.9. Let ¢: 21 = (M, E1,1) = E2 = (M>, E», 2) be a morphism
between semistable polarised states. We define pointed morphisms f,: (Xz,, xg,) —

(Xz,,xz,) and f(;S: (XsEsl,xEI) — (ngz,xsz) as follows.
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First, the homomorphism ¢: M, — M, defines a Cartier dual group homomor-

phism D(¢): Gg, — Gz,. The k-algebra homomorphism

lor)» ©(x) € E1,
1, () =0.

klty; x € B2l = klty: ¥ € Eq]: x —

defines, after taking Spec, a D(¢p)-equivariant map

Yo ©(X) € B,
1L, ¢(x) =0.

sending (1,...,1)to(1,..., 1), and thus a pointed morphism of stacks f,: (Xz,, xg,) —

Al = A% (Yy)yer, &

XE€E2

(Xg,, xz,). For all geometric points y = (yy)yez, € A,‘j‘l (E), the state of f,(y) con-
tains all elements of &, N ker ¢ and thus f,(y) is semistable. Therefore f, restricts

to a morphism f*: (X% ,xg,) = (Xg,, xz,).

The assignments ¢ — f, and ¢ — f* respect composition. If ¢ is a morphism
of normed semistable polarised states, then f, and f;* are normed morphisms of stacks.
Therefore, the assignments E — (Xz,xz) and ¢ — fJ° define a functor from the
category of normed semistable polarised states to the category of k-pointed normed

good moduli stacks with affine diagonal and finitely presented over k.

PROPOSITION 5.2.10. For E a semistable polarised state and & € Q - Filt(Z), there is a natural
pointed isomorphisn (Gradg(X5 a1 81 A) 2 (X80, 2y Xracs(@) - Here, Gradg (65)
is the connected component of Gradg (X5) containing gr A.

Progf. By [36, Theorem 1.4.8], Gradg(X3)gs = (AZ)""" /Gz, where (AZ)™ is
the fixed point locus for the (rational) G, x action on AF given by A and (AE)A’O’SS 1s
the semistable locus. On the other hand, looking at the weights one gets the equality
(A7)

desired isomorphism of pointed stacks. ]

= Afm, and both grA and xg.q4, (=) are the point (1,---,1), giving the

DEFINITION 5.2.11. Let (E,, A,, un)nen be a chain of normed semistable polarised
states. Applying the functor E — (Xz,xz) gives an associated chain of k-stacks (Xz .

Xz, An, hn), where each hy, is the composition of
SS . SS SS
Up (x5n+1 ) XEn_H) - (xGrad)l(En)’ xGrad,\(En)) )

the isomorphism (Xg;jmdx(an), xGradA(gn)) — (GradQ (ngn)gr)L ,gr /\) from Proposi-

tion 5.2.10, and the open and closed immersion

(GradQ (DCSESH)WL ,gr)t) — (Gradg (X% ).grA).
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PROPOSITION 5.2.12. Let B be a semistable polarised state. Then there is a canonical byjection
Q>-Filt(E) = Q- Filt(X3, xz).

Proof. 'The bijection follows from the description of Q*°- Filt(X%, xz ) in Remark 3.2.14
and an iterated application of Propositions 5.2.7 and 5.2.10. ]

PROPOSITION 5.2.13. Let E be a semustable polarised state, and let B’ — 2 be its slice. Then
the associated morphism Xz, = Xz — X3 identifies Xz, with the fibre of the good moduli space

Xg — Xg contaiming Xz .

Proof.

We use the notations of Definition 5.1.11. Let yq,..., x» be the different ele-
ments of 8 and assume, after reordering, that {yi,..., y;} = F N &8 (where F 1s
the smallest face of cone(E) containing «), the equality to be interpreted inside Mg
(that is, modulo torsion). The state of E' 1s " = q {)i+1,.--, xn}) C M’, where
q:M — M’ 1s the quotient map.

We remark that for any A € Mg such that 8 C H; and dH, Ncone (E) = F, the
limit y = lim,_,o A(¢)x 1s polystable. Note also that y does not depend on the choice
of A. By Proposition 5.2.4 applied to &), the stabiliser of y 1s H := Gz-.

We identify A¥ = AZ, the action of G = Gg on A} being via the characters
X1s---s Xn. The G-equivariant open subscheme G}ln’k X Aﬁ_l - (Az)SS 1s saturated
with respect to the good moduli space Xg = (A?)” /G — (A})” /G = X§&, and
thus the fibre of X3 — X2 containing xz = (1,...,1) equals the fibre of the good
moduli space (G’ln’k X A’,:_l) /G — (G,ln,k X AZ_I)//G containing (1,...,1). Indeed,
for every E-point (a,b) in an,k X Ag_l , Gz(a,0) is the associated polystable orbit, and
conversely if a semistable k-point z in A? has associated polystable orbit of the form
Gz(a,0), then it should lie in an & X Az_l .

Consider the (H — G)-equivariant map

h:AZ‘l — an,k XAZ_IS(ZI,...,ZH_I) =Lz, Zem),

and the associated morphism Az_l /H — (an,k X AZ_Z ) /G, which is the restriction
on the codomain of the map f*: Xz, — Xz. Let I be the image of the homomor-

phism G — an,k given by xi,..., xx. From an explicit computation of the ring of
invariants it follows that (an’k X Az_l> /G — (G’ln,k X AZ") /G = an,k/l 1s the
good moduli space, and its fibre over e € an,k /1(k) is (I x A7) /G. To conclude,
we note the isomorphism

(1 x Az—l) /G =~ ((G/H) x Az—l) /G = A" /H
induced by A. L
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From Proposition 5.2.13 we get bijections
Q-Fily(E") ~ Q-Filt(Xg/, xg/) =~ Q-Filt(Xz, xzg) =~ Q-Filt(E)
between sets of filtrations. This is consistent with Proposition 5.1.12.

PROPOSITION 5.2.14. Let E be a semustable polarised state and let A € Q -Filt(Xgz, xg).
Then the Rempf number (A, X i) equals the complementedness of A:

(A, X2y = (A, 1).

Proof. Write ¥ = Xz = A7'/H and x = (1,...,1), using notation from the proof
of Proposition 5.2.13 and where m = n — [. The maximal stabiliser locus 1s ™ =
(AZ)HC’ /H = {0}/H, where H, = (H°),.4 1s the reduced identity component [27,

Proposition C.5]. Let r = (A, ¥ ™*). There 1s a cartesian square

Spec (k[t]/(t")) —— A} t
l : A(t)xl ;[
0} —— A;cn (lM’X))er/

Taking global sections, we get a cocartesian square

k[t]/(t") «——— k[t] £ )
[ I |
k ———— k[ty, x € E] L.

Therefore k[t]/(t") = k[t]/¢* %,y € B') and thus r = inf{(X,x)| x € B} =
(A, 10). [

PROPOSITION 5.2.15. Let E be a normed semistable polarised state. Then the balanced filtration
of (X5, xz) (Definition 3.1.6) equals, under the byection Q -Filt(Xz,xg) = Q -Filt(E), the
balanced filtration of E (Definition 5.1.15).

Proof. This follows directly from Propositions 5.2.13 and 5.2.14. [l

THEOREM 5.2.16. Let E be a normed semistable polarised state and let (Ey, Ap, Un)neN be
its balancing chain (Definition 5.1.19). Then the chain of stacks associated to (B, An, Un)neN
(Defimition 5.2.11) s isomorphic to the torsor chain of (Xz, x=) (Definition 4.3.3).

Proof. Let (Yn, Yn, n, Vn)nen be the torsor chain of (X%, xz). We will provide, for all

m € N, isomorphisms
im: (X;fm, xz,) = (Ym, Ym)
such that,
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1. under the identification Q - Filt(E,,) = Q - Filt(Y,., ym), we have n,, = A,,; and
2. the square

SS Um SS
(X%, 1 ¥Emn1) = (XGraay,, (@) XCraday, (Em)

l-mﬂl l (5.1)

(Ym+1, Ym+1) — (Gradg (:ym)grnmv gr Nm)

commutes, where the arrow on the right comes from Proposition 5.2.10.
For n = 0, we have that y, is the fibre of the good moduli space of X3 containing
xz, and that 9 = E’. Therefore (¥, yo) = (X%, Xg,), by Proposition 5.2.13. Let
n € N and suppose that isomorphisms i, as above have been provided in such a way
that conditions (1) and (2) above hold for all m < n. Since i, 1s an isomorphism,
we have the equality n, = A, by Proposition 5.2.15, so condition (1) also holds for
m=n.

It A, = 0, then E, and (¥,, y,) are polystable. Therefore E,+; = Z, and
(Y41, Ynt1) = (Y, yn), so there is nothing to prove.

Assume A, # 0. We freely use the notation of Case 2 in Construction 4.3.1. Let
X1s---, x1 be the different elements in E,, and let G = Gg,. We denote V = k!
the G-representation given by the characters yy, ..., x;, so that A,‘j‘o = A(V) (where
A denotes total space). We have ¥, = A(V)/G, and ¥** = {0}/G. Therefore the
relevant blow-up is 8 = (Blo A(V)) /G, the exceptional divisor is & = P(V)/G,
and the G,,-torsor over it is N = (A(V) \ {0}) /G. We denote y, also the unique
lift of y, = (1,...,1) to Bl A(V). The rational one-parameter subgroup A, has
the property that (A,, y;) > 1 for all j and that equality holds for at least one j.
Therefore, if we set z = lim;—9 A,(¢)y,, the limit taken inside Bly A(V'), and if we
write z = [zy,...,z;] In projective coordinates, noting that z lies on the exceptional
divisor P(V), then we have z; = 0if (A,, x;) > land z; = 1if (A,, ;) = 1. We
denote z* = (zy,..., z;) this lift of z to A(V).

The limit z lifts to the connected component Z of Grad(8) containing gr n,. If
we set Vi = @y =1 Vx> where Vy is the subrepresentation of V' where G acts via
the character y, then Z = P(V;)/G. Thus grn, is identified with z € P(V;)(k), and
the lift z* € A(V7) to A(V7) can be written in coordinates as z = (1,..., 1) when seen
inside V3. The centre Z of the locally closed ®-stratum of 8 containing y, is the
semistable locus for the shifted linear form £., by the Linear Recognition Theorem

2.6.9.
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1
In this case, ¢ = W, and the shifted linear form is
1
be =10 — (A=),
[An 112

where £ 1s the linear form associated to the ample line bundle Op(y,),6(1). Let x €
P (V})(k) and let x* € A(V;)(k) be a lift of x to A(V}) with state E,. The point x is
semistable for £, if for all y € I'e(G) we have

. _ 1
0= £e(y) = min(y, Bx) — W(% An),
A{V
which holds if and only 1f 0 € conv (Ex n ””2) Since all elements of E, are in
n A’\/
the hyperplane (1, —) = 1, the condition that 0 is in the convex hull of E, — R "”2 1s

equivalent to the condition that A/ is in the cone generated by E, by Lemma 5.2.17
below. This is in turn equivalent to the lift x* of x to A(V;) being semistable for the

linear form given by A)/, by Proposition 5.2.5. Therefore we have a cartesian square

M =AV)**) /G —— N = (A(V)\0)/G
L |

Z=P(V)*¥)/G —— & =P(V)/G,
using the notations of Construction 4.3.1. Just from the definitions, we see that M =
X R (B We choose y,+1 = z* as the preimage of z along M — Z needed for
the construction of the torsor chain. The stack ¥,4; is by definition the fibre of
the good moduli space of M, and hence by Proposition 5.2.13 we have the desired
isomorphism in41: Xz =~ = Xpo @y = Yntr, which sends xg, ., to y,4+1 by our
choice of z*. Both X, di (En) and Gradg(¥Y,)gry, are naturally identified with BG,
so the square (5.1) commutes for m = n. Since the torsor chain is bounded, repeating
this process we eventually reach the case n, = 0, getting the desired isomorphism of
chains. ]

In the proof of Theorem 5.2.16 we used the following fact in convex geometry.

LEMMA 5.2.17. Let N be a finite dimensional Q-vector space endowed with a rational inner product
(—,—). Let E C N be a nonempty finite set and let y € N be an element such that (y, x) = 1 for

all y € E. Then we have 0 € conv | E — ” y||2 if and only if y € cone(E).
14
Proof. Each y € B can be written as y = # + B, with (y,B8,) = 0. Note that
Y
the condition 0 € conv (E 1 ”2) 1s equivalent to 0 € cone (E i y”z)' If this
Y Y
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is satisfied, then 0 = ) c,B, with ¢, > 0. After rescaling we may assume that
> ¢y = llyl*. Then

V= (ZCX)#—I_ZCXﬂX = ZCXX’
X

and thus y € cone(E).
Conversely, if y = >, ¢y x with the ¢, > 0, then after applying (y,—) to both
sides we get [[y[|> = 3, ¢y, s0

r= 2 (o )_”Z“‘ﬁ"

and thus 0 = ) ¢,y is in cone (E— ” y”z)' ]
Y

COROLLARY 5.2.18. Let E be a normed semustable polarised state. “Then the iterated balanced
Siltration (Definition 5.1.19) of B equals, under the byection Q- Filt(Z) = Q*°-Filt(Xz, x=),
the 1terated balanced filtration of (Xg , xg) (Defimition 3.5.8).

Proof. By Theorem 5.2.16, the iterated balanced filtration of & equals the sequential
filtration associated to the torsor chain of (X%, xz). The results then follows from
Theorem 4.3.4. [

Example 5.2.19. Consider the normed polarised state

E = (Z2*,{(1,0), (1, 1)},0),

where (Z?)V = Z? has the standard inner product ((1,0), (0, 1) is an orthonor-
mal base). The associated stack over C is Xg = C?/(C*)?, where (C*)? acts
by (t1,%2)(v1,v2) = (t1v1,t112v2). The linearisation £z is trivial, so every point 1s
semistable.

Let us compute the iterated balanced filtration of the state &. We have that Z 1s
its own slice ' = E, and the balanced filtration Ag = (a, b) of E is the minimiser of
a? 4 b? subject to the condition that (A¢, (1,0)) =a > 1 and (Ao, (1,1)) =a+b > 1.
Therefore Ao = (1,0). The iterated state 1s

A2o(B) = (22,{(1,0), (1. D}, (1,0)),

whose slice is 21 = A, (E) = (Z(0,1),{(0,1)},0), and the balanced filtration of =,
is A1 = (0, 1). Since Ay, (E,) is polystable, the balancing chain of E terminates here,
and we conclude that the iterated balanced filtration of E 1s A9 = (1,0),A; = (0, 1).
By Corollary 5.2.18, we deduce that the iterated balanced filtration of xz = (1,1) €
C2/(C*)? is the sequence (1,0), (0, 1) in Q% = T'e((C*)?).
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We now analyse Conjecture 1.7.1 in this case. We endow C? with the standard
hermitian metric. The associated Kempf—Ness potential for the point (1,1) € C? is
FR2 5 Rix s 80 4 ox ()

. i o exp(F)
up to the addition of a constant, where we are identifying R — Lie((S")?) ———
(C*)2/(S1)?, the unit circle S! being the maximal compact subgroup of C*. In this
case, the exponential map is a global isometry between Lie((S!)?) and (C*)?/(S1)2.

Vfx)=e" ((1)) + e*1 ¥ (1)

The equation for A: (0, 00) — R? to be a flow line for —V f is

W(t) = —e’“(’)(l) - ehl(’)"‘hz(l)(l).
0 1

We write h(t) = — log(t)((l)) —loglog(?) ((1)) +z(u), where u = loglog(#). The equation

e*(1 — eZl(u)) — eZ1)+z2()
z'(u) = .

The gradient is

for z becomes

1 — ez1)+z2(u)

For N; > 0 real, we have that
1. if z; = Ny and z; € (—Ny, Ny), then z, < 0;
2. if z; = —N; and z; € (—Ny, Ny), then 25 > 0.
For N, > 0 big enough so that —1 < log(1 — e™*?) and u > 2, we have that
1. ifzy = —Nyand z; € (N> — 1, N, + 1), then z] > 0;
2.1fzy = Nyand z; € (=N, — 1, N, + 1), then z; < 0.
Therefore, an appropriate choice of Ny and N, gives a rectangle that z cannot leave,
because z’ points inwards at the boundary. Therefore z is bounded when ¢ > 0. We

have verified Conjecture 1.7.1 in this example.

5.3 THE REFINED HARDER-NARASIMHAN FILTRATION OF A
POLARISED STATE

In Section 5.1 we have defined the iterated balanced filtration of a normed semistable
polarised state 2 = (M, 8, «a). We now explain how to produce, in the case where
E may be unstable, a canonical sequential filtration of Z, its refined Harder—-Narasimhan
Siltration (Definition 5.3.3). We start by defining its Harder-Narasimhan filtration (Defini-

tion 5.3.2).
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We fix a principal ideal domain A contained in R, and we denote K the field of
fractions of A. Let 2 = (M, E, o) be a normed polarised state over A. We denote
E° = (M, E, 0) the unpolarised state.

THEOREM 5.3.1 (Existence and uniqueness of Harder-Narasimhan filtrations for
states). For a filtration A € K - Filt(E°), the following are equivalent:
1. Grad, (E°) is semistable for the polarisation o + A
2. The filtration A satisfies —(A, &) > ||A||* and, for every u € K -TFilt(E®) such that
(1 a) = | Il we have || a]]> < [IA]>.
3. The filtration A maximises the function —(A, o) — %HAHZ on the set K - Filt(E°).
Moreover; there exists a unique filtration A € K - Filt(E°) satisfying these conditions.

Proof. We have that K - Filt(E°) is a convex polyhedral cone inside M, and the func-
tion

fiMg — KA —(Aa)— %||)L||2
on M is strictly concave. Therefore, if K = R then there is a unique A € R - Filt(2°)
maximising this function. The differential of f" ata point A € Mg is —a —A". By the
Karush—Kuhn—Tucker conditions, a point A € R -Filt(Z°) maximises f if and only

if there are real numbers u, > 0 such that

a+ A= uyx (5.2)
XEE
andu, = 01if (A, ) > 0.

If K 1s not R, we want to see that the maximiser A of f on R - Filt(E°) actually
belongs to K - Filt(Z°). For this, note that, since only the y € B satistying (A, y) =0
are involved in the formula (5.2), A is also the maximiser of f on the vector subspace
VR =V ®k R of Mg, where

V= () 0H,.
XEE)"O
The differential of f |y at A 1s —a|yr —(A, —): VR — R, and since A is a maximiser, we
have —a|y, = (A, —), so A = p(a), where p: Mg — Vg is the orthogonal projection.
Since the inner product is defined over K, the projection p is also defined over K and
thus p(«) isin M. Therefore, A € K - Filt(E°) is K-rational.

Now note that (5.2) is equivalent to @ + 1Y € cone (E*?), that is, to Grad,(E°)
being semistable for the polarisation a + AY. Thus 3 holds if and only if 1 holds.

Take any 0 # A € K -Filt(E°) and consider the function

h:Kso — R:ic— f(cA).
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(A, )
. . . 1221 .
K - Filt(2°) has to occur at a filtration A with ¢j = 1 or at A = 0. For the A satisfying

1
this condition, we have f(1) = §||)k||2. On the other hand, for those A # 0 such
that —(A, @) > ||A||?, replacing A by c3A increases ||—||* while making the condition
—(A, &) = ||A||? hold. Therefore 2 is equivalent to 3. [l

The function 4 has a unique maximum at ¢, = — , so the maximum of f on

DEFINITION 5.3.2 (Harder—Narasimhan filtration of a state). The Harder—Narasimhan
Siltration of the normed polarised state Z is the unique filtration A € K - Filt(E°) satis-

fying the equivalent conditions of Theorem 5.3.1.

Theorem 5.3.1 allows us to define the refined Harder—Narasimhan filtration of

a normed polarised state.

DEFINITION 5.3.3 (Refined Harder—Narasimhan filtration of a state). The refined
Harder—Narasimhan filtration of the normed polarised state E 1s the sequential filtration
(An)nen € K -TFilt(E°) of E° defined by the following conditions:
1. A¢ 1s the Harder—Narasimhan filtration of Z;
2. (An41)nen 1s the iterated balanced filtration of the normed semistable polarised
state (M, B40:0 o + AY).

It is straightforward to check that the refined Harder—Narasimhan filtration is
indeed an element of K - Filt(E°).

PROPOSITION 5.3.4. Suppose that A = Z. Then, under the byection
Q-Filt(E°) = Q-Filt(Xz, xz)

of Proposition 5.2.2, the Harder—Narasimhan filtration of the normed polarised state E (Defini-
tion 5.3.2) equals the Harder—Narasimhan filtration of the point xg in the normed pointed stack Xg
equipped with the linear form Lz with the direct convention (Remark 2.5.17). Moreoves;, under the
byection
Q>-Filt(E°) = Q- Filt(Xz, xg),

of Proposition 5.2.12, the refined Harder—Narasimhan filtration of the normed polarised state & (Def-
mition 5.3.3) coincides with the refined Harder—-Narasimhan filtration of the point xz in Xg (Defi-
nition 3.5.10).

Note that Definition 3.5.10 applies to Xz because it has a good moduli space.

Proof. The first statement follows readily from the fact that (A,£z) = —(A,«) and

that the bijection between sets of filtrations preserves the norm, by definition.
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Let A € Q-Filt(Xg, xg) be the Harder-Narasimhan filtration, and let E; =
(M, 2400 o 4 AY). Note that the centre of the Harder-Narasimhan stratum of Xz
containing xg 1s Xz . This follows from the recognition theorem Theorem 5.1.18
(but note that we are now working with the direct convention for HN filtrations).
Moreover xg, corresponds to the associated graded point of A. The agreement of

refined Harder-Narasimhan filtrations thus follows from Corollary 5.2.18. [

We finish this chapter with a conjecture on asymptotics of gradient flows that
implies Conjecture 1.7.1 in the case of a torus action. We now assume that 4 = R.

Let (¢y)yez be a family of numbers ¢, € R.,. We define the associated Kempf-Ness
potential to be the function
pMY >Ry —(ya)+ Z cyelrX).
XEE
CONJECTURE 5.3.5. Let Ag, ..., Ay, € MY be the refined Harder-Narasimhan filtration of E.
Let h:(0,00) — M be a negative gradient flow line for the Kempf-Ness potential p. Then the
Junction
t > h(t) +tho +log(t)A; + loglog(t)As + -+ -log™ (H)A,
s bounded when t > 0.

The author has verified this conjecture in several examples.

Remark 5.3.6. We may similarly upgrade Conjecture 1.7.1 to a statement involving
the full refined Harder—Narasimhan filtration in the unstable case, and not just the

iterated balanced filtration in the semistable case.



CHAPTER 6

MODULAR LATTICES

Modular lattices appear naturally when studying moduli of objects in an abelian cat-
egory +. For any object E of #A, the partially ordered set Lg of subobjects of E is
a modular lattice. For any modular lattice L of finite length endowed with a norm,
Haiden—Katzarkov—Kontsevich—Pandit in [33] define a canonical R-filtration of L,
the HRRP filtration. The construction can be applied iteratively to define a canonical
sequential refinement of the Harder-Narasimhan filtration of a lattice endowed with
the necessary stability data.

In this chapter, we revisit the theory of the HKKP filtration for modular lattices.
Our main result is a new characterisation of the filtration (Theorem 6.6.26). Our
methods naturally imply rationality of the HKKP filtration. These results will be used
in Chapter 7 to compare the iterated HKKP filtration for lattices and the iterated

balanced filtration for stacks.

6.1 GENERALITIES ABOUT LATTICES

We recall from [12] and [33, Section 4] some basic definitions about lattices.

A lattice 1s a poset (L, <) such that every two elements a,b € L have a greatest
lower bound a A b, called the meet of a and b, and a least upper bound a Vv b, called
the join of @ and b. If L is a lattice, a sublattice 1s a subset L’ of L closed under taking
meet and join. If L’ is a sublattice of L, then L’ is regarded as a lattice with the
poset structure inherited from L. If a < b are elements of L, then the wmterval [a, b]
1s the sublattice of L consisting of those x € L with a < x < b. When considering a
sublattice L’ of a lattice L and elements @ < b in L’, we will use the notation [a, b] to
denote the interval in the bigger lattice L, and [a, b] N L’ to denote the interval in L'.

A morphism f: Ly — L, oflattices is a map of sets preserving the poset structure, meets

117
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and joins. Sublattices L’ of L are in correspondence with injective lattice morphism
L' — L.

DEFINITION 6.1.1. A lattice L 1is said to be

1. modular if, for all x,a,b € L with a < b, we have
(xva)Ab=((xAb)Va; (6.1)

2. bound 1f 1t has a minimum, denoted 0, and a maximum, denoted 1;

3. finite length if there exists N € N such that, for all chains @y < a; < -+ < a, of
elements of L, we have n < N;

4. artiman 1f it 1s modular, of finite length, and nonempty;

5. complemented 1f 1t 1s bound and for all @ € L there is b € L such thata v b =1
anda Ab = 0;

6. distributive if, for all a,b,c € L, we have a A (b VvV ¢) = (a Ab) V (a A ¢), or,
equivalently, if for all a,b,c € L we havea v (b Ac) = (aV b) A(a V ¢);

7. complete if every subset of L has a least upper bound and a greatest lower bound;

8. a finite boolean algebra if 1t 1s artinian, distributive and complemented.

In an arbitrary lattice L, there are two ways to project L onto an interval [a, b],
namely the maps x — (x Va) Aband x — (x A b) vV a. The modular law (6.1)
precisely says that these two maps agree, and thus that there 1s a canonical projection
L — [a,b] for every interval in L. The poset of normal subgroups of an abstract
group 18 a modular lattice, and so is the poset L of subobjects of an object E in
an abelian category. In the latter example, L being complemented 1s equivalent to
E being semisimple. Distributive lattices and, in particular, finite boolean algebras,
are modular. Any sublattice of the lattice of subsets 25 of a given set S is distributive,
while the lattice of subspaces of a given vector space V is modular but not distributive
if dim V' > 2. Finite length lattices are complete and bound, and we use the notations
0 and 1 for the minimum and maximum of the lattice. When considering sublattices
L’ of a finite length lattice L, we reserve 0, 1 to denote the minimum and maximum
of the bigger lattice L. We say that a sublattice L’ of L is total if 0,1 € L'.

If L is a modular lattice, we denote ~ the equivalence relation on intervals gen-
erated by [a,a VvV b] ~ [a A b,b] for a,b € L. The modular law implies that two
equivalent intervals of L are isomorphic as lattices. Indeed, the map [a,a V b] —
[a A b,b]: x = x A b is a poset isomorphism with inverse y = y V a.

Artinian lattices provide a natural common framework for the celebrated Jordan—
Holder theorem in different settings, like that of finite groups or of finite length

abelian categories.
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THEOREM 6.1.2 (Jordan—Hélder—Dedekind). Let L be an artinian lattice, and let 0 = ag <
a; < --<ap,=1and0 = by < by < --- < b, = 1 be two maximal chains mn L. Then
n = m and there is a permutation o of {1,...n} such that [a;—y,a;] ~ [bo@)-1,bow)] for
ief{l,...n}.

For a proof, see [46, Section 8.3]. We define the length of an artinian lattice L to
be the length of any maximal chain in L.

For a bound lattice L and an element x € L, we say that x 1s an atom 1f 0 < x
and thereisno y € L with 0 < y < x. If L 1s a finite boolean algebra, then the set
S of atoms of L is finite, and L is canonically isomorphic to the poset of subsets of S
via the map 25 — L:U + \/ cy x. Since we can consider the substraction U \ V of
subsets of S, we have a well-defined substraction operation x \ y for elements x, y of
L.

There 1s a lattice analogue of the Grothendieck group of an abelian category,

which we recall from [33].

DEFINITION 6.1.3 (Grothendieck group of a modular lattice). Let L be a modular
lattice. The Grothendieck group K(L) of L is the abelian group generated by symbols
[a,b] for every interval [a, b] in L and subject to the relations

l. [a,b] + [b,c] =[a,c]fora <b <cin L, and

2. [xAy,y] =[x, xVvy]forx,y e L.

If L 1s an artinian lattice and 0 = a9 < a; < --- < a, = 1 1s a maximal chain,

Theorem 6.1.2 implies that K(L) 1s generated by the intervals [a;_1, a;].

6.2 BACKGROUND ON THE HKKP FILTRATION AND STATEMENT
OF MAIN RESULT

We now summarise the results in [33] on canonical filtrations of normed artinian
lattices and introduce the main result of this chapter.
Let L be an artinian lattice. An R-filtration F of L is a chain

0O=ap<--<a,=1 (6.2)
of elements in L together with a sequence
1> >0y (6.3)

of real numbers. For ¢ € R, we denote F>, = \/...a; and Fs, =/

denote R - Filt(L) the set of all R-filtrations of L.

ci>c ¢/>c Fse. We
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Remark 6.2.1. In [33], the authors define an R-filtration to be a chain (6.2) in L labelled
by an wncreasing sequence by < --- < by, of real numbers. To move between their

convention and our convention, one just needs to set ¢; = —b;.

Haiden—Katzarkov—Kontsevich—Pandit define an R-filtration F to be paracom-
plemented 1, for all ¢ € R, the interval [Fsc41, F>c] 1s complemented. Equivalently, if
F is given by chains (6.2) and (6.3), F is paracomplemented if, forall 1 <i < j <n
such that ¢; — ¢; < 1, we have that the interval [a;_,a;] is complemented. The set
of paracomplemented R-filtrations of L is denoted Br(L).

If F is a paracomplemented R-filtration of L, Haiden—Katzarkov—Kontsevich—
Pandit define a new artinian lattice A(F) by setting

A(F) = { (xc)cer € [ [[Foc. Fxel | Ve €R, [xcy1.x] is complemented ¢ .
ceR

It is a nontrivial result that A(F) is a sublattice of [[.cg[Fs¢. F>c] [33, Proposition
4.5].

An R-valued norm X on the lattice L is a homomorphism X:K(L) — R such
that for alla < b in L we have X([a, b]) > 0. We fix one such norm X. If F € Br(L),
and a = (ac)cer € A(F), then we define the quantity

FY([0.a]) = ) cX([Fac,ac)).

ceR
Haiden—Katzarkov—Kontsevich—Pandit define A(F') to be semistable with respect to — F Y
(or semistable of phase 0 in their terminology) if F¥(L) = 0 and FY([0,a]) < 0 for all
a € A(L).

The main lattice-theoretic result of [33] 1s:

THEOREM 6.2.2 (Haiden—Katzarkov—Kontsevich—Pandit). There s a unique paracomple-
mented R-filtration F € Br (L) such that A(F') is semistable with respect to —F" .

This 1s [33]. The authors call the unique filtration in Theorem 6.2.2 the weight
Siltration of (L, X'). We will use the name HREP filtration instead.

Using the HKKP filtration iteratively (as recalled in Section 6.7), Haiden—Kat-
zarkov—Kontsevich—Pandit construct a canonical R*-filtration of L, and then they
prove in [34] that this R*°-filtration describes the asymptotics of the Yang-Mills flow
of a vector bundle on a curve as in Theorem 1.1.1. They prove a similar result for
quiver representations in [33, Theorem 5.11]. These results on asymptotics on gra-

dient flows are the main reason for the authors to pursue Theorem 6.2.2.
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The norm X allows us to define the norm squared || F || of a filtration F € R - Filt(L)
by

IF(? =) ®X([Foe, Focl).
ceR

The main result of this chapter is then:

THEOREM 6.2.3. The HREP filtration of (L, X) s the unique paracomplemented R-filtration
F € Br(L) minimising the norm squared || F||*>. Moreoves; if X([a,b]) € Q foralla < b in L,
then the HRRP filtration s a Q-filtration (meaning that the labels c; in (6.3) are all rational numbers).

Theorem 6.2.3 1s a direct consequence of Theorem 6.6.26 below, where we also
give a new, simpler proof of Theorem 6.2.2, from which the rationality statement
1s automatic. The main novelty of our approach with respect to that of [33] is the

systematic study of maximal distributive sublattices of L.

6.3 DISTRIBUTIVE ARTINIAN LATTICES AND DIRECTED ACYCLIC
GRAPHS

In this section we will show that every distributive artinian lattice is canonically iso-
morphic to the poset of closed subgraphs of a directed acyclic graph (Theorem 6.3.5).

We start with the following well-known property of distributive lattices.

LEMMA 6.3.1. Let D be a bound distributive lattice and let a € D. Then the map f:D —

[0,a] x [a,1]: x = (x Aa,x V a) s a lattice injection.
Proof. Suppose x,y € D are such thatx Aa =y Aaand x Va =y va. Then
x=xAxVva)=xA(yVva)=xAy)V(xAra)=xA).

Thus x < y. By symmetry, x = y. The map f preserves meets and joins by dis-
tributivity. u

It follows from the lemma that complements in bound distributive lattices are
unique if they exist. Indeed, b € D is the complement of a € D precisely if f(b) =
0, 1).

A directed acyclic graph Q 1s a pair (Qo, Q1) where Qy 1s a finite set, the set of vertices,
and Q1, the set of arrows, 1s a subset of Qg x Q. The two projections Q¢ x Qo — Qo
define source and target maps s,t: Q1 — Q. We require that Q has no oriented
cycles, that 1s, there 1s no sequence of arrows oy, ...,a, € Q; with #(o;) = s(ti4+1)
foralli =1,...,n—1and t(a,) = s(ay).
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Finite posets are in correspondence with those directed acyclic graphs Q such
that, for all a,b,c € Qy, if there are arrows a — b and b — ¢, then there is also
an arrow a — ¢. We will say that directed acyclic graphs satisfying this property are
posetal.

For any directed acyclic graph Q, a subset R C Qy 1s a closed subgraph if, for all
o € Q,, we have the implication s(¢) € R = t(a) € R. The lattice of closed
subgraphs of Q, with the order given by inclusion, is a distributive artinian lattice of

length the cardinality of Q. In fact, all distributive artinian lattices arise in this way.

PROPOSITION 6.3.2. Let D be a distributive artinian lattice and let 0 = ag < --- < a, = 1 be
a maximal chain in D. We identify the product lattice ]_[:-':1 [ai_1,a;] with the lattice 25 of subsets
of S ={1,....n}. Thenthemap f:D — 25:x > ((x Va;_1) Aa;); is injective and preserves
meels and joins. Moreover; there 1s a directed acyclic graph Q with set of vertices Qo = S such that
S (D) s the lattice of closed subgraphs of Q. There is a unique such Q that is posetal.

Proof. Injectivity of f follows from Lemma 6.3.1 by induction on the length of D.
Now, f(D) is the collection of open sets of a topology on S. Since S is finite, for each

i € § there is a smallest open set U; containing i. We let

O =1{0. 7)) J e Ui\{i}},

and denote Q the graph with set of vertices S and set of arrows Q.

Since f(a;) = {1,...,i}1s an open set containing i, we have U; C {1,...,i}, so
if there 1s an arrow i — j then we have j <i. It follows that Q is acyclic. If j € Uj,
then U; C U;, so Q is posetal. A subset R C S is a closed subgraph if and only if for
alli € R, we have U; C R. That is, closed subgraphs are the open sets, which are the
elements of f(D).

Suppose that there is another posetal directed acyclic graph Q' with set of ver-
tices S such that f(D) is the set of closed subgraphs of Q’. Any closed subgraph of
Q' containing i € S must also contain any element of U;, which, Q' being posetal,
implies the existence of an arrow i — j for every j € U;. On the other hand, since

Ui 1s a closed subgraph of Q’, there are no arrows i — j with j notin U;. Therefore

Q"= 0. o

Proposition 6.3.2 gives a complete classification of distributive artinian lattices
as lattices of closed subgraphs of directed acyclic graphs. However, the way Propo-
sition 6.3.2 1s formulated, the quiver Q obtained seems to depend on the choice of
maximal chain 0 = gy < --- < a, = 1. To formulate a choice-free version, we

introduce a definition.
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DEFINITION 6.3.3 (Vertex of a distributive artinian lattice). Let D be a distributive
artinian lattice. An vertex of D 1s an element v of the Grothendieck group K(D) of
the form v = [a, b], with [a, b] a length-one interval of D. We denote Q p ¢ the set of
vertices of D. We define the finite boolean algebra associated to D to be the lattice 2220 of
subsets of O p.o, and we denote Tp = 2920,

Theorem 6.1.2 implies that Q p ¢ 1s finite, of cardinality at most the length of D,

so Tp 1s a finite boolean algebra.

PROPOSITION 6.3.4. Let D be a distributive artinian lattice. The set Q po of vertices of D s
Sfinite and K (D) s a free abelian group with basis Q p .

Proof. By Proposition 6.3.2 we may assume that D is the lattice of closed subgraphs
of a directed acyclic graph Q, and thus we regard D as a sublattice D C 290,

First, note that two intervals [a, b] and [a’,b'] in D are equivalent if and only if
b\a = b'\a’ (in 22°). Indeed, for x, y € D itis clear that (x Vy)\x = y\(xAy). Since
the equivalence relation on intervals is generated by relations of the form [x, x Vv y] ~
[x A y, ], this observation gives one direction. Conversely, if [a,b] and [a’, D] are
intervals satisfying b \ @ = b’ \ @', thenbv (ava’)=bAb andb A(ava')=a,so
la,b] ~ [ava’,bvDb']. By symmetry, [a’,b'] ~ [ava’,bvb] too, so that [a, b] ~ [a’, D'].

From this observation it follows that the map f: K(D) — Z®2! given by [a, b] >
Zieb\a 1 -i 1s well-defined. Choose a maximal chain 0 = ag < a; < -+ < a, = 1,
giving generators [ax—1, ax] of K(D). Forany k € {1,...,n}, thereis a unique ix € Qg
with ax \ ax—1 = {ix}, and the map {1,...,n} — Qo:k +— ix 1s a bijection. The

map 1 :ix — [ax—1,ax] 13 an inverse of f, so f is an isomorphism. It follows that

[@o,ai], ..., [an—1,a,] are the different elements of the set of vertices Qp ¢ of D, and
that they form a basis of K(D). []

Let D be a distributive artinian lattice. The canonical isomorphism K(D) =
Z®20.0 gives K(D) the structure of a (non-artinian) distributive lattice, as a product
of copies of Z with the standard order. The associated boolean algebra Tp embeds
canonically into K(D) via the map Tp — K(D):U — )_ .y v, where U is regarded
as a subset of Qp 9. We are ready to state a version of Proposition 6.3.2 where the

obtained directed acyclic graph is canonical.

THEOREM 6.3.5. Let D be a distributive artinian lattice. 'The map D — K(D):a — [0.4]
induces a lattice injection D — Tp. Moreoves; there 1s a unique posetal directed acyclic graph Q p
with set of vertices Q p o such that D 1s wdentified with the lattice of closed subgraphs of Q p via the
map D — Tp = 2900,
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Proof. It 1s clear that D — K(D) factors through Tp. Choose a maximal chain 0 =
ap<ay <---<a,=1andletS ={1,...,n}. Themap S — Qop:k Hm
is a bijection. The induced isomorphism Tp = 25 identifies the map D — Tp in
the statement with the map f in Proposition 6.3.2. The statements thus follows from
Proposition 6.3.2. [

Remark 6.3.6. The canonical inclusion D — Tp induces an isomorphism K(D) =
K(Tp) of Grothendieck groups.

Remark 6.3.7. 1If .: D' — D is alattice injection, then the assignment [a, b] — [t(a), t(b)]
on intervals gives a homomorphism K(D’) — K(D) of Grothendieck groups that
restricts to a lattice injection Tp, < Tp between associated boolean algebras. More-

over, if D’ 1s a total sublattice of D, then Tp/ is a total sublattice of Tp.

Remark 6.3.8. The associated boolean algebra of D can be characterised categori-
cally as follows. The canonical map D < T)p is a lattice injection of D into a finite
boolean algebra, and for any other such lattice injection D < T, there is a unique
lattice injection Tp < T such that the composition D < Tp < T equals the given
map D — T. This characterises Tp up to unique isomorphism preserving D < Tp.
Then the set Q p o of vertices of D can be defined as the set atoms of Tp, and Theo-
rem 6.3.5 shows that, under the injection D — Tp, D is identified with the lattice of

closed subgraphs of a unique posetal directed acyclic graph with set of vertices Qp .

DEFINITION 6.3.9 (Associated directed acyclic graph). Let D be a distributive ar-
tinian lattice. The associated directed acyclic graph of D is the graph Qp from Theo-
rem 6.3.5.

Theorem 6.3.5 can be seen as a reformulation of Birkhoft duality convenient
for our purposes. The usual formulation [12, Theorem III.3.3] uses the notion of
join-irreducible elements. Recall that an element a of a bound lattice L is said to be

Jown-trreducible if a # 0 and whenevera = b vV ¢ we havea = b ora = c.

COROLLARY 6.3.10 (Birkhoft duality). Let D be a distributive artinian lattice and let & be the
set of join-rreducible elements of D, then the map

gD -2 a{becd|b<al

is a lattice ijection with tmage the set of those subsets U of & such that, for alla,b € &, ifa < b
and b € U then a € U. Moreover, the cardinality of § equals the length of D.
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Proof. We use the notation from the proof of Proposition 6.3.2. We identify D with
the sublattice f(D) of 25. It is clear that the U; are the join-irreducible elements of
f(D). Moreover, the bijection S — ¢:i + U; yields a commuting triangle

D—>2S

N

The result follows. [

Birkhoft duality thus provides a correspondence between distributive lattices D
of length n and posets ¢ of cardinality n. The set ¢ of join-irreducibles is in bijection
with the set Qp o of vertices. However, the isomorphism K(D) = Z®# induced by
g does not identify an element a € § with the class of the interval [0, a], so from the
point of view of Grothendieck groups it is more natural to express Birkhoff duality in

terms of vertices, rather than join-irreducibles.

6.4 MAXIMAL DISTRIBUTIVE SUBLATTICES OF ARTINIAN
LATTICES

Maximal distributive sublattices of artinian lattices are the lattice analogue of max-
imal tori of reductive algebraic groups. We study here their basic properties. Our

main tool will be the following theorem of Lengvarszky [61, Corollary 5].

THEOREM 6.4.1 (Lengvarszky). Let L be a modular lattice, let D be a distributive sublattice of
L, leta < bin D and let K be a distributive sublattice of [a, D] containing [a, b] N D. Then the
sublattice of L generated by D and K is distributive.

Remark 6.4.2. A useful special case of Theorem 6.4.1 is when [a,b] N D = {a, b} and
K = {a,x,b} for some x € [a,b] (note that K 1s distributive in this case). This 1is
also [60, Lemma 1].

For the rest of the section we fix an artinian lattice L.

PROPOSITION 6.4.3. Every distributive sublattice D of L is contained in a maximal distributive

sublattice.

Proof. This follows from Zorn’s lemma, but we present an alternative argument. By
applying Remark 6.4.2 repeatedly, we may assume that D contains a chain that is
maximal in L, say of length n. Then, by Theorem 6.3.5, there are only finitely many
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distributive lattices of length n, and they are all finite, so any chain of distributive

sublattices of L containing D stabilises. [l

In the proof of Proposition 6.4.3 we also deduced the following fact, which is [60,
Corollary 2].

PROPOSITION 6.4.4. Let D be a maximal distributive sublattice of L. Then D and L have the
same length. ]

PROPOSITION 6.4.5. Let D be a maximal distributie sublattice of L and let a < b in D. Then
[a, b] N D is a maximal distributive sublattice of [a, b].

Proof. Let X be a maximal distributive sublattice of [a, b] containing [a,b] N D. By
Theorem 6.4.1, the sublattice D’ of L generated by D and X is distributive. Thus
D =D"and X = D Na,b]. [l

PROPOSITION 6.4.6. Let D be a maximal distributive sublattice of L. Then L ts complemented
if and only if D 1s complemented.

Note that in that case D is a finite boolean algebra. For the proof, we will need
the following useful fact [33, Lemma 4.7].

LEMMA 6.4.7. If x € L has a complement in L and both [0, x| and [x, 1] are complemented, then
L is complemented. ]

Proof of Proposition 6.4.6. Suppose D is complemented, and take 0 = ag < -+ <a; =1
a maximal chain in D. By repeatedly applying Lemma 6.4.7, since each [a;, a;41] 1s
complemented and each a; has a complementin L, it follows that L is complemented.

Conversely, suppose that L is complemented, and let / be its length. For/ = 0, 1
the result 1s trivial. If / = 2, take 0 <a < 1in D. If D \ {0,a,1} # &, then any
b € D\{0,a,1}1sacomplementofa. If D = {0,a, 1} and b isa complementofa in L,
then {0, a, b, 1} 1s a distributive sublattice of L strictly containing D, a contradiction.

Suppose that [ > 2 and let 0 < a; < a» < 1 in D. Any interval in a comple-
mented lattice is also complemented [12, Theorem 1.9.14], so in particular [0, a;]
and [a», 1] are complemented. By induction on the length, [0, a,] N D and [a», 1]N D
are complemented. Therefore, by Lemma 6.4.7, D is complemented if and only if
a, has a complement in D. Let b be the complement of a;, in [a;, 1] N D, which 1s
complemented by induction hypothesis. Let ¢ be the complement of a; in [0,5] N D,

also complemented by induction. Regarding L as a category where there is an arrow
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x — y if x <y, we have two bicartesian squares

1
b as
AN A
N A

C aq

0

so the concatenation is also bicartesian, that is, ¢ 1s a complement of a, in D. []

COROLLARY 6.4.8. Let D be a maximal distributive sublattice of L and let a < b in D. Then
[a, b] N D is complemented if and only if [a, b] is complemented.

Proof. This follows directly from propositions Propositions 6.4.5 and 6.4.6. [l

6.5 THE DEGENERATION FAN OF AN ARTINIAN LATTICE

In this section we start by defining the notion of grading of an artinian lattice L by a set
(Definition 6.5.1), and then use it to define the concept of filtration of L by a poset P
(Definition 6.5.8). The set Z - Filt(L) of filtrations of L by Z 1s analogous to the set of
Z-filtrations of a point x on a good moduli stack X (or rather, the other way around),
and we show that it also can be given the structure of a formal fan DF(L),, that we call
the degeneration fan of L, exactly in the same way that the degeneration fan DF(X, x).
in the case of stacks enhances the set Z - Filt(X, x) of filtrations (see Section 2.7). We
finish the section by showing that the lattice L can be recovered from the degeneration
fan DF(L). together with the natural poset structure on Z - Filt(L). This will be an
important point in our approach to relate the iterated balanced filtration of a point
on a stack with the HKKP filtration of a normed artinian lattice in Chapter 7.

We fix an artinian lattice L for the rest of this section.

6.5.1 GRADINGS

DEFINITION 6.5.1 (Grading of a lattice by a set). Let P be a set. A P-grading of L is
afamily f = (x;);ep of elements of L indexed by P such that
1. \Vicpxi = 1;and
2. foralli € P, we have x; A x; = 0, where x{ = \/ ;p\ iy X;-
We denote I'? (L) the set of P-gradings of L.

LEMMA 6.5.2. Let M C L be a sublattice that is a finite boolean algebra with atoms ay, . . ., aj,
and let x € L \ {0} such that for all a € M we have a A x = 0. Then the sublattice M’ of L

generated by M and x 15 a finite boolean algebra with atoms a,, . .., a;, Xx.



128 Chapter 6. Modular lattices

Proof. Ifa,b € M, then
(a@avx)yAb<@vx)n(avb)y=(xAn(aVvb))Vva=a,
soaANb<(avx)Ab<aAbandthus(aVx)Ab=aAnb. We also have
(avx)Abvx)y=(avx)Ab)vx=(anb)Vx.

Let ¢ € M be the maximal element of M. The formulas above show that the map
M x {0,x} — M':(a,z) — a Vv z 1s an 1somorphism of lattices with inverse y

(y A ¢,y A x). The result follows. [

PROPOSITION 6.5.3. Let P be a set and let § = (x;)iep be a famuly of elements of L such that
1 = V,ep xi- Then the following are equivalent:
1. The famuily g 1s a P-grading of L.
2. The sublattice M of L generated by the x; s a finite boolean algebra with set of atoms {x; | i €
P, x; # 0}. In particulay, ths set is finite.

Proof. Itis clear that (2) implies (1). Assume (1), and letay, ..., a; be different elements
in{x;| i € P, x; # 0}. We prove by induction on / that the sublattice N generated
by ai,...,a; is a finite boolean algebra with atoms ay, ..., a;. Thisis clear for / = 1.
For !/ > 1, let N’ be the sublattice generated by ay,...,a;—;. Ifa € N’, thena A a; <
a; A a; = 0, where we are using notation from Definition 6.5.1, so a A a; = 0. The
result then follows from Lemma 6.5.2. In particular, / is at most the length of L, so
the set {x; | i € P, x; # 0} is finite and the result is proven by taking a;, ..., a; to be
all the elements of this set. [

PROPOSITION 6.5.4. Let T' be a finite boolean algebra, and let A be an abelian group. Then there
is a canonical bijection T4(T) = K(T) ®z A. In particular;, the set T4(T) of A-gradings of T is
naturally an abelian group. 1t is an A-module if A s endowed with the structure of a ring

Proof. Ifay,...,a, are the atoms of T, then the v; = W are the vertices of 7', and
they are a canonical basis of K(7") by Proposition 6.3.4. Let g = (x¢)ces be an A-
grading of T'. For every atom q;, there is a unique ¢; € 4 such thata; < x.,. We have
Xe = V¢ = @i, so the ¢; determine g. Therefore the map that sends an A-grading g
as before to the element Y 7_, ¢; - v; of K(T') ®z A gives the desired bijection. O]

Remark 6.5.5. If A is an abelian group and A = (A;)jeq4 and u = (i;)ica are A-

gradings of a finite boolean algebra T, then the formula
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holds for the sum on T'4(T). If A4 is an integral domain and a € A \ {0}, we also have
the formula aA = (A;/4)ica for the scalar product.

6.5.2 FILTRATIONS

DEFINITION 6.5.6 (Filtration associated to a grading). Let L be an artinian lattice,
let P be a poset, and let g = (x;);ep be a P-grading of L. The P -filtration associated to
g is the map F&: P — L defined by i > F£, :=\/

=i Xj.

Note that F¢ is a non-increasing, meaning that for i < j in P we have F$ ;=
g
F%,.

DEFINITION 6.5.7 (Admissible grading). Let D be a distributive artinian lattice and
let P be a poset. A P-grading g € I'?(Tp) is said to be D-admissible if the associated

filtration Fé: P — Tp factors through the inclusion D — Tp.

DEFINITION 6.5.8 (Filtration of a lattice by a poset). Let L be an artinian lattice and
let P be a poset. A P-filtration of L is a map F: P — L:i — Fs; such that there is a
total distributive sublattice D of L and a D-admissible P-grading g € I'?(Tp) such
that F& = F. We denote P -Filt(L) the set of P-filtrations of L.

Implicitly, we are asking that the composition P DL equals F. If

F:P — L:a — F5, is a nonincreasing map, we denote F~. = \/, ., F>4.

Remark 6.5.9 (Conventions on R-filtrations). In [33], an R-filtration of L is defined to
be a sequence 0 = ag < a; <--- <a, = 11in L together with an increasing sequence
c1 < -+ < ¢, of real numbers. In this work, however, an R-filtration consists of the
chain 0 = a9 < a; < -+ < a, = 1 in L together with a decreasing sequence d; >
-++ > d, of real numbers. The corresponding map F:R — L as in Definition 6.5.8
is given by Foe = \/ 4.5, ai.

Our convention is better adapted to the point of view of filtrations on stacks.

Setting d; = —c¢; gives a bijection between sets of R-filtrations in the two conventions.

LEMMA 6.5.10. Let P be a poset and let F be a P -filtration of an artinian lattice L. If D C L
is a total distributie sublattice of L through which F: P — L factors, then there is a unique grading
g € TP (Tp) such that F = F&.

Proof. Let M be a total distributive sublattice of L and let (x.)cep € re (Tp) be a
grading such that F = F&. Let D’ be the total distributive sublattice generated by
F(P). Recall from Remark 6.3.7 that T’ 1s naturally a total sublattice of Ty, and
thus I'? (Tp/) is naturally a subset of ' (Tys). From the equality x, = Fs.\Fs. € Tp,
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we see that g belongs to I'?(Tp/) and that g is uniquely determined by F. On the
other hand, D’ i1s a total sublattice of D, so g is naturally a grading of 7Tp via the
inclusion I'?(Tp,) Cc TP (Tp). [

PROPOSITION 6.5.11. Let L be an artinian lattice, let P be a poset and let F: P — L:a +—
F> 4 be a non-increasing map. Suppose further that P is a lattice. Then F s a P-filtration of L if
and only 1f the following conditions hold:
1. The sublattice of L generated by F (P is distributive.
2. There exists a € P such that Fs, = 1.
3. Fora,b € P, we have
(Fsa) N (F2p) = Foavp.

4. There are ay, ... ,am € P such that, for alla € P, we have
an - \/ ani'

Alternatively, condition (4) can be replaced by the following:
5. Forevery x € L with x # 0, there is my € P such that F~'([x,1]) = {a € P| a <

My}
Proof. Suppose that F is a P-filtration. Let D be a total distributive sublattice of L
andlet g = (xc)cep € TP (Tp) be a D-admissible P-grading of T such that F = F&.

Since F(P) 1s contained in D, (1) holds. Let ¢y, ..., ¢, be the elements of P such that
Xe; 7 0. Then FE, n.re, = 1,50 (2) holds. Noting that the x, # 0 are the atoms of

the finite boolean algebra they generate, we have, for alla,b € P,

c>a d>b c=a c>avb
d>b
50 (3) holds. From the definition it follows that F£. = \/, .. F5.,, so (4) holds. For
x € Land x # 0,let I, C{l1,...,n} be such that \/,; x, is the smallest element in

Dr N [x, 1], where DF is the sublattice of D generated by F(P). Since x # 0, the set
I must be nonempty. Let m, = /A\;; c¢i. Then F7Y([x,1]) = {c € P| ¢ < my},so0
(5) holds.

Conversely, suppose that F: P — L is a nonincreasing map such that conditions
(1)and (2), (3) hold, and that either (4) or (5) holds. Replacing L by a total distributive
sublattice containing F(P), which exists by (1) and (2), we may assume that L is
distributive. By further replacing L by 77, we may assume that L is a finite boolean
algebra. If (5) holds, then (4) holds with the set of g;’s taken to be the set of elements
of P of the form m,, with x € L.
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Forc e P,let x. = F>. \ F~. € Tr. We denote supp F := {c € P | x. # 0} the
support of F. Let ¢, d € supp F with F5, = Fs4. Then Fs. = Fsc A Fsg = Fseva.
Since ¢ € supp F, we must have ¢ Vd = ¢,sod < c. Likewise, ¢ < d,soc =d.
Since L is finite, this shows that supp F is finite.

We now prove that, for all ¢ € P, we have

Fre= \/ Fea. (6.4)
desupp F
d>c
Let ay,...,a, € P be as in (4) with m minimal. For every i = 1,...,m, we have

Fop, = \/aj>a,- Fsq;,s0if we had Fso, = Fsy,, then for all ¢ € P we would have

FZC: \/ anj,

a;=c

J#i
contradicting minimality of m. Therefore every a; is in supp F'. Conversely, if ¢ €

supp F, then {a; | a; > ¢} # {a;| a; > c}, so ¢ must be one of the a;. Therefore

supp F = {a1,...,an,} and (6.4) holds for all ¢ € P by (4).
Consider the family g = (x¢)cep. By (2) and the previous paragraph, we have
V.ep Xc = 1. For ¢, d € supp F different, we have

Xe AXd = (Fae \ Fse) A (Foa \ Foa) = (Fae A Fza) \ (Foc V Fog)
= (cmvd) \ (F>c 4 F>d) =0,
by (3) and because we have the inequality Fs.vqg < F>.V F>4 from the fact that either
cVvd >corcvd > d. By distributivity of L, this implies that the x. are the atoms

of the finite boolean algebra they generate. Therefore g is a grading, and we have
F = F& by (6.4), so F 1s indeed a filtration. ]

Example 6.5.12. Let L = {0, 1}, and consider Q with the standard order. Then the
map F:Q — L given by
0, ¢ > /2,

1, c < /2.

1s not a Q-filtration of L, even though it is nonincreasing and it satisfies (1), (2) and

C =

(3). TFor another non-example, consider R? with the standard product order. Then

the map G:R? — L given by

0, c1 > 0,
(c1,¢2) >
1, c1 < 0.

is not an R2-filtration.
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Remark 6.5.13. If P is a poset, F is a P-filtration of an artinian lattice L, and a € L,
then we say that a is a jump of F if F., < Fs,. The set of jumps of F is denoted
supp F and called the support of F. If F = F& for g = (x;)cep € T'¥(Tp), with D a
total distributive sublattice of L, then supp F = {c € P | x. # 0}. Ifa,,...,a,, € P
satisfy condition (4) in Proposition 6.5.11 with m minimal, then we have seen in the

proof of Proposition 6.5.11 that supp F = {ay,...,am}.

DEFINITION 6.5.14 (Pushforward of filtrations along a map of posets). Let L be an
artinian lattice, let P, P’ be posets, let h: P — P’ be an order-preserving map and let
F be a P-filtration of L. The map h,F: P’ — L defined by
(hiF)sp = \/ Fsa
h(a)=b
is a P’-filtration of L, called the pushforward of F along h.

Proof that hy F is a P'-filtration. Let D be a total distributive sublattice of L and let
g = (xc)cep € TP (Tp) be a D-admissible P-grading such that F& = F. Let h,g =
(Ve)erepr be the P’-grading of Tp given by y. = \/hcep Xc. We have, for b € P/,

(c)=c’

(heF)zp= \/ Fra=\/ \/xe=\/ \/ xe=\/ yo=(F")z

acP acP ceP c’'eP’ ceP c'eP’
h(a)>b h(a)=b c>a ¢’>b h(c)=c’ ¢’>b
Therefore hy F = F"8 5o hyF is a P'-filtration. [

6.5.3 THE DEGENERATION FAN OF AN ARTINIAN LATTICE

In this section we show how for an artinian lattice L, the sets Z" - Filt(L) of Z"-
filtrations for different n can be arranged into a formal fan DF(L)., that we call the
degeneration fan of L in analogy with the degeneration fan of a point in an algebraic
stack (see Section 2.7). We will see in Proposition 7.1.3 that if L 1s the lattice of
subrepresentations of a finite dimensional representation E of a quiver Q over a field
k, then the degeneration fan of L is canonically isomorphic to the degeneration fan
DF (R (Q), E). of the stack Rge(Q) of representations of Q at the point E.

The degeneration fan of L has similar convexity properties to the degeneration
fan of a point in a good moduli stack. We can see DF(L), as a structure similar to
that of spherical building, and in fact we will see that DF(L), is determined by the
set Z - Filt(L) of filtrations together with the sum of filtrations and the data of the
appartments of Z - Filt(L).

For the discussion of degeneration fans of lattices, we do not need to restrict

ourselves to Z"-filtrations. We will more generally consider A”-filtrations, where A
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is a subring of R that we fix for the rest of the section, endowed with the inherited

order. We also fix an artinian lattice L.

DEFINITION 6.5.15 (Pullback of A”-filtrations). Let F be a A*-filtration of L and let
h: A' — A" be an A-linear order-preserving map. Let 7¥: A" — A’ be the dual map
of h. We define the pullback of F along h to be the A'-filtration h*F := (h¥).F of L.

Remark 6.5.16. Yor a linear map h: A* — A", we have that / is order-preserving if and
only if i (AL,) C AZ,.

Recall from Section 2.7 that the category Coneya has objects the A-modules A”
for some n € N and morphisms the A-linear order-preserving maps between them.
The category of A-linear formal fans (Definition 2.7.2) 1s the category of presheaves

of sets on Cone,.

DEFINITION 6.5.17 (Degeneration fan of a lattice). The A-linear degeneration fan DF* (L),
of L is the A-linear formal fan defined as follows:
¢ Forn € N, we set DF4(L),, := A" - Filt(L).
 If h: A" — A" is a morphism in Cone,, then the associated map DF4(L), —
DF4(L); is given by F +— h*F.
We abbreviate DF(L), := DFZ (L)e and simply call it the degeneration fan of L.

The elements of DF (L), are called wntegral filtrations of L, and the elements of
DF© (L) are called rational filtrations of L. The reader can convince themselves that
DFQ(L), is actually the rational formal fan associated to DF(L), as in section Sec-
tion 2.7.

DEFINITION 6.5.18. Let F,, ..., F, € DF*(L),. We say that Fi, ..., F, commute if the
sublattice of L they generate is distributive. In that case, we define the box sum by the
formula

(FiB--HFy)sg = (F1)sa, Ao A (Fu)za,

ford € A".

LEMMA 6.5.19. For commuting A-filtrations Fy, ..., F, € DF4 (L)1, the box sum F{H---BF,
s an A" -filtration

Proof. Let D be a total distributive sublattice of L through which Fy,..., F, factor
and, for i € {1,...,n}, let g&i = (x\);ea € T4(Tp) be a grading with F; = F&i
(Lemma 6.5.10). Let g, BH---Bg, = (xcl1 A AX Yepemedn € T4 (Tp), which is

Cn

.....
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readily checked to be an A"-grading of Tp. We have F&'8-88& — F, B ... @ F,, so

the box sum is indeed an A™-filtration. ]

Remark 6.5.20. The sublattice generated by two A-filtrations F; and F; is always dis-
tributive [12, Theorem III.7.9]. In other words, any two A-filtrations commute and,
in particular, their box sum can be considered. This can be seen as a convexity prop-
erty of DF(L)., and it 1s the lattice analogue of the fact that in a reductive algebraic
group G the intersection of any two parabolic subgroups contains a maximal torus
of G [20, Theorem 10.3.6].

DEFINITION 6.5.21. Let F,, F, € DFA(L)I. We define the sum of F; and F, as F; +
F = (i)* (Fi B F,). Here, (;) denotes the linear map A — A2 with matrix (}).

The following computation readily follows from the definitions.

PROPOSITION 6.5.22. Let F, G € DF*(L),. Then the sum F + G is given by the formula

(F 4+ G)sc = \/ FouNGsp = \/ Fsq NGsp, ¢ € A.
a+b>c a+b=c
If a € Aso, multiplication by a defines an order-preserving map h: A" — A”".
We define the scalar multiplication a F := h* F. By definition, if a # 0 then we have
(aF)sp =V gesp F>c = Fopja, while OF = 0 := F°, the zero filtration, given by

0, ¢>0,
0>C:

1, ¢ <0.

Remark 6.5.23. Our definition of the sum of two R-filtrations agrees with the one in-
troduced in [22, 2.2.3].

Recall (Proposition 6.5.4) that for a distributive sublattice D of L, the set of grad-
ings T'4(Tp) is bijective to K(D) ®z 4, so it is naturally an A-module.

PROPOSITION 6.5.24. Let F and G be A-filtrations of L and let a, b > 0 be elements of A. Let
D be a total distributive sublattice of L through which F and G factor and let f, g € T4(Tp) be
gradings with F = F/ and G = F8. ThenaF + bG = F%/+bs

Proof. Since Q p o 18 a basis of the Grothendieck group K(D)®z A (Proposition 6.3.4),
we can identify f with amap f: Qp,o — A (Proposition 6.5.4), and similarly with g.
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With this notation, Fs. = \/vegp, U, and the analogue formula holds for G. Then

f()=c
(F + G)ZC = \/ FZCI A sz
c1+ca2>c
= \/ \/ v | A \/v = \/ v=<Ff+g)
cit+c2=c \ veQpo vEQ Do veEQ Do =
f)=cy g()=cz S +g)=c

forall c € A. If a € A\ {0}, then

(aF)>c = Focla = \/ v= \/ v= (Faf)>c

vEQ Do veQp.o
f()=c/a af(w)>c
for all ¢ € A; while clearly 0OF = 0 = F° = F%. The result follows. .

Remark 6.5.25. Addition of A-filtrations is in general not associative (see Remark 6.5.33).
However, if Fy,..., F, € A-Filt(L) commute, and ay,...,a, € Aso, then by Propo-
sition 6.5.24 the expression a; Fi + -+ +a, F, € A-Filt(L) is defined unambiguously.

DEFINITION 6.5.26. Let D, be an A-linear formal fan, and F € D,. The components
v F,...,u,F € Dy of F are the pullbacks of F along the maps A — A" given by the
standard basis of A".

The degeneration fan of L has similar formal properties to that of a point in a

good moduli stack. Compare the following result with Propositions 2.7.6 and 2.7.11.
PROPOSITION 6.5.27. For alln € N, the assignment F +— (vi F, ..., v, F) defines a bijection
DF4(L), — {(F1,..., Fy) € (A-Fil(L))" | Fy,..., F, commute}
with mverse (Fy, . .., Fy) — FyB---BF,. Under this byection, the pullback along a nondecreasing

linear map h: A™ — A" with matrix (a;;) is gwen by the formula

W*(Fy, ..., F,) = (ZailF,-,...,Za,-mFi).

Proof. Injectivity follows from the formula F = vy FB---Bv,F,for F € DF4(L),.

Clearly, the v; F commute. Moreover, if Fy, ..., F,, commute, then it follows from the
definitions thatv; (F; B --- B F,) = F; fori = 1,...n. Also, for & as in the statement,
v ((FB. BFE)..= \/ \/ (FO)zay A+ A (Fa)sd,
(C1,eeCm)EA™ (di,...,dp)eA"

¢jz¢ hY(dy,esdn)=(C1ses0m)

=/ (F)sa A A(Fa)sa, = (Z%‘Fi) :

d1,...,dn)eA” i

iajjdjzc
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The last equality above can be seen inductively:

/' (Fosa Ao A (Fi)za,

(di,....dn)eA"
Yiaijdi=c
— \/ \/ (Fl)Zdl ANRERIVAN (Fn_l)zdn—l 7AN \/ (Fn)zdn
ci+cz=c \ (i, dp—1)€A™! dned
YiZl aijdizc anj dnzc2
\/ (aljF1 + "'Cl(n—l)an—l)zcl A (anan)ZCZ = (ZaijFi) ’
ci1tex=>c i =

[

From Proposition 6.5.27 we see that the degeneration fan DF4 (L)e determines
and is completely determined by:
1. the set DF4(L); of A-filtrations of L;
2. the sum of A-filtrations and the multiplication by scalars in A; and
3. the data of which finite sequences Fi, ..., F, of A-filtrations of L commute.

The last piece of data leads to the concept of appartment.

DEFINITION 6.5.28 (Appartment). An appartment of DF* (L), is a subset S ¢ DF4(L),
such that any finite sequence Fi, ..., F, of A-filtrations in S commutes and such that

S 1s maximal with this property.

PROPOSITION 6.35.29. For every maximal distributive sublattice D C L, the set of A-filtrations
of D is an appartment DF*(D)y € DFA(L). Moreover every appartment of DF* (L), is of this

Jorm.

Proof. In a distributive lattice, any finite sequence of filtrations commutes, so the first
statement is clear. If § ¢ DF#(L), is an appartment, then the lattice D generated
by the elements Fs. for F € S and ¢ € A is distributive, and S ¢ DF*4(D),. By
maximality of S, we have § = DF*(D);, and again by maximality we must have

that D 1s a maximal distributive sublattice of L. O]

Remark 6.5.30. In [22, 2.2.6], the set of R-filtrations R - Filt(L) of an artinian lattice
L 1s studied and it 1s given a spherical building like structure where the appartments
are defined to be subsets of the form R - Filt(D) with D C L a maximal distributive
sublattice. Cornut also defines a notion of chamber [22, 2.2.2], but we note that the

degeneration fan does not contain enough information to recover the chambers.
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The degeneration fan of L contains information about L. For example, DF(L),
can detect whether L is complemented (Proposition 6.5.34). To prove this, we intro-

duce a couple of definitions.

DEFINITION 6.5.31 (Connected formal fan). We say that a formal fan D, 1s connected if
Dy has a single element, that we denote 0. If f: [n] — [0] is the unique map between
[n] and [0], we also denote 0 = f*0 € D,,.

Note that DF4(L), is connected. The zero n-filtration is given by, for ¢ € A",

0, else.

DEFINITION 6.5.32. If F € DF*(L), is a filtration, an opposite of F is an element
G € DF*4(L); such that F + G = 0.

Remark 6.5.33. A filtration may have several opposites, as the following example
shows. Suppose that L is the lattice of vector subspaces of C?. Let F be the fil-
tration given by C((1,0)) < C? and weights 1,0. Let v € C?\ C{((1,0)) and let G,
be the filtration given by C(v) < C? and weights 0,—1. Then F + G, = 0. In fact
every opposite of F is of the form G, for some v € C?\ C((1,0)). This also shows
that the sum filtrations is in general not associative, since associativity would imply

uniqueness of the opposite filtration.

We can now state the following proposition, which is the lattice analogue of

Proposition 2.7.14.

PROPOSITION 6.5.34. The artinian lattice L ts complemented if and only if every element of
DF* (L), has an opposite.

Proof. If L 1s complemented and F is an A-filtration of L, we can find a maximal
distributive sublattice D C L such that F € DF4 (D);. Note that D is complemented
by Proposition 6.4.6 and thus a boolean algebra. If xy,...,x, are the atoms of D,
an A-grading g on D is a map g:{x1,...,x,} — A, so the set of A-gradings of D is
A". The map A" — DF4(D);:g+ F¢isa bijection by Lemma 6.5.10, and we have
F&1+8 = F& 4 F& by Proposition 6.5.24. Thus every element of DF(D); has a
(unique) opposite in DF4(D);, and in particular F has an opposite in DF*(L);.
Conversely, suppose that every filtration of L has an opposite, and let x € L.
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Consider the filtration F of L given by

0, c>1
Fse=(x, 0<c<l1
1, ¢<0.

Let G € DF*(L); be an opposite of F. It follows from Proposition 6.5.22 that
XA Gsp=0and x vV G>¢ = 1. Thus x has a complement in L. ]

6.5.4 RECOVERING A LATTICE FROM ITS FILTRATIONS

We now show that an artinian lattice L 1s canonically determined by its degeneration
fan DF(L). and the natural poset structure on the set of its Z-filtrations, even though
the degeneration fan DF(L), alone does not have enough information to recover L.
This observation will be important in our approach to compare the iterated balanced
filtration for stacks and the HKKP filtration for lattices in Chapter 7.

DEFINITION 6.5.35. Let F,G € DF(L);. We say F < G if for all ¢ € Z we have
F>c E GZC'

This defines a poset structure on DF(L);.

DEFINITION 6.5.36. A formal fan with relation 1s a pair (D, <) where D, 1s a connected
formal fan and < is a relation on D;.

If (D, <) 1s a formal fan with relation, we define the set
Lp={FeD,| F>0andVG e D,,0<2G < F — G =0},
endowed with the relation < inherited from D;.
Definition 6.5.35 gives a formal fan with relation (DF(L),, <).

PROPOSITION 6.5.37. Let (D., <) be a_formal fan with relation. Suppose that there is an ar-
tinian lattice M and an isomorphism ¢: (Do, <) — (DF(M)e, <) of formal fans with relation.
Then (Lp, <) s an artimian lattice isomorphic to M. Moreovey, there is canonical isomorphism
(DF(Lp)e, <) = (D, <) of formal fans with relation, independent of M and .

Proof. Yor every a € M, we denote f(a) € DF(M); the Z-filtration of M given by

0, c>1,
f@sc=1(a, 0<c<Il,

1, ¢<0.



6.5. The degeneration fan of an artinian lattice 139

Ifa < b, then f(a) < f(b), so the map f: M — DF(M),:a — f(a) is an injection

of posets.
Claim 6.5.38. The image of f is Lpr(u).

Indeed, let ' € Lpruy with jumps ¢o < ... < ¢, (in Z). Since F > 0, we have
¢i >0foralli. Leta = F5,, > 0. Thenrf(a) < Fforallr =1,...,¢,,50 ¢, 150
orl. Ifc, =0,thenn =0and F =0 = f(0). If ¢, = 1, then F = f(a). Thus
Lpran) C f(M).

Let a € M and suppose there is G € DF(M); with 0 < G and 2G < f(a) but
G #0. Ifcy <--- < ¢, are the jumps of G, then ¢, > 0, since G # 0. Thus 2¢, 13 a
jump of 2G, but

0 < (2G)s2¢, < Foae, =0,

since 2¢, > 1. Therefore (2G)s2., = 0, contradicting that 2¢, 13 a jump of 2G. It
follows that f(a) € Lprr), and thus the claim is established.

Therefore f gives an isomorphism M = Lppu). Since ¢ induces an isomor-
phism Lpras) = Lp, we have an isomorphism M = Lp of sets with relation, and
thus L p 1s an artinian lattice.

Let F € DF(M); be givenbyjumpsco < -+ < ¢yinZandachainl > ay > --- >
an >0 M. Then F = co f(1)+(c1—co) f(ay)+:--+(cn—cn—1) f(a,) and the sum 1s
associative because f (1), f(ay),..., f(a,) live inside a common distributive sublattice
of M. We can use this observation to define an isomorphism «: DF(Lp)e — D.
independently of ¢.

Note that the map v™: D, — (D;)" that maps an element F € D, to its com-
ponents (v1 F,...,v,F) € (D1)" is injective for all n € N and bijective for n = 2 by
Proposition 6.5.27 and Remark 6.5.20. Therefore we can define sums and box sums
of elements of D, as follows. We say that Fi,..., F, € Dy commute if (Fy,..., Fy) 1s
in the image of v®. In that case we denote F, B --- B F, the unique preimage. We
define the sum of F,G € Dy as F + G = (})"(F B G).

If F € DF(Lp); is given by jumps ¢9 < -+ < ¢, in Z and a chain 1 > b; >

- > b, > 01in Lp, we define a1(F) = col + (¢c1 — co)b1 + -+ + (¢n — Cn—1)bp.
The sum 1s associative because it is so in the case Dy = DF(M)., and the map
a1:DF(Lp)1 — D, is an 1somorphism since it is so in the case Do = DF(M).,.
We define o, (F; B --- 8 F,) = o1(Fy) B--- B a;(F,). This is well defined and a
bijection between DF(Lp), and D, since it is so in the case Do = DF(M),. Thus
o:(DF(Lp)e, <) = (D., <) 1s an isomorphism of formal fans with relation and it 1s
defined solely in terms of (D., <). []
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Remark 6.5.39. It 1s clear from the definitions and from Proposition 6.5.37 that the
poset Z - Filt(L) of an artinian lattice L, endowed with the multiplication of scalars
in Zsy, 1s enough to recover L, and that the full structure of formal fan of DF(L).
is not needed for this. However, for our applications to Chapter 7, the formulation

using formal fans i1s more convenient.

6.6 NORMED LATTICES AND THE HKKP FILTRATION

In this section, we prove the main result of this chapter, which is a new charac-
terisation of the weight filtration of Haiden—Katzarkov—Kontsevich—Pandit (called the
HEEP filtration here) [33] as the unique minimiser of a certain norm function (Defi-
nition 6.6.13) on the set of so-called paracomplemented filtrations (Theorems 6.6.15
and 6.6.26). We fix an artinian lattice L and a subring 4 of R, endowed with the
induced order.

DEFINITION 6.6.1 (Complementedness). Let F € DF*(L); be an A-filtration of L.
We define the complementedness (F, ) of F to be

(F,I) :==sup{b € Ao | Yc € A, [F>ctp, F5c] 1s complemented} € R5 U {oo}.

The filtration F is said to be paracomplemented if (F,[) > 1. We denote B4(L) the set

of all paracomplemented A-filtrations of L

The notion of complementedness for lattices 1s an analogue of that for states
(Definition 5.1.13).

Remark 6.6.2. The notion of paracomplementedness for R-filtrations coincides with

the original definition [33, Section 4.3].

LEMMA 6.6.3. Let D be a maximal distributive sublattice of L and let F € DF4 (L)1 be a
Sfiltration that factors through D. If (F,|p) denotes the complementedness of F seen as a filtration of
D, then (F,lp) = (F,).

Proof. This follows directly from Corollary 6.4.8. ]

As the lemma suggests, in order to understand complementedness for L it will

be key to study first the distributive case.

DEFINITION 6.6.4. Let M be a finite boolean algebra. We define the module I'4 (M)
of A-linear characters of M to be the dual of the A-module I'4(M) of A-gradings of M.
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Let D be a distributive artinian lattice. The family (v)yeg,, of vertices of D
is a canonical basis of I'4(Tp). We denote (v¥)yeg,, the basis of I'4(Tp) dual to

(U)UEQD'()-

DEFINITION 6.6.5. Let D be a distributive artinian lattice. The state of D 1s the finite

subset

[]

D= {v;’ —v } v1, V2 € Qp,o and there is an arrow v; — v; in QD,1}
Ofrz(TD).

Remark 6.6.6. There 1s a canonical injection I'z(Tp) C I'4(Tp), and thus we can see

the state E p as a subset of I'4(Tp) as well.

Every filtration of D can be seen as a filtration of Tp. Thus there is an injection
DF*(D), — DF*(Tp), = T'A(Tp) through which we see DFA(D)l as a subset of
r4(Tp).

PROPOSITION 6.6.7. Let D be a distributive artinian lattice. We have the equality
DF4(D), = {A e TA(Tp)| Yw € Ep, (A, w) >0}
via the canonical injection DF4 (D), — T4(Tp).

Proof. We see D as the lattice of closed subgraphs of O p via the injection D — Tp
(Theorem 6.3.5). If A € T4(Tp) is a grading and ¢ € A we have

A
FZ, = \/ v.
veED Do

(A, vY)=c

This 1s an element of D precisely if for each arrow vy — v, in Q p we have
Av{)y>=¢c = (A, v))>c

This condition holds for all ¢ € 4 if and only if (A,vY) < (A,vy). Thus F*is a

filtration of D precisely when (A, vy —v") > 0 for all arrows vy — v;. ]

Remark 6.6.8. Proposition 6.6.7 precisely says that the filtrations of D coincide with
the filtrations of the trivially polarised state (I'4(Tp), Ep,0) in the sense of Defini-
tion 5.1.3, while Proposition 6.6.9 states that the complementedness of a filtration

of D in the sense of lattices agrees with the complementedness in the sense of states
(Definition 5.1.13).
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PROPOSITION 6.6.9. Let D be a distributive lattice and F* € DF*(D), a filtration of D, with
A € TA(Tp). We have the following formula for the complementedness of F*:

(F*,1y =inf{(A,w)| w € Ep}.
In particular; F* is paracomplemented if and only if for all w € B p we have (A, w) > 1.

Proof. Again we see D as the lattice of closed subgraphs of Qp. For b,c € A with
b > 0, the interval [Fsc4p, F>.] 1s isomorphic to the full subgraph of Q with set of
vertices {v € Opol| ¢ < (A, vY) < ¢ + b}. Thus [Fsc4s, F>c] 1s complemented if
and only if there are no arrows vy — v, with ¢ < (A, v), (A,v)) < ¢ + b. It follows
that [Fsc+p, F>¢] 1s complemented for all ¢ € A4 if and only if (A, v —vY) > b for all

arrows v; — vp. This is seen by setting ¢ = (A, v,"). We thus have
b<(F*1) < b<inf{{A,w)| we Ep}

Since this holds for all » > 0 in A, we have the desired equality. ]

COROLLARY 6.6.10. The set Ba(L) of paracomplemented A-filtrations is convex, in the sense
that for all F,G € B4(L) andt € [0,1] N A, we have (1 —t)F +tG € B4(L).

Proof. Take a maximal distributive sublattice D of L containing F and G. By Propo-
sition 6.6.9, the complementedness (—,[) is a convex function on DF*(D);. The

result follows. N
We recall the definition of norm on a lattice used in [33].

DEFINITION 6.6.11 (Norm on a lattice). An A-valued norm X on L is the data of a
nonnegative number X ([a, b]) € Ao for every interval [a, b] of L such that

1. X([a,b]) =01fand only if a = b;

2. X([a,b]) = X([a,c]) + X([c,b]) ifa < ¢ < b;and

3. X([a,b])) = X([@',b']) if [a, b] ~ [a’, ]'].
An A-normed artinian lattice 1s a pair (L, X) where L 1s an artinian lattice and X is an

A-valued norm on L.
From now on, we fix an A-valued norm X on L.

Remark 6.6.12. The conditions in Definition 6.6.11 amount to X being defined by a
homomorphism X:K(L) — A such that X ([a, b]) > 0fora <b.

DEFINITION 6.6.13 (Norm of a filtration). For every filtration F € DF4(L);, we

define its norm squared || F ||* to be

IFI? =) ®X([Foc. Fxc]).
ceA
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Remark 6.6.14. Tor any distributive sublattice, X induces a norm on D by restriction
and on Tp because K(D) = K(Tp). Since K(D) has for basis the set of vertices of D,
the restriction of X to D 1s determined by the values X(v) for v € Qp. The norm
on Tp gives an inner product (—, —) on I'4(Tp) that, in the basis of vertices O p o, has
diagonal matrix (8yu X (v))v,weopo- If A € T4(Tp) is a D-admissible grading, then
we have ||A]|? = || F*)?.

THEOREM 6.6.15. Suppose A is a field. Then there is a unique paracomplemented filtration F €
Ba(L) minimising ||—||? on the set Ba(L) of paracomplemented A-filtrations of L.

Proof. Let D be a maximal distributive sublattice of L. We first study the problem of
minimising ||—||* in DF4(D),. By Proposition 6.6.9 and Remark 6.6.14, we are look-
ing to minimise ||A]|2 for A € R4, where Ry = {A € T4(Tp) | inf(A, Ep) > 1} is the
set of those D-admissible A-gradings A € I'4(Tp) such that F* is paracomplemented.
A unique minimiser of ||—||? on R4 exists by the case of states (Proposition 5.1.14).

From Proposition 6.3.2 we see that there are only finitely many isomorphism
types of normed distributive lattices that appear as maximal distributive sublattices
of L. Indeed, once we fix a maximal chain 0 = a9 < -+ < a, = 1 of L, distribu-
tive sublattices D of L containing the a; are determined by the set of arrows of the
corresponding directed acyclic graph with vertices {1, ...,n}. The norm on D is de-
termined by attaching the number ¢; = X([a;—1,a;]) € A-¢ to each vertex i. If we
choose a different maximal chain 0 = by < --- < b, = 1, by the theorem of Jordan—
Holder—Dedekind, we have X([a;—1,a;]) = X([bs@)-1,bo()]) for a permutation o of
{1,...,n}. Therefore all maximal distributive sublattices D of L are isomorphic, as
normed lattices, to the lattice of closed subgraphs of some directed acyclic graph with
set of vertices {1, ..., n} and norm given by the numbers ¢y, ..., ¢,. We conclude that
the minimum of ||—||? on B4(L) is attained at some F € B4(L).

Suppose that there are two paracomplemented filtrations F,G € B4(L) min-
imising ||—||?. By [12, Theorem IIL.7.9], the lattice generated by the Fs. and the
G 1s distributive. Therefore there is a maximal distributive sublattice D of L such
that both F and G factor through D. We must have F = G from uniqueness of the

minimiser in the distributive case. ]
We now study the notion of linear form on a lattice.

DEFINITION 6.6.16 (Linear form on a lattice). An A-valued linear form £ on L 1s the
data of a number £([a, b]) € A for each interval [a, b] of L such that:
1. £([a,b]) = £([a,c]) + £(Jc,b]) ifa < c < b; and



144 Chapter 6. Modular lattices

2. L([a,b]) = L([d’, b)) if |a,b] ~ [a’, ]]].
If ¢ is an A-valued linear form on £ and F € DF* (L) 1s a filtration, we define
the pairing

(F.€) =) c L([Fsc. F=)).

ceA
Remark 6.6.17. Equivalently, an A-valued linear form on L is an A-module homo-
morphism £: K(L) — A.

The word linear in the definition is justified by the following property.

LEMMA 6.6.18. Let £ be an A-valued linear formon L. Fora,b € Aso and F,G € DF4 (L)q
we have

(@F +bG, ) = a(F,€) + b(G,1).

Proof. By taking a distributive sublattice D of L through which both F and G factor,
and subsequently taking the associated boolean algebra Tp, we may assume that
L = M is a finite boolean algebra. Then £ is given by an element o € I'y(M), and
for A € T4(M) we have the equality (F*,£) = (A,a). In this context, linearity is

clear. ]

DEFINITION 6.6.19 (Semistable lattice). Let £ be a linear form on L. We say that L
1s semustable with respect to £ if for all F € DF*(L); we have (F,¢) < 0.

The following proposition relates the notion of semistability above with what
in [33] 1s called semustable of phase 0.

PROPOSITION 6.6.20. Let £ be a linear form on L. Then L is semistable with respect to £ if and
only if £(L) = 0 and for all x € L we have £([0, x]) < 0.

Proof. Suppose first that L is semistable with respect to L. Let a € A and consider
the filtration F of L characterised by the fact that F., = 0, F5, = 1. We have
(F,2) = al(L). Thus al(L) <0 forall a € A, which forces £(L) = 0.

Nowlet x € L and consider the filtration F with jumps 0 and 1 such that F5; = x
and F>o = 1. We have £([0, x]) = (F,£) <0, as desired.

Conversely, suppose that £(L) = 0 and for all x € L we have £([0, x]) < 0. Let
F € DF*(L); be any filtration with jumps ¢; < ... < ¢,. We have

(sz) = Zciz([F>C,'a FZC,’]) = Zci (6([07 FZC,’]) - E([Ov FZC[_H])) + cng([ov cmn]) =

= Z(Ci —ci—)L([0, Fs¢,]) + c1£(][0, F>,]) <0,

=2
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since all ¢; — ¢;—; > 0 and £([0, F>.,]) = £(L) = 0. [

If L’ C L is a sublattice and £ is a linear form on L, there is an induced linear
form €|, on L' given by £|1/([a,b]) = £([a,b]) fora < b in L'

Remark 6.6.21. If D C L is a distributive sublattice, since I'4(Tp) = K(D), we identify
¢|p with an element of I'4(Tp). Therefore we have a polarised state (I'4(7p), Ep,
—{|p) over A, which 1s semistable precisely when D is semistable with respect to £|p.
If L 1s endowed with an A-valued norm X, then (I'y(Tp), Ep,—£|p) 1s a normed
polarised state.

DEFINITION 6.6.22 (Lattice of semistable elements). Let £ be a linear form on L and
suppose that L is semistable with respect to L. We denote L*® (or just L* if £ is clear
from the context) the sublattice of L consisting of those elements x € L such that

[0, x] 1s semistable with respect to £|[o x].

Since in the definition L itself 1s assumed to be semistable, x € L 1sin L* if and
only if £([0, x]) = 0. If x, y € L*, then

£([0,x v y]) = £([x,x v y]) = £(x Ay, y]) = —L£([0, x A y]),

therefore £([0, x Vv y]) = £(]0,x A y]) = 0, since both are < 0. Thus L* i1s indeed a

sublattice of L, and it contains 0 and 1.

DEFINITION 6.6.23 (Associated graded lattice). Let F € DF*(L); be an A-filtration
of L. We define the associated graded lattice Gradr (L) to be the product lattice
Gradp(L) = [ [[Fc. Fxcl.
ceA

The associated graded lattice is normed by setting

X ([(xc)eear (Yedeea)) = D X ([xe, yel).

ceA

We still denote by X the norm on Gradrg(L). The lattice Gradr (L) carries naturally
a linear form FV, defined by

FY([(xc)eea (Yeeea]) = D eX([xe, yel)-

ceA
Suppose that D is a maximal distributive sublattice of L containing F. Then
each [Fs., F5:] N D is a maximal distributive sublattice of [Fs., F>.] by Proposi-
tion 6.4.5, and thus Dy = [[,cg[F>c, Fsc] N D is a maximal distributive sublattice
of Gradr(L). Note that D and D,, have the same associated boolean algebra Tp.
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Suppose that G is an A-filtration of Gradg (L) contained in Dg,. Then we have the

formula

(G, FY) = (G, F), (6.5)

where in the right hand side, G and F are seen as elements in ['4(Tp) and (—, —) is
the inner product on T'4(Tp) given by X.
In [33], the local structure of 84(L) around a paracomplemented filtration F is

described in terms of another lattice A(F), whose definition we recall now.

DEFINITION 6.6.24. Suppose that F € 84(L) is a paracomplemented A-filtration.
We define the sublattice A(F) of Gradg (L) to be the set of those (x.)ceq € Gradp (L)

such that for each ¢ € A the interval [x.41, x.] of L is complemented.

It is not obvious that A(F) 1s actually a sublattice of Gradr(L). This fact is [33,
Proposition 4.5], although it can also be deduced from the proof of the following

lemma by reducing to the distributive case.

LEMMA 6.6.25. Let F € B4(L) be a paracomplemented A-filtration of L, and let D be a maximal
distributive sublattice of L through which F factors. Then Dy = Dg N A(F) is a maximal
distributive sublattice of A (F) with associated boolean algebra canonically isomorphic to Tp. Moreover;
is state 1s

Eppam =tw € Ep| (A, w) =1} C T'y(Tp),

where & € TA(Tp) is such that F* = F
Progf. Let D’ be a maximal distributive sublattice of A (F) containing D (ry. The pro-

jections p.: D’ — [Fs., F>.] are maps of lattices whose image contains D N[Fs¢, F>c].
Indeed, we have a section s.: D N [Fs¢, F>c] = Dary C D’ defined by

de, d>C,
Sc(x)d: X, d=C,
F>d, d<C.

Since D N [Fs., F>.] is a maximal distributive sublattice of [Fs., F>.] and p.(D’) 1s
distributive, we must have p.(D’) = D N [Fs¢, F>c]. Therefore D" = D a(F).
Denote Fp the filtration F seen as a filtration of D. From Corollary 6.4.8 it
follows that Dy(ry = A(Fp), that is, D (r) consists of the elements (yc)ces € Dgr
such that [y¢4+1, ye] N D is complemented for all ¢ € A. We can regard D canonically
as the lattice of closed subgraphs of the directed acyclic graph Qp. The filtration
Fp is of the form F? for an element A € T'4(Tp). Given (y¢)eea € Dy and ¢ €

A, the interval [yc41,y:] N D 1s complemented if and only if there are no arrows
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a:u — v with u,v € y. \ yeq1. Note that, since Fp is paracomplemented, for
any such arrow we have (A,u) = ¢ and (A,v) = ¢ + 1, and thus we must have
U € yo\ Fscand v € Fscqq \ Yet1. Therefore (yc)cea 15 iIn Dpcry 1if and only if
for every arrow e:u — v with (A,v¥ —u") = 1 and u € y., for some ¢ € A4,
we have v € y.41. Let Q' be the subgraph of Qp with vertices Qp,o and arrows
a:u — v such that (A,v¥ —u") = 1. The condition above is precisely that the subset
Ueeu Ye \ Fsc of Op o (which corresponds to the element (yc)ceq € Dy itself via the
identification Tp = Tp,) is a closed subgraph of Q’. Therefore Dar) is identified
with the lattice of closed subgraphs of Q’. On the other hand, the state of Q’ is by
definition {w € Ep | (A, w) = 1}. []

The linear form FY on Gradpg(L) induces a linear form on A(L) that we still
denote by FV.

THEOREM 6.6.26 (Existence and characterisation of the HKKP filtration). Let A be a
field, and let L be an A-normed artinian lattice. Let F € B 4(L) be a paracomplemented A-filtration
of L. Then the following are equivalent:

1. The filtration F minimises the function ||—||* on B4 (L).

2. The lattice N(F) s semustable with respect to the linear form —F .
Moreoves; there is a unique F € B 4(L) satisfying these conditions.

DEFINITION 6.6.27 (HKKP filtration of a normed lattice). In the context of Theo-
rem 6.6.26, the unique F € B4(L) satisfying the two equivalent conditions is called
the HKEP filtration of the A-normed lattice (L, X).

Remark 6.6.28. The proof of Theorem 6.2.2 in [33] uses completeness of R in an
essential way. Our methods however allow us to prove that the weight filtration is
defined over the field A if the norm takes values in A. The characterisation of the
HKKP filtration as the unique minimiser of || —||? on 8 4(L) is new and will be impor-
tant in our approach to relate the iterated HKKP filtration with the iterated balanced
filtration in Chapter 7.

Proof. The existence and uniqueness statement follows from Theorem 6.6.15. We
now prove the equivalence of the two conditions. The first one is equivalent to, for
every G € B84(L), the function

1
JO =3l -0F +1G|?, 1 €[0,1]N 4,
having a local minimum at ¢ = 0. This follows by convexity of 84(L) and strict

convexity of ||—||?, which can be seen by taking a maximal distributive sublattice D
of L such that both F and G factor through D.
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Claim 6.6.29. There is H € DFA(A(L)), such that £/(0) = (H, FV).

Indeed, take A, u € T4(Tp) such that F = F» and G = G*. Then f(t) =
2111 = £)A + 1u]]?, where now the norm is associated to the inner product (—, —)
in I'4(Tp). Therefore f'(0) = (u — A, A) = (H, FV), where H is the filtration of
Tp = Dy C Gradpg(L) associated to u — A. Using the description of Ep, ., from
Lemma 6.6.25, we see that for allw € Ep, ., we have (u — A, w) = (u, w) —1>0,
since w 1s a filtration of D. Hence H 1s a filtration of A(F') by Proposition 6.6.7. This
proves the claim.

If A(F) 1s semistable with respect to —F", we have that f'(0) > 0, so 0 is a local
minimum of f. Since this holds for all G € 84(L), we have that F minimises ||—||?
on B4(L).

Conversely, suppose that F maximises ||—|*> on B4(L), and let H be an A-
filtration of A(F). Take a maximal distributive sublattice D of L containing F such
that H factors through Da(ry, and let u,A € T'4(Tp) correspond to H and F.
Since (u,w) > 0 for all w € Ep such that (A, w) = 1, we have, for small enough
t € AN(0,1] that (A +tu, Ep) > 1. Thus A + ¢ corresponds to a filtration G of
D C L. Defining f as above, we see that f'(0) = (tH, FV). Since f has a local
minimum at 0, it must be f’(0) > 0 and thus (H, F") > 0. This proves that A(F) is

semistable with respect to —F". L]

We can get more intuition about why Theorem 6.6.26 is true by interpreting
A(F) as describing 84(L) locally around F, as we now explain.

Keep assuming A4 is a field. For F € 84(L) and € > 0 a real number, we define
the set B(F,¢) as

B(F,e) ={H € Ba(L)| Yc € A, dsupp F,c) > ¢ = Hs>. = F5.}.

Recall that supp F denotes the support of F, which is defined as the set of its jumps.
Suppose now that

&< %inf{|c—c’|| c,c' esupp F, ¢ ;éc’}.

If G 1s an A-filtration of A(F) with support inside (—¢, €) we define a filtration F + G
of L as follows. Let c; < ... < ¢, be the jumps of F. Fort € A with |f| < ¢ and
ie{l,...,n}weset

(F + G)sei+t = (Gxt)e;s
and for ¢ € A with d(supp F,c) > ¢ we set (F + G)>, = F>.. This yields a well-
defined element F + G € DF4(L);.
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The following result is [33, Proposition 4.8] for the case A = R, but the same
proof is valid for all subfields A of R.

PROPOSITION 6.6.30. Suppose A is a field and let F € B4(L) be a paracomplemented A-
Sfiltration. For small enough &€ > 0, the map G +— F + G establishes a byection between the set of
A-filtrations of A(F) with support contained in (—¢, €) and B(F, ¢).

Intuitively the proof of Theorem 6.6.26 goes as follows. By convexity, F' min-
imises ||—||* on B4(L) if and only if F is a local minimum of ||—||* on 84(L). Since
locally around F elements of 84(L) are of the form F + H, with H € DF(A(F)),,

this 1s equivalent to the function
1
fO) =;IF +eH|?, te[0,1]NA4

having a local minimum at 0, that is f'(0) > 0. Computing the derivative we get
f’(0) = (H, FY), from which the result follows. A concrete way to establish the
computation of f/(0) is by working with maximal distributive sublattices, which is
what we do 1n the proof of Theorem 6.6.26.

6.7 THE HKKP CHAIN

In analogy with the notion of chain for stacks (Definition 4.1.1), we define the concept
of chain of lattices. The operation of taking the HKKP filtration of a normed artinian
lattice L can be iterated, and the result is best expressed as a chain of lattices. As a

shadow of this procedure, we obtain a Q*-filtration of the original lattice L.

DEFINITION 6.7.1. A chain of lattices is data (L, Fy, ¢y)nen Where
1. for every n € N, L, 1s an artinian lattice endowed with a rational norm;
9. F, € DF®(L,), is a Q-filtration of L,;
3. ¢ni Lpt1 — Gradp,(Ly) 1s a sublattice of Gradpg, (L,) in such a way that the
norm on L, 1s the restriction along ¢, of the norm on Gradpg, (L,), which is

itself inherited from L,,.

DEFINITION 6.7.2. Let L be an artinian lattice endowed with a rational norm. The
HEEP chain of L 1s the chain (L, Fy, ¢y)nen defined inductively as follows:
1. Lo = L as normed lattices;
2. ifn € N and L, is defined, we let F,, € DF?(L,); be its HKKP filtration (Det-
inition 6.6.27). We let L, 1, = A(F,)*"F) (see Definitions 6.6.22 and 6.6.24)

and ¢, to be the inclusion

cn: Lpy1 = A(F,) — Gradpg, (Ly).
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We endow L, 4+ with the norm induced from Gradpg, (L,).

For every n € Nj there is an inclusion

tn: Lyy1 = Grady'! (L) = Gradp,(GradF,_, (--- (Gradp,(L)) ---),

which allows us to see F,4; as a Q-filtration of Grad’};:rl F,- Lhe i, are constructed

.....

inductively by letting 1y = ¢ and ¢, to be the composition

Cn+1 Graan+1(Ln+l) nal
Lyy» — Gradpg, ,(Ly41) ——— Gradp, ., (Graan FO(L)) ,

.....

noting that Gradp, | (Grad’}jl Fo (L)) = Grad's™ 7 (L)

..... Funit,e
The data of the F,, seen as Q-filtrations of Grad’}jl F, (L), is the same as the

data of a Q*-filtration of L in the sense of Definition 6.5.8. Here Q®° = Q®N with
lexicographic order. Since Q® is a totally ordered set, a Q*°-filtration of L can be

described in more concrete terms as a chain
O<ar<ar<---<a,=1
of elements of L together with a chain
Cl1 >Cyp > > Cy

of elements of Q.

DEFINITION 6.7.3. The uterated HREP filtration of L is the Q*°-filtration of L deter-
mined by the F, as above.

Remark 6.7.4 (Refined Harder—Narasimhan filtrations for lattices). For artinian lat-
tice L, a rational norm X and a rational linear form ¢ give rise to a polarisation
Z:K(L) — C 1in the sense of [33] by setting Z ([a,b]) = —£([a,b]) + iX([a,bD]).
The Harder-Narasimhan filtration F of (L, Z) 1s then defined, and it is characterised
by the fact that Gradg(L) is semistable with respect to the linear form ¢ — FV.
We can define the refined Harder-Narasimhan chain (L,, Fy, cn)nen by letting Lo = L,
Ly = Gradp(L)*“F), Fy = F, co: Ly — Gradr(L) = Gradg,(Lo) the natu-
ral inclusion and (L, +1, Fut1, Cnt1)nen to be the HKKP chain of L;. The associ-
ated Q*°-filtration of this chain is by definition the refined Harder-Narasimhan filtration of
(L,Z).

We note however that for many moduli problems of objects in abelian categories,
like that of vector bundles on a smooth projective curve, the Harder-Narasimhan
filtration does not arise in this way because the relevant lattice of subobjects is not ar-
tinian. Artinian lattices are still suitable for defining refinements of Harder—-Narasimhan

filtrations in these cases though.



CHAPTER 7

COMPARISON WITH THE ITERATED HKKP
FILTRATION

This chapter is devoted to establishing a correspondence between the iterated bal-
anced filtration for stacks and the iterated HKKP filtration for lattices. We intro-
duce a class of stacks X endowed with some extra structure, called lnearly lit good
moduli stacks (Definition 7.3.7), for which every point x has an associated artinian
lattice L. Morally, linearly lit stacks parametrise objects in some linear category.
We give many examples of linearly lit stacks and provide a general method to es-
tablish linear litness in Section 7.4. We prove that the sets of sequential filtrations
Q- TFilt(Ly) = Q- Filt(X, x) are canonically isomorphic and that, in the presence
of a norm, the iterated HKKP filtration of L, agrees with the iterated balanced fil-
tration of (X, x) (Theorem 7.5.9 and Corollary 7.5.11).

7.1 AGREEMENT OF DEGENERATION FANS

In this section, we will exhibit how the degeneration fan of the lattice of subrepresen-
tations of a quiver representation can be read off from the moduli stack of represen-

tations. The simplest case 1s that of subspaces of a given vector space.

PROPOSITION 7.1.1. Let k be a field, let d € N, and let pt: Speck — BGL(d)k be the
standard point, corresponding to the vector space k®. Let L be the lattice of vector subspaces of k¢.

T hen there is a canonical isomorphism
DF(BGL(d)k,pt)e = DF(L).

of formal fans.
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Proof. We write DF(GL(d)r)e = DF(BGL(d), pt)e. The formal fan DF(GL(d)k)e

can be explicitly described as

DF(GL(d)k)n = Hom(Gy, ;. GL(d)x)/ ~

m,k>

where for A,y € Hom(Gy, ;. GL(d)r), we have A ~ y if there is g € P(A)(k) such
that y = A%¢. This follows from Example 2.2.13.

A homomorphism A:G;, , — GL(d) is the same data as grading V' = k¢ =
EBXErZ(Gsz) VX)L of V by I'z(Gy, ;), where each V)? < V. Weidentfy I'z(G,, ;) = Z"
canonically, and see it as a poset with product order. Thus there 1s a canonical
byjection between the set of homomorphisms A: G, — GL(d)x and the set of
Z"-gradings of L. For such a A, we have the associated filtration given by FZ, =
D ez V)?, for ¢ € Z". It is a Z"-filtration by Definition 6.5.6.

Claim 7.1.2. Yor all g € GL(d)(k), we have that g € P(A)(k) if and only if for all
c e, g(Féc) C F;c.

Indeed, g € P(A)(k) ifand only iflim, o A(t)gA(t) ™! exists. Write g = (gy.y) y.xczn>
where g, VX)& — V)?. Then A@)gA () Dy = (x — x)(0)gy.x- Thus g € P(A)(k)
ifand only if for all y, y’ € Z", if g4,,» 7# 0 then y > x’. This condition is equivalent
to

VyeZ" gV} C FL,

which is in turn equivalent to
VyeZ" gF: CFl,.

This proves the claim. Note the equalities V;g = gVXA and ng = gng for any
g € GL(d)(k). If g € P(A)(k), then F** = F* Thus the assignhment A — F* gives
a well-defined map f,: DF(GL(d)k), — DF(L),.

Suppose A1, 42: G, — GL(d)x are such that F := F* = F*2_ Let € be the
set of jumps of F, and let y1, ..., x; be alabelling of the elements of € in such a way
that X; < X; impliesi < j. Note that € = {y € Z"| V)?" # 0} fori = 1,2. Let
U= s Fsy;» Wehave Uy G U1 G- G U = V.

We define inductively an automorphism g;: U; — U; such that g,-(VX’ll,l) = Vx’tz
and gily,,, = gi+1. We set g = idy,. Suppose g; is defined, i > 2. We have
two direct sum decompositions, U; = U;_; & V)é.‘ =U_1 & V)?l?, so there 1s an
isomorphism o: Vx'tl — V)é,z. We set gi-1 = g @ 0. Nowlet g = g;. We have
EF=e) = 8 (X 2e Vi) = X ync 8 (V) = Xyne V2 = Fxc. Thus g € P(A) and
Ay = A¥ since V)?Z = gVX)Ll for all y € Z". This proves f,: DF(GL(d)x), — DF(L),

1s Injective.
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Let F € DF(L),, and let M be a maximal distributive sublattice of L containing
each Fs. for ¢ € Z". By Proposition 6.4.6, M is complemented. By Lemma 6.5.10,
there is a grading A of M, which is also a grading of L, such that F = F*. The
grading A can be seen as a map A: G — GL(d)k, and thus F = f,(A). The map
Ju 1s therefore surjective.

It is only left to check naturality of the maps f,. Let h:Z! — Z" be an order-
preserving linear map and A: G, , — GL(d)r. We denote h*(1) := A o D(hY),
where D denotes the Cartier dual map. This descends to give the pullback map
h*:DF(GL(d)x)n — DF(GL(d)r);. By Cartier duality, for y € Z", the torus an,k
acts on V)? as hV(x), so VI = D ()=« VX’L for all « € Z*'. Therefore for all ¢ € Z!

we have
h*A A A A
Ft = EB Vy = Z FLy = (h"F")s,
XEZ" XEZ"
hY (0)=c hY (0=c
as desired. L]

With the aim of generalising Proposition 7.1.1 to the quiver setting, we recall
certain basic definitions and set notations. We fix a field k.

A quiver Q 1s a finite directed graph. It consists of a finite set Q¢ of vertices, a finite
set Q1 of arrows and source and target maps s,t: Q1 — Qo. If @ € Oy, we write a:i — j
ifi = s(w) and j = t(«). A representation E of Q over the field k consists of a vector
space E; for every vertex i € Q¢ and a linear map xq: E; — E; for every arrow
a:i — j of Q. We will sometimes denote E = ((Ei)iegy. (Xa)aco,)- We say that
E 1s finite dimensional if every E; is. A morphism of representations £ — E’, where
E" = ((E))i, (x})a),1s afamily (fi)iep, of maps f;: E; — E!suchthatx) o fi = fjox,
for every arrow a:i — j.

A dimension vector d for Q is the data of a number d; € N for every vertex i of Q.

The representation space for the dimension vector d 1s
Rep(Q.d) = P Hom(k% k%)
ai—j

The group G(d) = [];cg, GLa, k acts on Rep(Q,d) by

(&) - (Xa)a = (gjxagi_l)a:i—ﬂ"

The quotient stack Rep(Q,d) = Rep(Q,d)/G(d) is referred to as the moduli
stack of representations of Q of dimension vector d .
We now fix a quiver Q, a dimension vector d and we denote G = G(d), V =

Rep(Q,d) and X = Rep(Q,d). We fix a k-point x of V, and, by slight abuse of
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notation, we denote the image of x under V' — X also by x. The point x gives a
representation E = ((k%);, (x4)s), and we will denote L = L the lattice of subrep-

resentations of E, which is an artinian lattice (Definition 6.1.1).
PROPOSITION 7.1.3. There is a canonical isomorphism
DF(X, x)e = DF(L).

of formal fans.

Proof. By Proposition 2.7.5, there 1s a injection DF(X, x)e — DF(BG, pt). that iden-
tifies DF(X, x)o with a subfan of DF(BG, pt). by

DF(X,x), = {y € DF(BG,pt), | lim yx exists},

and where
DF(BG,pt), = Hom(G,, ;,G)/ ~,
with y ~ y& it g € P(y)(k).
Let Q° be the quiver with Qg = Q¢ and Q] = &. Then E defines a represen-
tation E° of Q° which is just the vector space P, ¢, Ei endowed with its grading by
the set Q. The lattice L go of subrepresentations of E° 1s the product

Lgo = ]—[ Lg,

i€Qo
of the lattices of vector subspaces of each E;. Proposition 7.1.1 gives a canonical

1somorphism

DF(BG.pt). = [ [ DF(BGLy, k.pt)e = [ [ DF(LE,)s = DF(L%)s:y > F7.
i€Qo i€Qo
The injection of lattices L — L° gives an injection of formal fans DF(L)s — DF(L°)..
Now if y € DF(BG, pt), 1s represented by a group homomorphism G}, ; — G (that
we also denote y), then the associated filtration F¥ € DF(L°®), is given by

(FL)i = @ (E),, cez’,

EZ"
x=zc

where (E;)} is the eigenspace of E; where G” , acts, via y, through the character

x € I'z(G}, ) = Z". The direct sum decomposition of the E; allows us to write x in

coordinates X = (Xo,y.x)ac0,.r.x/czn Where, if @:i — j, then Xg,,,: (Ei)Y, — (Ej)

is the corresponding component of x,. For F” to be a filtration of E we need that
% ((E)7) € @D (Ey,

XEZL"
x=x
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forall@:i — j andall y’ € Z". This is equivalent to x4,,,,» being 0 whenever y < x/,
for all @« € Q1. On the other hand,

y@©)x = ((x = X)) Xa, 2 azx'

so lim yx exists if and only if x4 4,,» = 0 whenever y < x’. Therefore DF(X, x)o and
DF(L). are the same subfan under the isomorphism DF(BG, pt)s = DF(L°)., so we
get an 1somorphism between DF (X, x). and DF(L)., as desired. [

We denote DF(X, x), — DF(L),:y — F? the isomorphism above.

7.2 THE CASE OF NILPOTENT QUIVER REPRESENTATIONS

We will now relate, in a particular quiver setting, the complementedness of a filtration
in the sense of lattices (Definition 6.6.1) with the Kempf number of a filtration in the
sense of stacks (Definition 3.1.1). We fix a base algebraically closed field k, a quiver
Q, and a dimension vector d such that the stack Rg(Q, d) of representations (over
k) has a good moduli space. If k is of characteristic 0, this last condition is automatic,
while if k has positive characteristic then we are imposing that d is a vector of 0s and
Is, so that GL.(d) 1s a torus.

DEFINITION 7.2.1 (Null representation). We say that a representation M = ((M;);cq,.
(VYa)aco,) of Q isnull if yo = 0 foralla € Q.

PROPOSITION AND DEFINITION 7.2.2. Let M = ((M;);c0,> (Va)aco,) be a finite
dimensional representation of Q of dimension vector d, corresponding to the k-point
y of Rep(Q, d). The following are equivalent:
1. There 1s a Z-filtration of M whose associated graded is null.
2. We have 0 € {y} inside Ree(Q, d).
3. There existsn € N such that for every sequence of composable arrows oy, . . ., &,
in Q we have y,, 0---0y, =0.

If these conditions hold we say that M 1s a nilpotent representation of Q.

Proof. Since Rep(Q, d) has a good moduli space, 0 € {y}if and only if there 1s A €
DF(Rege(Q,d), y); with evg A = 0 by [8, Lemma 3.24]. This gives a filtration F* of
M whose associated graded representation is null, and conversely any such filtration
gives a suitable A. This shows that the first two conditions are equivalent.

For the third one, let M’ be the subrepresentation of M consisting of the vectors
v € M; such that y,(v) = 0 for all arrows « in Q with s(«) = i. By definition, M 1s
null. Let M; = M’ and let M,, C M be defined by M,,/M—1) = (M/M@—1))'. Then
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M satisfies the third condition if and only if M,, = M for some n € N. In that case,
0C M, C--C M, =M is a filtration with null associated graded. On the other
hand, if 0 C Ny C N, C -+ C N, = M 15 a filtration with null associated graded,
then N; € M; for all i, so M,, = M and the third condition holds. []

PROPOSITION 7.2.3. Let M be a milpotent representation of Q of dimension vector d. Then:
1. Any subquotient of M 1s also nilpotent.
2. The representation M s semisimple if and only of M s null.

Proof. A Jordan—Holder filtration of a subquotient N of M can be extended to a
Jordan—Holder filtration of M, whose associated graded must be null by hypothe-
sis. Thus the associated graded of a Jordan—Holder filtration of N 1s also null.

The representation M is semisimple if it is isomorphic to the associated graded
representation of a Jordan—Holder filtration, which is the null representation by hy-

pothesis. ]

We now denote X = Rege(Q,d) and let x be a k-point of X. We denote E =
((k%);, (x4)a) the representation of Q corresponding to x and L = Lg the lattice of

subrepresentations of E.
PROPOSITION 7.2.4. Suppose that E is nilpotent and let . € DF® (X, x),. Then
(A, xmaX) — (FA, [)’

where (A, X™%) denotes Kempf’s intersection number (Definition 3.1.1), F* is the Q-filtration of L
corresponding to A under Proposition 7.1.3, and (F*,1) is the complementedness of F* as a filtration
of the lattice L (Definition 6.6.1).

Proof. It 1s enough to assume that A € DF(X, x);. We choose a cocharacter G, x —
G representing A that we still denote by A. Then A induces a direct sum decomposi-
tion Rep(Q.d) =V = @,cz Vi. Let pi:V — V) be the induced projections and let
Bxa=1{€Z| pi(x) # 0}. Note that B, C N since lim Ax exists.

Claim 7.2.5. (A, X™>) = 1nf 8B, ;.

Note that X™™ = VG /G. Since G is linearly reductive, there is a unique splitting
V = VS @V’ with V' a G-subrepresentation of V. Choose a basis vy, ..., vy, of V of
eigenvectors for A and 0 < r <r’ < m such that vy, ..., v, is a basis of VG vy, ..., v

is a basis of V and the v; withi > r are in V'. Let n; € Z such that v; € V,,. Taking
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Spec of the cartesian square

R—— V©
t—>At)x l
A |4
we get
k[t]/I <——— k[v{,...,v/]
k[l] (W k[UY, ey U;I/i]’
where I is the ideal generated by the " with x; # 0 andi > r. Since 0 € Gx, we
have x; = O fori < r. Therefore I = (1| a € Ex)) = (li“fam) and the claim

follows.

Claim 7.2.6. Yor any a € N, we have that Féc/Fécha is semisimple for all ¢ € Z if and

onlyif inf 8, 3 > a.

The cocharacter A: G, x — GL(d) induces a direct sum decomposition E; =
@B,cz(Ei)i of every E;, i € Qo. The subquotient F2,/F2, . can be written in co-
ordinates as (Xo,nm)a,c<n,m<c+a Where, if a:i — j, then xgnm: (Ei)m — (E;)n 1s the
corresponding component of x4: E; — E;. Since it is nilpotent, the representation
Fgc/Fécha 1s semisimple if and only if x4 4, = Oforalla € Q;andc <n,m < c+a.
This holds for all ¢ € Z if and only if x4 »m = 0 whenever |n —m| < a. Note that
At)x = (" " Xanm)aco,,n,mez. Lherefore Ex ) = {n —m| Ja € Q1, Xgum # 0}.
The claim follows.

The complementedness of F* is the supremum of the set of those a € N such
that Fs./Fsc4q 1s semisimple for all ¢ € Z. Thus infE, ) = (F*,1) by the second

claim, and the result follows from the first claim. ]

7.3 LAMPS AND LINEARLY LIT GOOD MODULI STACKS

In this section we define a kind of algebraic stacks X, that we call lnearly lit good moduli
stacks, for which there 1s an artinian lattice L, associated to every geometric point
x, and a canonical isomorphism between the set of Q-filtrations of L, and the set
Q- Filt(X, x) of Q-filtrations of x, the latter defined in the stacky sense. For the lattice
L, to be canonical, we need to introduce a piece of extra structure on stacks, what

we call a lamp. Morally, a lamp contains the information of what graded points have
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nonnegative weights only. In Section 7.4 we will see that stacks parameterising objects

in an abelian category and admitting a good moduli space are naturally linearly lit.

DEFINITION 7.3.1 (Lamp). Let X be an algebraic stack satisfying Assumption 2.2.3.
A lamp on X 1s a closed and open substack Gradg(X)so of Gradg(X). A &t stack X
over an algebraic space B is a stack X over B satisfying Assumption 2.2.3 endowed
with a lamp.

If /:X — ¥ is a morphism between stacks satistying Assumption 2.2.3 and
Gradg(¥)so is a lamp on Y, then f* (Gradg(¥)so) := Grad(f) ! (Gradg(¥)s0) C
Gradg(X)so1salamp on X, called the pullback lamp. 1f X is lit with lamp Gradg (X) o,
then we say that the morphism f 1s it if Gradg(X)so = f* (Gradg(¥)so).

Example 7.3.2. Let G be a linear algebraic group over a field k. One source of lamps
on BG are partial compactifications G of G. By this we mean an affine algebraic
monoid (G, e) over k such that the unit group G, which is an open subscheme of G,
is dense in G, together with an isomorphism G = G of algebraic groups (compare
with [48, Definition 2.1]).

Given such a partial compactification, we can define the associated lamp to be
the closed and open substack Gradg (BG)s¢ of Gradg (BG) whose components form
the image of the map

Q-Filt(G/G,e) — my (Gradg(G/G)) — mo(Gradg(BG))
induced by taking associated graded points.

Example 7.3.3. Let k be a field. A particularly important example of the above is the
partial compactification GL, x C Mat,x, x of GL, x given by the algebraic monoid
of n x n matrices. More generally, we consider the partial compactification GL(d) =
[lico, GLa;k C Mat(d) = [];cp, Mats;xa; k of GL(d), where d is a dimension
vector of some quiver Q. This gives a lamp Gradg(BGL(d))>o that we refer to as
the standard lamp on BGL(d).

A point p of Gradg(BGL, x) represented by a rational cocharacter

A(t) = diag(¢?t, ..., %)
of GL, k 1s in Gradg(BGL, x)>0 precisely when a; > 0 for all 7.

Example 7.3.4. We can use the example above to define a canonical lamp on stacks
of quiver representations over a field k. Let Q be a quiver and let d be a dimension

vector for Q. We have a canonical map

Rep(Q,d) — BGL(d)
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and we define the standard lamp on Rep(Q, d) to be the pullback of the standard lamp
on BGL(d) along this map.

Remark 7.3.5. In all the examples above and all other examples that we will consider,
the lamp on the lit stack X satisfies the following convexity property: if k 1s a field and
f € Gradg(X)(k) is a k-point such that for the maps e;:Q — Q" corresponding to
the standard basis of Q" we have that e/ f is in Gradg(X)s¢, then for every order-
preserving map h: Q — Q" we have that 2* f 1s in Gradg (X)so.

We will consider the following assumption on algebraic stacks X defined over an

algebraically closed field k.

Assumption 7.3.6. The stack X is of finite presentation over k, it has affine diagonal

and a good moduli space 7: X — X.

DEFINITION 7.3.7. Let X be an algebraic stack over an algebraically closed field
k satisfying Assumption 7.3.6, endowed with a lamp Gradg(X)so. Let us denote
7: X — X the good moduli space of X. We say that X 1s linearly it if for every closed
k-point y of X, there is a quiver Q, a dimension vector d of Q and a lit pointed closed
immersion
i:(F.y) = (Rg(Q.d),0),

where ¥ = 7~ !7(y) is the fibre of 7 containing y.

By lnearly lit good moduli stack over k we will mean an algebraic stack X over k

satisfying Assumption 7.3.6 and endowed with a lamp that makes it linearly lit.

Remark 7.3.8. Since every point x of ¥ above specialises to y, i(x) specialises to 0,

that 1s, it corresponds to a nilpotent representation of Q.

DEFINITION 7.3.9. Let X be a linearly lit good moduli stack over k, and let x €
X (k). We define a relation < on DF(X, x); as follows. For A, u € DF(X, x), let
y € DF(X, x)3 be the unique element such that v;y = A and v,y = . Consider the
graded point g given by the composition

(

B_l
BGur —> BG2, —>— @2 L X.

Then we say A < p if g lies in Gradso(X). Here we denote (_11): Gmi — G;,k:t —
1 ).

This gives (DF(X, x)., <) the structure of a formal fan with relation (Defini-
tion 6.5.36). We denote Ly = Lpr(x,x), endowed with the relation <.

Unravelling the definitions, we observe the following fact.
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LEMMA 7.3.10. Let Q be a quiver and d a dimension vector for Q. Let x be a point of Rep(Q, d)

corresponding to a representation E with lattice of subrepresentations L. Then the isomorphism
DF(Rep(Q.d), x)s — DF(L).

of Proposition 7.1.3 is indeed an somorphism of formal fans with relation, where Rep(Q,d) s
equipped with the standard lamp. []

PROPOSITION 7.3.11. Let X be a linearly lit good moduli stack over k, and let x € X (k). Then
L ts an artimian lattice and there is a canonical isomorphism (DF(Ly)e, <) — (DF(X, X), <)

of formal_fans with relation.

Proof. By Definition 7.3.7, there i1s a quiver Q, a dimension vector d and a point
z € Regp(Q,d)(k) corresponding to a nilpotent representation E of Q such that
(DF(X, x)e, <) is isomorphic to (DF(Ree(Q, d), z)., <) as formal fans with relation.
By Proposition 7.1.3 and Lemma 7.3.10, (DF(Ree(Q,d), z)., <) 1s isomorphic to
(DF(M)., <), where M is the lattice of subrepresentations of E, which is an artinian
lattice. Therefore, by Proposition 6.5.37, (Ly, <) is isomorphic to (M, <) and there
is a canonical isomorphism (DF(Ly)., <) = (DF(X, x)., <) of formal fans with rela-

tion, independent of the choice of Q,d, E or of the isomorphism (DF(X, x)., <) =
(DF(Rep(Q.d). 2)e, <). O

If » € DF®(X,x);, we will denote F* the Q-filtration of L, associated to A
under the 1somorphism above.

If Gradg(X)so C Gradg(X) is a lamp on the algebraic stack X, we endow
Gradg(X) with the pullback lamp along the canonical map Gradg(X) — X.

PROPOSITION 7.3.12. Let X be a linearly lit good moduli stack over k. Then every quasi-compact
component of Gradg (X) us linearly lit. Moreoves; if x € X (k) and A € DFQ(X, x)1, then there
is a canonical isomorphism (defined in the proof) of lattices Lgy 5 = Gradpa(Ly).

Remark 7.3.13. If X has a norm on graded points, which we assume for the main

constructions in this work, then every component of Gradg(X) is quasi-compact
by [36, Proposition 3.8.2].

Proof. A quasi-compact component Z of Gradg(X) satisfies Assumption 7.3.6, by
Lemma 2.6.11. Let w: X — X be the good moduli space of X, and let p: Z — Z be
that of Z. A point g € Z(k) lies over a k-point x = u(g) of X. Let ¥ = 7~ x(x).
Then Gradg(¥) — Gradg(X) is a closed immersion (for example by the same
argument as in Proposition 2.2.16). Let ¥ be the component of Gradg (¥) containing



7.3. Lamps and linearly lit good moduli stacks 161

g. The good moduli space of ¥ is Spec(k) = pt. Let Y = pt Xz(x),xZ and form a

cube

where the marked faces are cartesian. Thus the face Y, Z, ¥, Z is also cartesian and
therefore ¥ — Y is a good moduli space. It is thus enough to prove the statement
for the linearly lit stack ¥. By embedding ¥ — Rg(Q,d), we may assume X =
R (Q, d), which 1s linearly lit by Theorem 7.4.12.

The connected component of Gradg (Rge(Q. d)) containing g is isomorphic to
Rep(Q.d)*°/L(A) for some rational one-parameter subgroup A of G(d) [36, The-
orem 1.4.8]. Now A induces a direct sum decomposition k% = @ .q k¢ for each

vertex i € Qp. Define a quiver Q' with set of vertices

0y ={(i,c) € Qo x Q| k% #0}.

An arrow «: (i,c) — (j,c) in Q' 1s just an arrow a:i — j in Q, and there are no
arrows (i,¢) — (j,c’) forc # ¢’.

We have a dimension vector d’ on Q' given by d/ , = dimk¢ . The fixed points
of A in Hom(k% , k) are D.co Hom(k¢, kf"), and the centraliser L(A) of A in G(d)
is identified with G(d’). Therefore we have an isomorphism Rep(Q,d)*°/L(}) =
Rep(Q'. d).

If B: G — L(A) is a cocharacter, B defines a grading k% = @C,ez(kfi)f,. If
B :Guir — L(A) — G(d) denotes the composition of B and the inclusion L(A) —
G(d), then B’ defines a grading k% = @C,ez(kd")f,/ and we have (kd")cﬂ,/ = @CEQ(kf")cﬂ,.
We have B > 0 if and only if (kéi")f, = 0 whenever ¢’ < 0, while 8’ > 0 if and only if
(kd")f,/ = 0 whenever ¢’ < 0. Thus g > 0 if and only if 8 > 0 and hence the isomor-
phism Rep(Q,d)*°/L(A) = Rep(Q’,d’) is compatible with lamps. This proves the
first part of the proposition.

Now let A € DF@ (X, x)1. We define a map

0:DF?(X, x); — DF®(Gradg(X).grA);

as follows. If u € DFQ(X, x)1, lety € DF@ (X, x)2 be the unique element such that
vy = p and v,y = A (Proposition 2.7.6). Noting that y can be seen as an element
of DF@ (Filtg(X), A)1, we define o(p) € DF@ (Gradg(X), gr A); to be the image of y
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under the associated graded map Filtg(X) — Gradg(X). The definition of 0 does
not depend on any choices.

If X = Rep(Q, d), then the point x corresponds to a representation E of Q and
L, = Lg. One then sees easily by hand that there is an identification v: Ly, 3 =
Gradpa(Ly) which a priori depends on the choices made. The map o is then identi-
fied with

0': Ly — Gradpa(Ly):a > ((a A F2) V F2)ceq.

This proves that o is injective, that 0(L,) C Lg 2 and that the induced map o: L, —

L, 5 13 a map of lattices.

In general, a choice of embedding ¥ — Rge(Q, d) gives a commuting triangle
. Lo )
Gradgi(Ly).

For each ¢ € Q, o(F2,) has a unique complement o(F2,)°, since this is true for

o’. We define a map
u: GradFA(Lx) - Lgr/l
(ac)eeq = \/ 0(ac) Ao(F2,)°.
ceQ

This map is an isomorphism, since the analogous map for o’ is. Now u does not

depend on choices, and it is the desired canonical isomorphism. In fact,u = v=!. [

Using Proposition 7.3.12 iteratively, we get a canonical isomorphism between

sets of sequential filtrations.

COROLLARY 7.3.14. Let X be a linearly lit good moduli stack over k endowed with a norm on
graded points, and let x € X (k). Then there is a canonical isomorphism Q°-Filt(X, x) =
Q*°-Filt(Ly) between the set of sequential filtrations of x and that of sequential filtrations of the
lattice L. O]

Note that we make the assumption that X has a norm on graded points in Corol-
lary 7.3.14 to guarantee that the connected components of Gradg (X) are quasi-

compact.
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7.4 EXAMPLES OF LINEARLY LIT STACKS

We show here that many algebraic stacks parametrising objects in an abelian category
and admitting a good moduli space are naturally linearly lit. Our main tool for that
purpose is Theorem 7.4.4, that we hope can be applied to essentially all good moduli
stacks of linear origin. We apply the theorem to moduli stacks of objects in an abelian

category 1in the sense of Artin—Zhang and to moduli stacks of quiver representations.

7.4.1 A CRITERION FOR LINEAR LITNESS

Let k be an algebraically closed field and let X be a quasi-separated algebraic stack
locally of finite type over k. If x € X (k) i1s a closed point, then there is a unique
reduced closed substack Z of X whose topological space is just {x}. In fact, Z = BG
is the residual gerbe at x. Let d be the ideal sheaf defining Z and let i: BGy — X
denote the closed immersion. Then *4 = /42 is a coherent sheaf on BG,, that
is, a finite dimension representation of Gy. Its dual Ny = (1*4)" 1s called the normal
space of X at x. If G 1s smooth, then Ny is also the tangent space of X at x. We may
also consider the quotient stack N, = Ny/G,, which equals the relative spectrum
Nx = Specpg Sym*d, and call it the normal stack of X at x. We have representable
morphisms N, — BG, and BG, — X, soif X is lit, then BG, and N, inherit lamps
from X by pullback along these maps.

PROPOSITION 7.4.1. Let k be an algebraically closed field, and let X be a quasi-separated algebraic
stack locally of finite type over k. Suppose X has a good moduli space 7w: X — X with affine diagonal.
Let x € X (k) be a closed point and denote ¥ = 7w~ 7(x) the fibre of 7w containing x. Let Ny be
the normal stack of X at x.

Then there is a pointed closed immersion t: (¥, x) — (Ny, 0) and a commuting triangle

BG,
(7.1)
o>y

where the arrows BGy — ¥ and BGyx — Ny are the natural identifications of BGy with the
residual gerbes of ¥ and Ny at x and 0.

Moreover; if X 1s lit, then v 1s a lt closed immersion, where ¥ and Ny are endowed with the

induced lamps.

Proof. Since x 1s closed and X has a good moduli space, the stabiliser G, 1s linearly

reductive and thus N, has a good moduli space p: Ny — W. Call R = p~1p(0) the
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fibre. By [6, Theorem 4.16, (3)], there are cartesian diagrams

Ny ——— Ny
n’l lﬂ and l l
Spec @X,,,(x) — X Spec @Wp(o) — W

where X, is the completion of X at x (that is, the completion of the adic sequence of
thickenings of x, see [7, Definition 1.9]) and N is the completion of N, at 0. Thus
F and R are the special fibres of 7’ and p'.

In [6, Proof of Theorem 1.1, p.688-689] it is shown that there is a closed im-
mersion X x = N x- We now recall the argument, with some modifications, for the
convenience of the reader.

For n € N, let us denote X! the nth infinitesimal thickening of X at x, that is,
if 4 is the ideal sheaf of the closed substack BGy of X, then X"l = Spec,. O /4" 1.
Similarly, let &'™ be the nth infinitesimal thickening of N, at 0. We have natural
identifications X% = BG, and N9 = BG,. We denote g;;: XUl — X1 the relevant

closed immersions for j <i. We have a diagram of solid arrows

Since g1 is a square zero extension of ideal sheaf d /42, by [67, Theorem 8.5] the ob-
struction to the existence of the dotted arrow f lives in Ext}mx (L, /k,d/4%), which
is 0 because BG, is smooth, and hence the cotangent complex Lgg, /x 1s concen-
trated in degrees [0, 1], and G, is linearly reductive. Since X! — BG, is affine and
X s a square zero extension of X[, by dévissage and Serre’s criterion for algebraic

spaces, we have that f is affine too. We have a short exact sequence

0 —— /4> —— Oxm —> Oxt0 — 0

in QCoh(BGy), of which f provides the dotted splitting. Thus Oxmn = Opg, @
e(d/4?%), where €2 = 0, and hence X! =~ &1 under BG,.

We now produce compatible morphisms g,: X" — N,. Fori = 0,1, we let g;
be the composition X [l ~ N1 — W,. If g, has been constructed, the obstruction for
gn to lift to a map X+ — A, is an element of Extyp (g Loy, /k, (gn0)«d"T1/47F2).

By adjunction, we have

Extyon (€5l w, k. (€no)xd" T /9"?) = Extyg (geLw, k. 4" /4"12).
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This group is 0 because N is smooth, and so Ly, /¢ has Tor-amplitude [0, 1], and
BGy 1s linearly reductive. Hence the g, have been constructed for all n. By [6,
Proposition A.8, (1)] applied to each g,, we see that g, i1s a closed immersion for
all n. Each of the g, factors through the closed immersion " — &, and after
passing to the completion the closed immersions X" — Nl induce, by Tannaka
duality [6, Theorem 2.7], a closed immersion Xy — Ny

The map Xy — Ny yields a closed immersion ¥ — R, and thus the desired

result, since R 1is a closed substack of Ny. By construction, there is a triangle

BG,
.
X x s N,

identifying BG, with the Oth infinitesimal thickenings X 0] and N[O, After taking

special fibres of the good moduli spaces, we get the triangle (7.1).

The map BG, — ¥ induces a bijection 7o(Gradg(BGx)) — mo(Gradg(¥))
by Proposition 3.1.7, and the same holds for the maps BGy — N, and Ny, — BG,.
This implies, together with the commutativity of (7.1), that ©: ¥ — N, 1s lit. [l

Now let R be a finite-dimensional associative k-algebra. We can give the groups
of units R* a structure of algebraic group R™ over k by setting R*(A) = (R ®x A)*
for a commutative k-algebra A. Actually, we can enhance R to an algebraic monoid
R by setting R(A) = R ® A with the multiplication. Note that R is isomorphic to
A;cﬁmR. There 1s a map /: R — End, (R), sending an element a of R ® A to the
endomorphism of R ® A given by left multiplication by a. Then R* = [7!(GL(R)).
Therefore R is an affine open subscheme of R, and it is therefore an affine smooth

connected algebraic group over k.

LEMMA 7.4.2. Let R be a finite dimensional assoctative algebra over k. Then R s semisimple if
and only if R* is reductive. Moreoves, in that case R* = [[7_, GLy, x, for some n; € Z.

Proof. By definition, R is semisimple if its Jacobson radical Jac(R) is trivial. The Ja-
cobson radical 1s a nilpotent two-sided ideal, so 1 + Jac(R) is a smooth connected
unipotent normal subgroup of R*. Therefore if R™ mqive, Jac(R) has to be
trivial and hence R is semisimple.

Conversely, if R is semisimple, by the Artin-Wedderburn Theorem [47, Struc-
ture theorem for semi-primitive artinian rings, §4.4], together with the fact that
there are no nontrivial finite-dimensional division algebras over the algebraically
closed field k, there is a k-algebra isomorphism R = [[; Maty, xn, , and thus R =~
[1; GLy, &, which is reductive. ]
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LEMMA 7.4.3. Let R be a semisimple finite dimensional associative algebra over k and let M be a
finite-dimensional R-R-bimodule. Then the quotient stack M/ R™, where R™ acts on M by g -m =

gmg™Y, is isomorphic as a lit stack to Rep(Q, d) for some quiver Q and some dimension vector d.

Note that above, since R™ is the group of units of an algebraic monoid R, there
is a natural lamp on BR™ from Example 7.3.2 and thus a lamp on M /R by pulling
back along M /R* — BR*.

Proof. Again, by the Artin—Wedderburn theorem there are finite-dimensional vec-
tor spaces Vi,...,V, and a k-algebra isomorphism R = End(V;) x --- x End(V,).
Letuscalle; = (0,--- ,idy,,---,0). The e; are orthogonal central idempotents and
1 = Y "_,e. Therefore each ¢;Me; is an R-R-bimodule and there is a splitting
M = P, ; eiMe; as bimodules. The R-R-bimodule structure on e; Me; is induced
by restriction of scalars from the obvious End(V;)-End(V;)-bimodule structure, which
1s the same as a left End(V; ® Vj\’)-module structure, since End(V;) ®x End(V;)P =
End(V;) ® End(V)) = End(V; ® V). The End(V; ® V}Y)-k-bimodule V; ® VY
gives a Morita equivalence between k and End(V; ® V), so there is n;; € N and an
isomorphism e; Me; = (V; ® V;)®"i of left End(V; ® V)-modules, or equivalently
of End(V;)-End(V;)-bimodules. Thus M is isomorphic to ; ; Hom(V;, V;)"" as an
R-R-bimodule, and thus also as R* = [[; GL(V;)-representations, where the action
is as in the statement of the lemma. Let Q be the quiver with set of vertices {1, ...,n}

and with n;; arrows from j to i, and take the dimension vector d with d; = dim V.
Then

M/R* = @ Hom(V;. V)®"/ / [ | GL(V)) = Rep(Q. d),

as desired. The isomorphism is lit because the standard lamp on B [[; GL(V;) comes
from the partial compactification [[; End(V;) of [[; GL(V;), exactly as the lamp in
BR*. O

The following theorem is our main tool for proving that a lit stack is linearly lit.

THEOREM 7.4.4. Let X be an algebraic stack over k satisfying Assumption 7.3.6, endowed with
a lamp and having a good moduli space w: X — X. Suppose that for every closed k-point x of X
there exists a finite-dimensional associative k-algebra R and an isomorphism G, = R such that
the lamp on B G inherited from X agrees with the one coming from the partial compactification R of
G as in Example 7.3.2. Suppose further that the Gx-action on the normal space Ny comes from an
R-R-bimodule structure on Ny. Then X is linearly lit.

Proof. 'This follows readily from Proposition 7.4.1 and Lemmas 7.4.2 and 7.4.3. [
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Remark 7.4.5. In positive characteristic, for the condition in Theorem 7.4.4 to hold,

the stabiliser G, of X at x should be linearly reductive, and hence a torus.

7.4.2 THE MODULI STACK OF ARTIN AND ZHANG

We fix an algebraically closed field k and consider a k-linear locally noetherian
Grothendieck abelian category +. This means that # is a k-linear abelian category
that 1s cocomplete, where filtered colimits are exact, and that has a set of noetherian
generators (we recall the notion of noetherian object below). An object E in 4 is said
to be
1. of finite type, if for every filtered diagram (F;);es in 4 where all maps F; — F;
in the diagram are monomorphisms, we have a canonical isomorphism
Hom(E, colim;¢; F;) = colim;c; Hom(E, F;);
2. of finite presentation, if for every filtered diagram (F;);es in 4, we have a canonical
isomorphism
Hom(E, colim;ey F;) = colim;e; Hom(E, F;);
3. noetherian, if every subobject of E 1is of finite type.

For every commutative k-algebra R, there is a notion of base change category A g
which is an R-linear abelian category. An object of Ag 1s a pair (E, p) where E 1s an
object of A and p: R — End(E) is a k-algebra homomorphism. A map from (E, p) to
(E',p')isamap f: E — E'in s such thatforallr € R we have fop(r) = p'(r)o f.
It turns out that g is an R-linear Grothendieck abelian category [9, Proposition
B2.2] and that it is noetherian if R is essentially of finite type [9, Corollary B6.3].

If R 1s a commutative k-algebra, N is an R-module, and M 1s an object of Ag,
there 1s a notion of tensor product N ® g M. One can describe it by taking a free

presentation
RS/ > R®T > N > 0

of N. Then N ® g M can be defined by exactness of the sequence

M® —— M® —— NQrM —— 0.
In fact, (—) ®r M:R-Mod — g is characterised by being the left adjoint to
Hom(M, —-): Ax — R-Mod.

The tensor product can be used to give an alternative description of the base
change categories #4Agr. An object of Ag is given by an object E of A and a map
R ®k E — E such that the usual diagrams commute.

If R is a commutative R-algebra, we have the base-change functor R’ ®g (—):

Ar — Apr, left adjoint to the restriction of scalars functor Ag — Ag.
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DEFINITION 7.4.6. An object M € Apg is said to be flat (over R), if the functor (—) ®g
M: R-Mod — Ag 1s exact.

The properties of being flat or finitely presented are preserved under base-
change. The following is [8, Definition 7.8].

DEFINITION 7.4.7. The moduli stack M 4 of objects of A 1s the prestack over k defined
by setting, for a commutative k-algebra R, the groupoid M 4(R) to be that of finitely
presented flat objects in Ag.

The prestack M4 is actually a stack for the fppf topology [9, Theorem C8.6].

Suppose now that M 4 1s algebraic and locally of finite type over k. By [8, Lemma
7.20], M 4 has athne diagonal, and thus it satisfies Assumption 2.2.3. We can define
a lamp Gradg(Mu)>o C Grad(M,4) on M, as follows. A graded point Spec R —
Grad(M 4) is a Z-graded object D,,cz En in A with E, = 0 for all but finitely many
n and such that each E, is flat and finitely presented [8, Proposition 7.12]. Suppose
that R is a finite type k-algebra. Then the condition that E, = 0 for n < 0 is open
on Spec R by Nakayama’s lemma [9, Theorem C4.3] and thus it defines an open
substack Grad(M 4)so of Grad(M ).

Denoting E = @, E» the underlying object of the grading, we may define
End(E) as a functor from R-algebras to sets by End(E)(R’) = Endg/ (R’ ®r E). Itis
proven in [8, Proof of Lemma 7.19] that End(FE) is represented by an affine scheme
of finite type over R. In fact, End(E) is an algebraic monoid with unit group Aut(E)
The grading E = @,.4 En corresponds to a one-parameter subgroup A: G, g —
Aut(E). The multiplicative group acts on E diagonally with respect to the direct sum
decomposition, and it acts in E, with weight n. Therefore, the condition that £, = 0
for n < 0 is equivalent to the existence of lim;¢ A(¢) in End(£). This is in turn
equivalent to the identity section idg € End(E)(R) factoring through the attractor
End(E)* (where the G,,-action is given by 1). Since End(FE) is affine, End(E)* is
a closed subscheme of End(E). Therefore the open substack Grad(M4)s¢ 1s also
closed. Since Grad(M 4)so 1s equivariant for the N5 g-action on Grad(X), it defines
a closed and open substack Gradg(M)>o of Gradg(Ma,).

DEFINITION 7.4.8. Suppose M4 1s an algebraic stack locally of finite type over k.
The standard lamp on M 4 1s the lamp Gradg (M 4)>o defined above.

Remark 7.4.9. By the description in terms of End(E), we can regard the lamp on M
as a shadow of the enhancement of M4 to a stack in categories, where we remember

all morphisms between objects and not just isomorphisms. See [16, Section 4] for a
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precise definition of this notion.

THEOREM 7.4.10. Suppose that M 4 is an algebraic stack, locally of finite type over k, and let X
be a quasi-compact open substack of M 4, endowed with the lamp inherited from the standard lamp on
M 4. Suppose that X has a good moduli space w: X — X. Then X has affine diagonal and s
linearly ht.

Proof. By [8, Lemma 7.20], the algebraic stack M4 has aftfine diagonal over k, and
thus the same holds for X. Therefore X satisfies Assumption 7.3.6.

Let x € X(k) be a point with linearly reductive stabiliser, corresponding to an
object E € 4. By [9, Proposition B3.21], we have End(E)(R) = End(E) ® R =
End(E)(R) for any k-algebra R, and thus the stabiliser group G, is the group of
units of the associative k-algebra End(E), which has to be finite-dimensional because
End(FE) 1s an affine scheme of finite type over k. In particular, G is smooth, and
thus the normal space Ny coincides with the tangent space T, of M4 at x. By [9,
Proposition E1.1], the tangent space Ty is canonically identified with Ext'(E, E),
which is thus finite dimensional, since M 4 1s locally of finite type over the field k.

An element of Ty is a pair (E’,«) where E’ € My(k[e]), with &2 = 0, and
a:k ®kpe) E' — E 1s anisomorphism. An element g € Gy (k) actson Ty by g(E’, o) =
(E’, gar). One gets an element u of Ext'(E, E) by tensoring the short exact sequence

0 > k > k] > k > 0

of k[e]-modules with E’, obtaining a self-extension

0 > E > E’ > E > 0.
The End(E) - End(E)-bimodule structure on Ext' (E, E) can be described as follows.
If a € End(E), then au corresponds to the pulled back short exact sequence

0 > E > E” > E > 0
I

0 > E > E’ > E > 0,
while ua corresponds to the pushed forward sequence

0 > E > E’ > E > 0
4o

0— +E—— s E' — 3E— 0.

From these descriptions we see that the Gy-action on Ty is the one coming from the
End(E) - End(E)-bimodule structure on Ext'(E, E). Note that it is indeed enough
to check the previous statement on k-points of Gy, since it 1s smooth.

We conclude by Theorem 7.4.4. [
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Remark 7.4.11. There are other constructions of moduli stacks of objects in linear cat-
egories, notably Lieblich’s stack of universally gluable perfect complexes [62] and
Toén and Vaquié’s stack of objects in a DG-category [75]. We expect that Theo-
rem 7.4.4 can be applied in these cases without difficulties to show that good moduli
stacks arising as (classical truncations) of open substacks of these moduli stacks are
naturally linearly lit when we work over a base algebraically closed field. We have

not pursued proofs of these statements here.

7.4.3 MODULI OF SEMISTABLE QUIVER REPRESENTATION

We fix an algebraically closed field k. Let Q be a quiver and let d be a dimension
vector for Q. The stack of finite dimensional representations of Q does not coincide
with Artin—Zhang’s stack of objects in the abelian category of representations of Q
unless Q 1s aclyclic. Nevertheless, Rge(Q, d) 1s still linearly lit.

THEOREM 7.4.12. Let X be an open substack of Rep(Q ., d) that admits a good modul space.
Then X 1s linearly lit with the lamp inherited from Rep(Q, d).

Proof. It 1s clear that X satisfy Assumption 7.3.6 because Rge(Q,d) does. Let x €
X (k) be a point with linearly reductive stabiliser. The point x corresponds to a rep-
resentation £ of Q. The automorphism group Gy is identified with the group of
units of End(E), so it is in particular smooth and thus the normal space at x co-
incides with the tangent space. The normal stack is then N, = Ext'(E,E)/Gy by
deformation theory, where the action on G, on Ext'(E, E) comes from the natural
End(E)-End(E)-bimodule structure of Ext!(E, E) by the same argument as in the
proof of Theorem 7.4.10. We conclude by Theorem 7.4.4. [

Remark 7.4.13. The prototypical example of open substack X as in the Theorem 1is
the semistable locus for a line bundle on Rep(Q, d).

7.5 MAIN COMPARISON RESULT

While living in seemingly very different worlds, the iterated balanced filtration for
stacks and the iterated HKKP filtration for lattices agree when both make sense.

This section 1s devoted to the proof of such comparison result (Corollary 7.5.11).

7.5.1 LINEAR NORMS

We now study a class of norms on linearly lit stacks that interact well with the lamp.
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We fix an algebraically closed field k, and we let Q be a quiver, d a dimension
vector for Q, and we fix a family (m;);cp, of positive rational numbers m; € Q-.
We assume as usual that G(d) is a torus if k 1s of positive characteristic. Let x be
a k-point of Rep(Q,d), corresponding to a quiver representation E, and let A be a

Q-grading of x (i.e. a rational one-parameter subgroup of Aut(x)), corresponding to

Ei=@PEi.

ceQ

AP =D ) mic? dim(E; ).

i€QoceQ
It is not hard to see that this formula defines a norm on graded points of Ree(Q, d).

direct sum decompositions

for each i € Qy. We set

DEFINITION 7.5.1. A norm on graded points of Ree(Q, d) is said to be standard if it
is induced by a family (m;)ico, € (Q=0)2° as above.

Now let X be a linearly lit good moduli stack over & endowed with a norm on
graded points g. For any k-point of X, recall that we have a canonical isomorphism
DF(X, x)e = DF(L,)e of formal fans and an inclusion L, < DF(X, x);, so we see
elements a of the lattice Ly as filtrations of x and in particular we can consider their

norm [la||* = q(a).

DEFINITION 7.5.2 (Linear norm). We say that the norm ¢ on X 1s linear if the follow-
ing holds: for every k-point x of X and for every Q-grading A of x, corresponding to
a Q-grading (a.)ceq of Ly (Definition 6.5.1) we have
1A = > c?llacl. (7.2)
ceQ
PROPOSITION 7.5.3. A norm q on graded points of Rep(Q,d) is linear if and only if it is

standard.

Proof. If q 1s standard, then it clearly is linear. To prove the converse, we can assume
that Q has no arrows, and thus that we are working with BG(d). Indeed, since
Grad” (Rge(Q,d)) and Grad”(BG(d)) have the same connected components for all
n, norms on graded points of Rep(Q, r) are the same as norms on BG(d). We can
also assume that d; > 1 forall i € Q.

Fix a k-point x corresponding to a representation E. Let V(i) be the skyscraper
representation at vertex i. For any embedding «: V(i) — E, consider the corre-
sponding filtration with weights 1,0 and set m; = | F;||>. This number does not

depend on the choice of «, since any two different «’s give conjugate F;’s.
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Let E1, E5, E3 be subrepresentations of E with E = E; @ E; ® E3. Recall we are
regarding subrepresentations of E as filtrations, and thus we can consider their norm.
Let Fy (resp. F») be the grading E4, E,, E3 with weights 1,0, 0 (resp. 0, 1,0). We have
q(F1) = q(E1), q(F2) = q(E2), q(F1 + F2) = q(E1 @ E») and q(F1 — F2) = q(E1) +
q(E>) by linearity of ¢g. From the equality ¢(Fy + F2) +q(F1 — F») = 2q(F1) +2q(F3),
it follows that g(E; @ E») = q(E1) + q(E,). By applying this formula repeatedly, we
get that

g(E") = Y m; dim(E))
i€Qo
for any subrepresentation E’ of E. Combining this with (7.2), it follows that g is

standard. [l

PROPOSITION 7.5.4. Let 1: X — X be the good moduli space of X. The norm q on X is linear
if and only for all closed k-points y of X the lit embedding

c(rT (1), y) = (Rge(Q.d).0)
in Definition 7.3.7 can be chosen to preserve norms for some (uniquely determined) standard norm on

Rep(Q, d). Equivalently, all such embeddings have this property.

Proof. Call¥ = n~'7(x). Given alit embedding ¢ as above, the stacks Grad” (%) and
Grad” (Rege(Q, d)) have the same components for all n. Thus giving a norm on ¥ is

equivalent to giving a norm on Rge(Q, d). If the norm on X is linear, then so will be
the induced norm on Ree(Q, d), and thus it will be standard by Proposition 7.5.3. [

DEFINITION 7.5.5. A linearly lit normed good moduli stack is a linearly lit good moduli stack

endowed with a linear norm on graded points.

DEFINITION 7.5.6 (Induced norm on lattice). Let X be a linearly lit normed good
moduli stack and let x be a k-point of X. Fora < b in Ly, we let Xy([a,b]) =
|6]>—lla||*>. Then X, is a norm on the lattice L, and we will regard L, as a normed

lattice endowed with X .

That X, defines a norm on L, is immediate in the case X = Rege(Q, d), and the
general case follows from this by the embedding in Definition 7.3.7.

LEMMA 7.5.7. Let (X, X) be a pointed linearly lit normed good modul stack with norm on graded
points ¢, and let A € DF®(X,x),. Let Ly be the canonical linear form on graded points of
Gradg(X) (Definition 2.4.7), and let (F*)Y be the linear form on Grad g (L) induced by the
norm on L (see discussion afler Definition 6.0.23). Then for all @ € DF(Gradg(X), gr )1,
we have the equality

(. lg) = (F* (F})V).
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Proof. We may assume X = Rege(Q, d) with standard norm given by (m;);eg,. The
point x corresponds to a representation E = ((E;)ieg,, (fa)aco,), and the filtration
A of x 1s represented by a rational one-parameter subgroup B of G(d) that induces a
grading E; = g Ei.c for cachi € Qy. With respect to this decomposition, each
Ja 1s written 1n coordinates as (fy.c.c/)ec.c’eQ-

The component of Gradg(X) containing gr A is of the form Rege(Q’,d’), with
Q’.d’ asin the proof of Proposition 7.3.12. The point gr A has coordinates ( fo,c.c)ce@-
Ifarational cocharacter p of L(f) defines a filtration of gr A, then (u, £,) = (1, 8Y) =
(u, B). A grading Ei. = @, cq Eic.e for each E; . is determined by p. From the
definitions, we have the formula

(1. B) = Y cc' dim(Ejccm;.
ie.c!
Also from the definitions, we have
(Fr (FYY) = Y CFDY(FL FL) = Y ¢ Y (FY)Y (Eiee)
c’eQ c’eQ i€Qo
= Z ¢’ Z Z cm; dim(E; ¢ o),

c’eQ i€QpceQ

as desired. [

7.5.2 A LEMMA ABOUT SEMISTABILITY

We briefly turn our attention to a lemma in Geometric Invariant Theory that we will
need later.

Let k be an algebraically closed field. Let G be a linearly reductive algebraic
group over k, endowed with a norm ¢ on cocharacters, and let V' be a finite dimen-
sional representation of G. Let A € T'®(G) be a rational cocharacter of G, inducing
a direct sum decomposition V = P .o V5. The commutator subgroup L(1) acts
on Vi. We endow V;/L(A) with the linear form £; = —AY on graded points, where
(y.,AV) = (3, A) for any y € T'®(L(A)), and (-, —) is the inner product that ¢ in-
duces in some split subtorus of L(A) containing y and A. Let £ be the linear form on
P(V1)/L(}A) determined by @ (1), and we consider semistability on P(V;)/L(A) with
respect to the linear form £, = £ — AV /||A|%.

LEMMA 7.5.8. In the situation above, we have a cartesian square

(Vi/L(A)* D ———— (1 \ {0}) /L(A)

(P(V1)/L())* D ———— P(V)/LA).



174 Chapter 7. Comparison with the iterated HREKP filtration

Proof. Let V1 \ {0} — P(V1):x — [x] be the projection and let v: Spec(k) — V1 \ {0}
be a geometric point. We wish to show that v is semistable for ¢, if and only if [v] 18
semistable for £,.

If T 1s a maximal torus of L(1), then v (resp. [v]) is semistable for L(A) if and
only if gv (resp. g[v]) is semistable for T for all g € L(A)(k). It is thus enough to
assume that L(A) = T 1s a torus.

We write E C I'q(T) for the state of v. That is, if Vi = @, ery ) (V1)y is the
grading induced by the T-action on V; and p,: Vi — (V1) are the projections, then
8 ={y €lTo(T): py(v) # 0}. Now we have

1. v e V¥ (k) if and only if 1V € cone(E), and
2. [v] € P())*® (k) if and only if AV/|A]|?> € conv(E) or, equivalently, if 0 €
conv (8 — AY/||A]?).
Here, cone(Z2) is the convex cone in I'g(7") generated by &, while conv(Z2) is the

convex hull of E. The result follows from Lemma 5.2.17. O]

7.5.3 THE TORSOR CHAIN AND THE HKKP CHAIN

We get to the main result of this chapter.

THEOREM 7.5.9. Let (X, x) be a pointed linearly lit normed good moduli stack over k, and let
(Y, Yn,s My vn) be its torsor chain (Definition 4.3.3). Then:

1. Each Y, s, with the lamp inherited from X, a linearly lit normed good modul stack.

2. Under the canonical identification DF® Y,y = DF® (Ly,)1: A+ F*, the balanced
Siltration 0y of (Yn, yn) (Definition 4.2.2) coincides with the HKKP filtration of the normed
lattice L, (Definition 6.6.27).

3. Eachmap vy: (Y41, Ynt1) = (Gradg(Yn), gr n,) induces a norm-preserving injection of
lattices

¢n: Ly, ., <> Gradgm(Ly,),

thus giving a chain of lattices (Ly,,, F™, Cp)neN.
4. The chain (Ly,, F™, cy)nen is the HKRP chain of the normed artinian lattice L .

Proof. We may assume that the good moduli space of X is a point after replacing
X with the fibre of its good moduli space containing x, since this does not change
the (Y,,yn) for n > 1. By embedding X in quiver moduli, we can assume that
X = Rep(Q, d) for some quiver Q and dimension vector d, endowed with the stan-
dard lamp and a standard norm on graded points given by positive rational numbers

(m;)iep,, and that x corresponds to a nilpotent representation E of Q.
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If x is a closed point, then 1 holds trivially. In fact, x is a closed point if and only
if L, 13 complemented, by Propositions 2.7.14, 6.5.34 and 7.3.11. In this case both
the balanced filtration and the HKKP filtration are zero, so 2 holds, and 3 and 4 hold
trivially. We now assume that x is not closed.

We now prove 2 for n = 0. We identify L, = Lg, the lattice of subrepresen-
tations of E. We have ||A||?> = ||F*|?, where |A|? is the norm-squared of A with
respect to the norm on graded points on X, and || F*||? is the norm-squared of F*
with respect to the induced norm on the lattice L.

On the other hand, Kempf’s intersection number of A and X™** agrees with the
complementedness of F*, (1, X™>) = (F*, 1), by Proposition 7.2.4. The balanced
filtration of (X, x) 1s the element A of DFQ(X, x)1 with (A, X™>) > 1 and smallest
norm. The HKKP filtration of L is the element F of DFQ(Lx)l with (F,[) > 1
and smallest norm. Thus A is the balanced filtration of (X, x) if and only if F* is the
HKKP filtration of L. This proves 2 for n = 0.

We write Rep(Q,d) = V,G = G(d)and V = W@V, where W is the Reynolds
operator of G applied to V, that is, the sum of all simple nontrivial subrepresentations
of V.

Let 1: X = V/G — (W J/ G) x VY be the good moduli space. Since E is
nilpotent, x lies in W, and the fibre ¥ = 7~ !'n(x) = 771(0) is also the fibre of
W/G — W J/ G at 0, and so a closed substack of W/G containing 0. We may re-
place ¥ by W/G since this will only change ¥; by a stack of which it is a closed
substack. To construct ¥;, we blow-up W/G at (W/G)™ = {0}/G and consider
the centre Z of the weak ®-stratum of Bly W/G containing x. By Lemma 4.3.2, Z is
an open substack of Gradg(P(W)/G), since P(W)/G is the exceptional divisor. In
fact, Z is the centre of the weak ®-stratum of P(W)/G containing u(grno). Here,
the linear form £ on graded points considered is given by the line bundle Opw),6 (1).
The balanced filtration g is given by a rational cocharacter 8 of G which induces
a direct sum decomposition W = @ .q We. Since (no,£) = 1, the component of
Gradg(P(W)/G) containing u(grne) 1s P(W;)/L(B). We also denote £ the linear
form on P(W;)/L(B) given by Opw,)/L()(1), and we consider also the linear form
BY given by (A, 8Y) = (A, B), where (—, —) is the inner product induced by the norm
on graded points.

By [55, Remark 12.21], Z 1s the open substack Z = IP(Wl)ss(e_ﬂv/”ﬂ”2)/L(ﬂ),
and ¥, is the Gy k-torsor over Z determined by O(1). Thus ¥; = Wfs(_ﬂv)/L(ﬂ) by
Lemma 7.5.8.

Claim 7.5.10. There is a quiver Q’, a dimension vector d’ and an isomorphism W; /L(B)
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>~ Rep(Q’, d’) as lit stacks such that the induced norm on Rege(Q’, d’) is linear.

Proof of Claim. Let V. = @, cq Ve be the grading that B induces on V. Note that
W1 - Vl.
The rational cocharacter 8 also induces a direct sum decomposition E; = P.cq Ei.c

for each i € Q. We define a quiver Q’ as follows. Its set of vertices is

b =1(,c) € Qo x Q| E;i. # O}

The set of arrows from (i, ¢) to (j,¢) is empty if ¢’ # ¢ + 1 and otherwise it is the set
of arrows from i to j in Q. We set a dimension vector d’ of Q" by d; ;) = dim E; .
In this way we have identifications V; = Rep(Q’,d’) and L(B8) = G(d’), so we
get an isomorphism Vi /L(B) = Rege(Q’,d’). The induced lamp on V;/L(B) 1s the
standard one on Ree(Q’,d’): if A: G, x — L(pB) 1s a cocharacter, then the induced
grading on E; . has only nonnegative weights for all i and ¢ if and only if the grading
on E; has only nonnegative weights for all i. The induced norm is standard with

mMg,c)y = m;. D

By the claim, ¥, is an open substack of Ree(Q’, d’) admitting a good moduli
space, so it 1s linearly lit by Theorem 7.4.12. This proves 1 for n = 1 and, by induc-
tion, for all n. Since we knew 2 for n = 0, now we know it for all n.

It is left to show that the map (¥;,y1) — (Gradg(X),grne) induces a map
Ly, <> Gradgmn(Ly) of lattices that identifies L,, with A(F7)sCE™™) (Defini-
tions 6.6.22 and 6.6.24). By induction, this 1s enough to prove 3 and 4 for all n.

Recall that V7, = Wi, so ¥ = V;*/L(B), where semistability 1s with respect to
BY. Let U = Vi/L(B) = Rep(Q’,d’), and let u € U(k) be the point y; seen as a
point of U. The map (Y1, y1) = (Gradg(X), grne) factors as

(¥1.y1) = (U, u) > (BL(B),0) — (Vo/L(p).0) — (Gradg(X). gr no).

By Proposition 7.3.12, the lattice Ly,/L8),00 = LBL(B),0) 15 canonically identi-
fied with Gradgno (Ly). First we show that the map (U, u) — (BL(B),0) induces an
injection of lattices L, < Gradfgno (Ly) that identifies L,, with A(F ™).

The representation E of Q, corresponding to the point x, can be written in
coordinates as E = ((E})ico,, (fa)aco,), Where f, € Hom(Es), Et(«)). Since f
induces a direct sum decomposition E; = EBCGQ E; . for eachi € Qy, each fy can
be written in coordinates as fo = (fa.c’.c)e.cre@, With fo /e € Hom(Es@),c. Et(a).c’)-

The point y; 1s then ( fo,c+1,c)ac0,,ceq 1 coordinates, corresponding to a repre-
sentation £ of Q. From these descriptionsitis clear that DF(U, u); — DF(BL(B),0);

induces an injection of lattices L, = Lg < Gradpgno(Ly).
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An element of Gradgno (L) 1s the data of a subspace M, . of each E; .. The M; .
define a subrepresentation M of E’ if and only if fy c4+1,c(Ms(@),c) C Mi(a),c+1 for all
o€ Qrandc € Q.

LetMise = (Bpse Eier)OMicand E e = @,», Eier. The Ej . define a sub-
representation Ex. of E just because B defines a filtration of x. Moreover, E>./E-.
1s semisimple, and actually null (Definition 7.2.1) because E is nilpotent. Therefore
the M; >, define a subrepresentation M. of E.

The condition for the M; . to define an element of A(F7°) is that Ms./Ms.+1
1s semisimple (or equivalently, since M», is nilpotent, null) for all ¢ € Q. Choose a

splitting E; . = M, . @ M/ . as vector spaces. Then we can write

Misc/Miscqr1 = c+1 ® ( @ E; C/) ®M,,.

c<c’<c+1
Because F™ 1s paracomplemented, we have that fa e, = 0forer <cp < + 1.
Therefore M>./Ms.+1 has coordinates (f, c+1 C|M’ “*1). These are all 0 if and only
if ficr1.c(Mic) C Mjc4; forall c andi. Therefore L, = Lg = A(F"), as desired.

Now by [36, Lemma 5.5.11 and Lemma 5.5.12], we have
DF(Y,,y1)1 = {» e DF(U,u),| BY(A) = 0}.
Therefore
— (L eDF(Uu); | A >0, B¥(1) = 0, andif u € DF(U, u),
satisfies 0 < 2 < A and BY(u) = 0, then u = 0}.

Note thatif u € DF(U,u); and 0 <2u < A, then 0 <28Y(u) < BY(A),so B¥(A) =0
implies BY () = 0. Therefore the map DF(¥,, y1)1 — DF(U, u); sends Ly, injec-
tively into L, and L,, = {1 € L, | BY(4) = 0}. Note that BY(1) = (F")"(A) by
Lemma 7.5.7, so we get Ly, = A(F7)%, as desired. [

COROLLARY 7.5.11. In the setting of Theorem 7.5.9 we have that, under the canonical bijection
Q>-Filt(X, x) = Q*°-Filt(Ly), the iterated balanced filtration of x equals the iterated HKKP
Sfiltration of L.

Proof. 'This follows directly from the definition of the iterated HKKP filtration (Defi-
nition 6.7.3), from Theorem 7.5.9 and from Theorem 4.3.4. ]
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