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1 Some results on reductive actions on affine schemes

Lemma 1. Let k be a field and let G be a linea algebraic group over k, acting on an
affine scheme X = Spec(A) of finite type over k. Let S be a closed G-subscheme of
X. Then

1. There is a G-equivariant closed embedding f: X — V, where V is a finite di-
mensional G-representation.

2. There is a G-equivariant morphism f: X — V, where V is a finite dimensional
G-representation, such that f~1(0) = S.

Proof. Let VV C A be a finite dimensional G-subrep. This gives a map ¢: Sym V" —
A of k-algebras that is also a map of G-representations and hence a G-equivariant
morphism f: X — V. If V generates A as a k-algebra, then ¢ is surjective and f
is a closed immersion. This proves the first part. In any case, f~1(0) is the closed
subscheme of X whose ideal is that geneated by V', so we can choose V' to generate
the ideal of S, and hence the second part is proven. The crucial fact that we are using
is that the G-subrepresentation (in this case of A) generated by a finite number of
elements is finite dimensional. O

Theorem 2. Let k be an algebraically closed field, let G be a connected reductive group
over k and let X be an affine finite-type G-scheme over k. Let x € X (k) and let S be
a closed G-subscheme of X. Suppose that SN Gz # @. Then there is a one-parameter
subgroup A: G, — G of G such that the limit limy_,o A(t)z exists and is in S.



Proof. Choose a point y € (SN Gx)(k). Take an integral curve C; C Gz containing
both z and y. Consider the orbit map h: G — X : g — gz and take a smooth projective
curve C' and a rational map a: C --» G such that the composition f = hoa dominates
Cy. There is a point o € C(k) such that f(o) = y. Let R = k[t] and K = k((t)).
Since the completion (507(, = R, we get a diagram

Spec K —— Spec R 0
(1) | | I
G—" X y

To continue, we need Cartan-Iwahori decomposition, which states that
G(K) = G(R)Hom(G,,, G)G(R).

More precisely, for all g € G(K), there are hy, hs € G(R) and a cocharacter \: G,,, = G
such that g = hy|gpec K * A Spec k12| $pec k- Note that we can regard G(R) as a subgroup
of G(K).

Using this for our particular g € G(K) above, we get

y = lim g(t)z = lim hy (£)A(¢)he(t)x
t—0 t—0

and
hi(0) "ty = lim hy (t) " tg(t)z = lim \(t)ho(t)z.

t—0 t—0
Replacing = by ho(0) we may assume ho(0) = e € G(k), the identity element.
Claim 3. lim A(t)x exists.

Proof of Claim. By the first part of Lemma I} we may assume that X =V a vector
space and that G = GL(V'). Choosing coordinates on which A acts diagonally, we write.
We also write A(t) = diag(t™, ..., t")ha(t) = (ai;) with a; = 1 and a;; € (t) C k[t] if
i # j. Therefore A(t)ha(t)x = (t™ix; + t™i(t)), and this limits exists when ¢ — 0. So if
x; # 0, then n; > 0. Therefore lim;_,o A(t)x also exists. O

Claim 4. lim A(t)z equals y.

Proof of Claim. By the second part of Lemma [I] we may assume V = X is a G-
representation, S = {0} and G = GL(V'). Since lim;_,0 A(t)ha(t) = 0, in the expression
above we must have that if z; # 0 then n; > 0. Therefore lim;_,o A(t)z = 0 also. O

O]

Remark 5. We may reformulate the Theorem in stacky language as follows. Consider
X = X/G and Z = S/G which is a closed substack of X and let x € X (k). If Z
intersects the closure of {x}, then there is a map A: ©p — X such that A\(1) = =
and A(0) is in Z. Here ©) = A} /G, ;. One advantage of this is that we may reduce
to the case where the group is GL,. Indeed, we can always find a closed embedding
G — GL,, and then X/G = X x% GL,, /GL, and G x% GL, is affine. We also see
that connectedness of G is actually not important.

While Cartan-Iwahori decomposition can be difficult to prove in general, it is easy
for GL,. Indeed, let g € GL,(K). We can find g;,g92 € GL,(R) such that g;ggs is



diagonal (we can do this over PID’s). An element of the diagonal is a € K*, so there
is a unique n € Z such that t7"a € R*. The t" give a cocharacter \: G,, — GL,, so
that g1ggoA~! € GL,(R), as desired.

Lemma 6. Let G be linearly reductive over a field k acting on an affine scheme
X = Spec A. Suppose Z1,7Zo are disjoint closed G-subschemes of X. Then there is
a € A% such that ajz, =1 and ajz, = 0.

Proof. Write Z; = Spec A/I;. We have that I} &Iy — I+ I is surjective, so IlGEBI2G —
(I + IQ)G is surjective too, by exactness of invariants, that is, (I3 + IQ)G = IlG + 120.
Now 1 € I} + I, 50 1 € (I1 + I5)® too and there are elements g € 11G and f € IQG such
that 1 = g+ f. Then f = a € A% is the sought-after element. O

2 Hilbert-Mumford criterion

We place ourselves in the following setup. We work over an algebraically closed field
k, and consider a linearly reductive group GG over k. Let X be a projective-over-affine
finite-type scheme over k, endowed with an action of G and an ample linearisation L.
Let x € X(k). Let A: G,, — G be a one-parameter subgroup such that the
limit lim;,0 A(¢)z = y exists. The multiplicative group G,, acts on X via A and
y: Speck — X is a fixed point, so y*L is a G,,-quivariant line bundle on Spec k. Thus
['(Speck,y*L) =2 k- s and A(t) - s = t"s for a unique n € Z (the weight).

Definition 7. We denote
m(x,\) =n
and call it the Hilbert-Mumford weight.

Recall the following definitions in Geometric Invariant Theory. The point « is

1. semistable if there is n > 0 and a € I'(X, £%")¢ such that a(x) # 0. There is a
G-equivariant open subscheme X*®° consisting of the semistable points;

2. polystable if it is semistable and Gz is closed in X*®%;
3. stable if it is polystable and dim G, = 0, where G, is the stabiliser of .

semistable
Theorem 8 (Hilbert-Mumford criterion). The point x is < polystable if and only

stable
if for all \: Gy, — G such that limy_,o A(t)x exists, we have that

m(z,A) <0
m(z, ) <0 with equality <= Jg € P(\), N is in G,
m(x, \) <0 with equality <= X\ = 0.

Above P() is the parabolic subgroup of A, whose k-points are those g € G(k) such
that lim;_,o A(t)gA(t) ! exists in G.



Proof. Let A= @, cy An = ®,,eny HY (X, LZ™), s0 X = Proj A because X is projective-
over-affine. By replacing £ by a high enough tensor power, we may assume A is gen-
erated in degree 1. Therefore, the projectivisation of the normal cone of Spec A at
Spec Ay is isomorphic to X, and we have a cartesian diagram

A(LY) A Spec A

o]

X —— Spec Ay,

of G-equivariant morphisms, where o is the zero section and f is identified with the
blow-up of Spec A along Spec Ay and it is thus proper.

Let z* € A(LY)(k) be a lift of x to the total space A(LY) = Spec@P,,cr LE" of LY
not in the zero section. Let A: G,,, — G be such that limy_,o A(¢)z exists in X.

Claim 9. We have m(z, ) > 0 if and only if lim;_,o A(¢)x* exists and lies in o(X).

Indeed, since the limit lim;_,o A(¢)x exists in X, by pulling back A(LY) along the
induced Gy,-equivariant morphism A}C — X we may assume that X = A}C and G = G,
acts by scaling. Then lim; 0 A(t)z* exists and lies in the zero section if and only if
LY has an invariant section that vanishes at 0 but not at 1, and this is equivalent to
m(z,A) > 0. The claim follows. The figures below representing the trajectories of
A(t)xz* in the three cases m(x,\) < 0,= 0 and > 0 provide a good intuition for the
claim.

Now, we have that the following statements are equivalent:

1. there is A\: G, — G such that lim; o A\(¢)x exists and m(x, \) > 0;
2. there is A\: G,,, — G such that lim;_,o A(¢)z* exists and belongs to o(X);
there is A: G;,, — G such that limy_,0 A(¢) f(2*) exists and belongs to Spec Ay;

G f(xx) N Spec Ay # ;

oo W

there is no a € A% with a(f(z*)) # 0 and ag = a|Spec 49 = 0;
6. there is no n > 0, no a € AS with a(f(z*)) # 0;

7. x is not semistable.

Indeed, 1 is equivalent to 2 by the Claim; 2 is equivalent to 3 by properness of f and
cartesianity of the square above; 3 is equivalent to 4 by Theorem [2} 4 is equivalent to
5 by Lemma @ 5 is equivalent to 6 because if @ € A satisfies the condition in 5, then
the degree n part a, of a will also satisfy it for some n > 0; and, finally, 6 is equivalent
to 7 because AS = HO(X,£™)% and a(f(z*)) # 0 if and only if a(x) # 0. This finishes
the proof of the Hilbert-Mumford criterion in the semistable case.

Assume now that z is semistable. By covering X*° by G-equivariant open subsets
that are saturated with respect the good quotient X — X% /G and applying Theorem
on each of them, we see that the orbit Gz is closed in X*®° if and only if for every
A: Gy, — G such that y = limy_,o A(t)z exists and lies in X, we have that actually y is
in the orbit Gy. As it can be seen, for example, by considering the stack Gz /G = BG,,
the statement that y lies in Gz is equivalent to the existence of an element g € P(\)(k)
such that A9 isin G,. The Hilbert-Mumford criterion in the polystable case now follows
from the following key fact that is of independent interest.



Claim 10. If X\: G,,, — G is such that y = limy_,0 A(t)z exists in X, then y lies in X*°
if and only if m(x,\) = 0.

We sketch a proof of the Claim. If y is in X, we can take s € HO(X, L&) such
that s(y) # 0. Then s(z) # 0 and thus m(z, \) = 0. Conversely, suppose that y is not
in X* and assume that m(z, A) = 0. We can find p: G, — G such that lim;_o p(t)y
exists and m(y, u) > 0. By conjugating A and p inside their parabolic subgroups, we
may assume that A\ and g commute. Then lim; o \"pu(t)x exists for big enough n and
m(xz, A1) > 0, a contradiction with semistability of z.

If x is polystable, then the stabiliser G, is reductive. Thus it has dimension 0 if and
only if it has no nontrivial one-parameter subgroups. This proves the stable case. [

3 Examples

We assume that k is an algebraically closed field of characteristic 0.

3.1 Relation to convex geometry

Let T = Gin be a torus acting linearly on a finite dimensional vector space V', and
let x € P(V)(k) and z* € V \ {0} a lift of  to V. We consider the linearlisa-
tion O(1) on P(V'). We choose coordinates on which 7" acts diagonally by characters
Aty .. 0 T = Gy If 2% = (21,...,2y), then to* = (a1 (t)z1, . .., an(t)xy).

Let 2 ={a;| z; #0} CTz(T) CTr(T) :=T%(T) ®z R, where I'z(T) is the group
of characters of T'. For A: G,,, — T, we have that m(z, \) = min,ez(A, o). Therefore,
x is semistable if and only if 0 is in the convex hull conv(Z) of Z. We can also check
that z is polystable if and only if 0 is in the relative interior of conv(Z) (relative to
the vector subspace of I'r(T") generated by =) and that x is stable if and only if 0 is
in the interior of conv(E).

More generally, if T is a maximal torus of a reductive group G acting on V', then
x is semistable for the action of G if and only if gx is semistable for the action of T
for every g € G(k).

3.2 Tuples of points in the projective line
Consider the action of SL(2) on (P!)” with the linearisation Op1 (1)K - - K Op1(1). Let

A: Gy, = SL(2): t— <é t91>’ which is a maximal torus of SL(2).

5



Assume first that n = 1 and take z = [a, b] € P}(k). We have that

t—0 t—0 00, Z = 00,

0
lim A(t)z = lim[ta, t~10] = { 27

where oo = [1,0] and 0 = [0, 1] € P!(k). We thus have

1, z= o0,
m(z,A) = {_1 %o

and
1, 2z=0

m(z A7) = {—1 2 #0.

For general n, let (z1,...,2,) € (P))"(k) and denote k = #{i| 2 = oo} and
Il =#{i| z; =0} we have

m((zl,...,zn),)\):Zm(zi,)\):#{i\ zi=o00} —#{i| z £ oo} =2k—n

and
m((z1,...,2), A1) = Zm(zi, A =20 —n.

Thus (z1,...,2,) is semistable for A\(G,,) if and only if k,I < n/2. We have that
(21,...,2,) is semistable for SL(2) if and only if g(z1,...,2,) for all ¢ € SL(2)(k).
Since the action of SL(2) on P! is 3-transitive, this happens if and only if no more than
n/2 of the z; are equal. If n is odd, any semistable point is stable. If n is even, the
strictly semistable points have half of the z; equal to one point of P! and the other half
equal to a different point of P'. The stabiliser of such points is G,, which is reductive.
Hence all strictly semistable points are polystable.

3.3 Grassmannians as an affine GIT quotient

Let V and W be two finite-dimensional vector spaces, and conside the obvious action
of GL(V)) on Hom(V, W). We choose the linearisation of the action corresponding to
the character det: GL(V) — G,,. Choose some coordinates on V and W so that we
write elements of Hom(V, W) with matrix notation. Let T = {diag(t1,...,t,)} be the
maximal torus corresponding to the choice of coordinates.

Let # = (a;;) € Hom(V,W). For A: G, — T, write A(t) = diag(t",...,t"),
where 7 is the dimension of V. We have A(t)z = ("™ a;;), and the limit when ¢ tends
to 0 exists if and only if we have m; > 0 whenever the ith row of x is not 0. In
that case, the Hilbert-Mumford weight is m(\, ) = (det™!,\) = — >, m;. Thus z is
semistable for the action of T if and only if every row of x is nonzero. In that case, x
is stable. The point x is semistable for the action of GL(V) if and only if each gz is
semistable for the action of T, for all g € GL(V')(k). This happens precisely when z is
full rank, and in that case the stabiliser group G is trivial.

Hence the GIT quotient Hom(V, W) / GL(V) is isomorphic to the Grassmannian
Gry,w of n-dimensional subspaces of W. Since all stabilisers are trivial, the GIT
quotient Hom(V, W) J GL(V') equals the stack quotient Hom(V, W)*/ GL(V).
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