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1 Some results on reductive actions on affine schemes

Lemma 1. Let k be a field and let G be a linea algebraic group over k, acting on an
affine scheme X = Spec(A) of finite type over k. Let S be a closed G-subscheme of
X. Then

1. There is a G-equivariant closed embedding f : X → V , where V is a finite di-
mensional G-representation.

2. There is a G-equivariant morphism f : X → V , where V is a finite dimensional
G-representation, such that f−1(0) = S.

Proof. Let V ∨ ⊂ A be a finite dimensional G-subrep. This gives a map φ : SymV ∨ →
A of k-algebras that is also a map of G-representations and hence a G-equivariant
morphism f : X → V . If V generates A as a k-algebra, then φ is surjective and f
is a closed immersion. This proves the first part. In any case, f−1(0) is the closed
subscheme of X whose ideal is that geneated by V , so we can choose V to generate
the ideal of S, and hence the second part is proven. The crucial fact that we are using
is that the G-subrepresentation (in this case of A) generated by a finite number of
elements is finite dimensional.

Theorem 2. Let k be an algebraically closed field, let G be a connected reductive group
over k and let X be an affine finite-type G-scheme over k. Let x ∈ X(k) and let S be
a closed G-subscheme of X. Suppose that S ∩Gx ̸= ∅. Then there is a one-parameter
subgroup λ : Gm → G of G such that the limit limt→0 λ(t)x exists and is in S.
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Proof. Choose a point y ∈ (S ∩ Gx)(k). Take an integral curve C1 ⊂ Gx containing
both x and y. Consider the orbit map h : G → X : g 7→ gx and take a smooth projective
curve C and a rational map a : C 99K G such that the composition f = h◦a dominates
C1. There is a point σ ∈ C(k) such that f(σ) = y. Let R = kJtK and K = k((t)).
Since the completion ÔC,σ

∼= R, we get a diagram

(1)

SpecK SpecR 0

G X y

g

h

To continue, we need Cartan-Iwahori decomposition, which states that

G(K) = G(R)Hom(Gm, G)G(R).

More precisely, for all g ∈ G(K), there are h1, h2 ∈ G(R) and a cocharacter λ : Gm → G
such that g = h1| SpecK ·λ| SpecK ·h2|SpecK . Note that we can regard G(R) as a subgroup
of G(K).

Using this for our particular g ∈ G(K) above, we get

y = lim
t→0

g(t)x = lim
t→0

h1(t)λ(t)h2(t)x

and

h1(0)
−1y = lim

t→0
h1(t)

−1g(t)x = lim
t→0

λ(t)h2(t)x.

Replacing x by h2(0) we may assume h2(0) = e ∈ G(k), the identity element.

Claim 3. limλ(t)x exists.

Proof of Claim. By the first part of Lemma 1, we may assume that X = V a vector
space and thatG = GL(V ). Choosing coordinates on which λ acts diagonally, we write.
We also write λ(t) = diag(tn1 , . . . , tnl)h2(t) = (aij) with aii = 1 and aij ∈ (t) ⊂ kJtK if
i ̸= j. Therefore λ(t)h2(t)x = (tnixi + tni(t)), and this limits exists when t → 0. So if
xi ̸= 0, then ni ≥ 0. Therefore limt→0 λ(t)x also exists.

Claim 4. limλ(t)x equals y.

Proof of Claim. By the second part of Lemma 1 we may assume V = X is a G-
representation, S = {0} and G = GL(V ). Since limt→0 λ(t)h2(t) = 0, in the expression
above we must have that if xi ̸= 0 then ni > 0. Therefore limt→0 λ(t)x = 0 also.

Remark 5. We may reformulate the Theorem in stacky language as follows. Consider
X = X/G and Z = S/G which is a closed substack of X and let x ∈ X (k). If Z
intersects the closure of {x}, then there is a map λ : Θk → X such that λ(1) = x
and λ(0) is in Z. Here Θk = A1

k/Gm,k. One advantage of this is that we may reduce
to the case where the group is GLn. Indeed, we can always find a closed embedding
G → GLn, and then X/G = X ×G GLn /GLn and G ×G GLn is affine. We also see
that connectedness of G is actually not important.

While Cartan-Iwahori decomposition can be difficult to prove in general, it is easy
for GLn. Indeed, let g ∈ GLn(K). We can find g1, g2 ∈ GLn(R) such that g1gg2 is
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diagonal (we can do this over PID’s). An element of the diagonal is a ∈ K×, so there
is a unique n ∈ Z such that t−na ∈ R×. The tn give a cocharacter λ : Gm → GLn so
that g1gg2λ

−1 ∈ GLn(R), as desired.

Lemma 6. Let G be linearly reductive over a field k acting on an affine scheme
X = SpecA. Suppose Z1, Z2 are disjoint closed G-subschemes of X. Then there is
a ∈ AG such that a|Z1

= 1 and a|Z2
= 0.

Proof. Write Zi = SpecA/Ii. We have that I1⊕I2 → I1+I2 is surjective, so IG1 ⊕IG2 →
(I1 + I2)

G is surjective too, by exactness of invariants, that is, (I1 + I2)
G = IG1 + IG2 .

Now 1 ∈ I1 + I2, so 1 ∈ (I1 + I2)
G too and there are elements g ∈ IG1 and f ∈ IG2 such

that 1 = g + f . Then f = a ∈ AG is the sought-after element.

2 Hilbert-Mumford criterion

We place ourselves in the following setup. We work over an algebraically closed field
k, and consider a linearly reductive group G over k. Let X be a projective-over-affine
finite-type scheme over k, endowed with an action of G and an ample linearisation L.

Let x ∈ X(k). Let λ : Gm → G be a one-parameter subgroup such that the
limit limt→0 λ(t)x = y exists. The multiplicative group Gm acts on X via λ and
y : Spec k → X is a fixed point, so y∗L is a Gm-quivariant line bundle on Spec k. Thus
Γ(Spec k, y∗L) ∼= k · s and λ(t) · s = tns for a unique n ∈ Z (the weight).

Definition 7. We denote

m(x, λ) = n

and call it the Hilbert-Mumford weight.

Recall the following definitions in Geometric Invariant Theory. The point x is

1. semistable if there is n > 0 and a ∈ Γ(X,L⊗n)G such that a(x) ̸= 0. There is a
G-equivariant open subscheme Xss consisting of the semistable points;

2. polystable if it is semistable and Gx is closed in Xss;

3. stable if it is polystable and dimGx = 0, where Gx is the stabiliser of x.

Theorem 8 (Hilbert-Mumford criterion). The point x is


semistable

polystable

stable

if and only

if for all λ : Gm → G such that limt→0 λ(t)x exists, we have that
m(x, λ) ≤ 0

m(x, λ) ≤ 0 with equality ⇐⇒ ∃g ∈ P (λ), λg is in Gx

m(x, λ) ≤ 0 with equality ⇐⇒ λ = 0.

Above P (λ) is the parabolic subgroup of λ, whose k-points are those g ∈ G(k) such
that limt→0 λ(t)gλ(t)

−1 exists in G.
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Proof. LetA =
⊕

n∈N An =
⊕

n∈NH0(X,L⊗n), soX = ProjA becauseX is projective-
over-affine. By replacing L by a high enough tensor power, we may assume A is gen-
erated in degree 1. Therefore, the projectivisation of the normal cone of SpecA at
SpecA0 is isomorphic to X, and we have a cartesian diagram

A(L∨) SpecA

X SpecA0,

σ

f

⌜

of G-equivariant morphisms, where σ is the zero section and f is identified with the
blow-up of SpecA along SpecA0 and it is thus proper.

Let x∗ ∈ A(L∨)(k) be a lift of x to the total space A(L∨) = Spec
⊕

n∈N L⊗n of L∨

not in the zero section. Let λ : Gm → G be such that limt→0 λ(t)x exists in X.

Claim 9. We have m(x, λ) > 0 if and only if limt→0 λ(t)x
∗ exists and lies in σ(X).

Indeed, since the limit limt→0 λ(t)x exists in X, by pulling back A(L∨) along the
induced Gm-equivariant morphism A1

k → X we may assume that X = A1
k and G = Gm

acts by scaling. Then limt→0 λ(t)x
∗ exists and lies in the zero section if and only if

L∨ has an invariant section that vanishes at 0 but not at 1, and this is equivalent to
m(x, λ) > 0. The claim follows. The figures below representing the trajectories of
λ(t)x∗ in the three cases m(x, λ) < 0,= 0 and > 0 provide a good intuition for the
claim.

Now, we have that the following statements are equivalent:

1. there is λ : Gm → G such that limt→0 λ(t)x exists and m(x, λ) > 0;

2. there is λ : Gm → G such that limt→0 λ(t)x
∗ exists and belongs to σ(X);

3. there is λ : Gm → G such that limt→0 λ(t)f(x
∗) exists and belongs to SpecA0;

4. Gf(x∗) ∩ SpecA0 ̸= ∅;

5. there is no a ∈ AG with a(f(x∗)) ̸= 0 and a0 = a| SpecA0
= 0;

6. there is no n > 0, no a ∈ AG
n with a(f(x∗)) ̸= 0;

7. x is not semistable.

Indeed, 1 is equivalent to 2 by the Claim; 2 is equivalent to 3 by properness of f and
cartesianity of the square above; 3 is equivalent to 4 by Theorem 2; 4 is equivalent to
5 by Lemma 6; 5 is equivalent to 6 because if a ∈ AG satisfies the condition in 5, then
the degree n part an of a will also satisfy it for some n > 0; and, finally, 6 is equivalent
to 7 because AG

n = H0(X,Ln)G and a(f(x∗)) ̸= 0 if and only if a(x) ̸= 0. This finishes
the proof of the Hilbert-Mumford criterion in the semistable case.

Assume now that x is semistable. By covering Xss by G-equivariant open subsets
that are saturated with respect the good quotientXss → Xss//G and applying Theorem
2 on each of them, we see that the orbit Gx is closed in Xss if and only if for every
λ : Gm → G such that y = limt→0 λ(t)x exists and lies in Xss, we have that actually y is
in the orbit Gy. As it can be seen, for example, by considering the stack Gx/G ∼= BGx,
the statement that y lies in Gx is equivalent to the existence of an element g ∈ P (λ)(k)
such that λg is in Gx. The Hilbert-Mumford criterion in the polystable case now follows
from the following key fact that is of independent interest.
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Claim 10. If λ : Gm → G is such that y = limt→0 λ(t)x exists in X, then y lies in Xss

if and only if m(x, λ) = 0.

We sketch a proof of the Claim. If y is in Xss, we can take s ∈ H0(X,L⊗n)G such
that s(y) ̸= 0. Then s(x) ̸= 0 and thus m(x, λ) = 0. Conversely, suppose that y is not
in Xss and assume that m(x, λ) = 0. We can find µ : Gm → G such that limt→0 µ(t)y
exists and m(y, µ) > 0. By conjugating λ and µ inside their parabolic subgroups, we
may assume that λ and µ commute. Then limt→0 λ

nµ(t)x exists for big enough n and
m(x, λnµ) > 0, a contradiction with semistability of x.

If x is polystable, then the stabiliser Gx is reductive. Thus it has dimension 0 if and
only if it has no nontrivial one-parameter subgroups. This proves the stable case.

3 Examples

We assume that k is an algebraically closed field of characteristic 0.

3.1 Relation to convex geometry

Let T = Gl
m be a torus acting linearly on a finite dimensional vector space V , and

let x ∈ P(V )(k) and x∗ ∈ V \ {0} a lift of x to V . We consider the linearlisa-
tion O(1) on P(V ). We choose coordinates on which T acts diagonally by characters
α1, . . . , αn : T → Gm. If x∗ = (x1, . . . , xn), then tx∗ = (α1(t)x1, . . . , αn(t)xn).

Let Ξ = {αi | xi ̸= 0} ⊂ ΓZ(T ) ⊂ ΓR(T ) := ΓZ(T )⊗Z R, where ΓZ(T ) is the group
of characters of T . For λ : Gm → T , we have that m(x, λ) = minα∈Ξ⟨λ, α⟩. Therefore,
x is semistable if and only if 0 is in the convex hull conv(Ξ) of Ξ. We can also check
that x is polystable if and only if 0 is in the relative interior of conv(Ξ) (relative to
the vector subspace of ΓR(T ) generated by Ξ) and that x is stable if and only if 0 is
in the interior of conv(Ξ).

More generally, if T is a maximal torus of a reductive group G acting on V , then
x is semistable for the action of G if and only if gx is semistable for the action of T
for every g ∈ G(k).

3.2 Tuples of points in the projective line

Consider the action of SL(2) on (P1)n with the linearisation OP1(1)⊠ · · ·⊠OP1(1). Let

λ : Gm → SL(2) : t 7→
(
t 0
0 t−1

)
, which is a maximal torus of SL(2).
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Assume first that n = 1 and take z = [a, b] ∈ P1(k). We have that

lim
t→0

λ(t)z = lim
t→0

[ta, t−1b] =

{
0, z ̸= ∞
∞, z = ∞,

where ∞ = [1, 0] and 0 = [0, 1] ∈ P1(k). We thus have

m(z, λ) =

{
1, z = ∞,

−1, z ̸= ∞

and

m(z, λ−1) =

{
1, z = 0

−1, z ̸= 0.

For general n, let (z1, . . . , zn) ∈ (P1)n(k) and denote k = #{i | zi = ∞} and
l = #{i | zi = 0} we have

m((z1, . . . , zn), λ) =
∑
i

m(zi, λ) = #{i | zi = ∞}−#{i | zi ̸= ∞} = 2k − n

and
m((z1, . . . , zn), λ

−1) =
∑
i

m(zi, λ
−1) = 2l − n.

Thus (z1, . . . , zn) is semistable for λ(Gm) if and only if k, l ≤ n/2. We have that
(z1, . . . , zn) is semistable for SL(2) if and only if g(z1, . . . , zn) for all g ∈ SL(2)(k).
Since the action of SL(2) on P1 is 3-transitive, this happens if and only if no more than
n/2 of the zi are equal. If n is odd, any semistable point is stable. If n is even, the
strictly semistable points have half of the zi equal to one point of P1 and the other half
equal to a different point of P1. The stabiliser of such points is Gm which is reductive.
Hence all strictly semistable points are polystable.

3.3 Grassmannians as an affine GIT quotient

Let V and W be two finite-dimensional vector spaces, and conside the obvious action
of GL(V ) on Hom(V,W ). We choose the linearisation of the action corresponding to
the character det : GL(V ) → Gm. Choose some coordinates on V and W so that we
write elements of Hom(V,W ) with matrix notation. Let T = {diag(t1, . . . , tn)} be the
maximal torus corresponding to the choice of coordinates.

Let x = (aij) ∈ Hom(V,W ). For λ : Gm → T , write λ(t) = diag(tm1 , . . . , tmn),
where n is the dimension of V . We have λ(t)x = (tmiaij), and the limit when t tends
to 0 exists if and only if we have mi ≥ 0 whenever the ith row of x is not 0. In
that case, the Hilbert-Mumford weight is m(λ, x) = (det−1, λ) = −

∑
imi. Thus x is

semistable for the action of T if and only if every row of x is nonzero. In that case, x
is stable. The point x is semistable for the action of GL(V ) if and only if each gx is
semistable for the action of T , for all g ∈ GL(V )(k). This happens precisely when x is
full rank, and in that case the stabiliser group Gx is trivial.

Hence the GIT quotient Hom(V,W )ss //GL(V ) is isomorphic to the Grassmannian
Grn,W of n-dimensional subspaces of W . Since all stabilisers are trivial, the GIT
quotient Hom(V,W )ss //GL(V ) equals the stack quotient Hom(V,W )ss/GL(V ).
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