
Lie Groups: Fall, 2024

Lecture X:

The Affine Weyl Chambers and the Fundamental

Group

December 14, 2024

We keep our running notation: G is a compact connected Lie group, T
is a maximal torus of G; t is its Lie algebra, W is the Weyl group with its
natural action on T and t. There is a positive definite, symmetric inner
product on t leading to an isomorphism t∗ ∼= t and for each root α, we have
an element xα ∈ t, the element corresponding identified with α under this
isomorphism. That is to say, xα ∈ ker(α)⊥ and α(xα) = 〈α, α〉. The lattice
Λ ⊂ t is the fundamental lattice, meaning that T = t/Λ; the lattice Λ0 is
the translation lattice of the affine Weyl group Waff , generated by the λα;
and Λ∗R is the dual to the root lattice. We have Λ0 ⊂ Λ ⊂ Λ∗R.

The main result in this section is the following:

Theorem 0.1. Let G be a compact Lie group. Then Λ and Λ0 are, as
before, the fundamental lattice of G and the translation lattice for the affine
Weyl group of G, respectively. Then the map T → G induces a surjection
Λ → π1(G) whose kernel is Λ0. Thus, the inclusion T → G induces an
isomorphism Λ/Λ0

∼= π1(G).

1 The Regular Elements Greg ⊂ G

1.1 The Definition and Description of Greg

Definition 1.1. An element g ∈ G is said to be regular if it is contained
in a unique maximal torus. We define by Greg ⊂ G be subspace of regular
elements. For T a maximal torus, we denote by Treg ⊂ T is the set of regular
element of G contained in T . These are the elements that are contained in
no maximal torus except T .
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We define a map c̃ : G× T → G by (g, t) 7→ gtg−1. Since T is abelian, c̃
induces a map

c : G/T × T → G

sending (gT, t) 7→ gtg−1. This map restricts to give a map creg : G/T×Treg →
Greg.

Proposition 1.2. The map creg : G/T × Treg → Greg is a local diffeomor-
phism onto Greg.

Proof. It is clear that c is a smooth map. Any conjugate of an element of
Treg is an element of Grg, Any element g ∈ Greg is conjugate to an element
of t′ ∈ T and clearly t′ ∈ Treg. This shows that the image of creg is Greg.

Let us first compute the differential of creg at points of the form (eT, t0).
Let g(s) be a smooth path with g(0) = e and let t0 ∈ Treg. We compute

(g(s)t0(g(s)−1)′(0) = g′(0)t0 − t0g′(0)

= [g′(0)− t0g′(0)t−1
0 ] · t0

=
[
(1− ad(t0))(g′(0)

]
· t0.

Since t0 is a regular element, the kernel of 1 − ad(t0) is t and the
image of this map is the sum of the root spaces. Thus, the kernel of[
(1−ad(t0))(g′(0))

]
· t0 is t and its image is

(
⊕αi∈RVαi

)
· t0. This shows that

the differential of the map G/T × {t0} at (eT, t0) is injective with image(
⊕αi∈RVαi

)
· t0 . Clearly, the map {e} × Treg → G given by (eT, t) 7→ t has

injective differential at t0 whose image is t · t0, which is a complementary
space to the image of the differential of G/T × {t0}. This proves that the
differential of map G/G×Treg → Greg at (eT, t0) is an isomorphism for every
t0 ∈ Treg.

We have a commutative diagram:

G/T × Treg
creg−−−−→ Greg

(g·)×Id

y ycg
G/T × Treg

creg−−−−→ Greg

where cg is conjugation by g. The vertical maps are diffeomorphisms. It
follows that the differential of creg is an isomorphism at every (gT, t0) ∈
G/T × Treg.

Hence, the map a local diffeomorphism. In particular, Greg is an open
subset of G.
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This map is not a diffeomorphism. But after dividing out by the natural
action of the Weyl group it becomes one.

Lemma 1.3. Define an action of the Weyl group W on G/T × T by

w ∗ (gT, t) = (gw−1T,wtw−1).

These formulas give a well-defined left action of W stabilizing G/T × Treg.
The map c : G/T × T → G is Weyl invariant and the quotient map

creg : ((G/T )× Treg)/W → Greg

is a diffeomorphism

Proof. Let w ∈ W and let w̃, w̃′ ∈ N(T ) be two lifts of w. Then gw̃−1T =
g(w̃′)−1T This shows that the formulas lead to a well-defined map. It is
clearly a left action of W on (G/T )× T that stabilizes (G/T )× Treg.

We claim that the W -action on G/T is a free action. For, if gw̃−1T = gT ,
then w̃−1T = T implying that w̃ ∈ T . Thus, w̃ represents the trivial element
in W . This means that the action of W on G/T × T is a free action and
hence (G/T )× T )reg → ((G/T )× Treg)/W is covering projection.

Since for g ∈ G and t ∈ T , we have gtg−1 = gw̃−1(w̃tw̃−1)w̃g−1, it
follows that the map c : (G/T ) × T → G is W -invariant so that there is an
induced map

c : ((G/T )× T )/W → G.

The restricting we have a map

creg : ((G/T )× Treg)/W → Greg

which is a local diffeomorphism, since before dividing out by the free W -
action it is a local diffeomorphism.

The last thing to check is that this quotient map crg is one-to-one. Sup-
pose that t0, t

′
0 are elements of Treg and g, g′ ∈ G and we have gt0g

−1 =
g′t′0(g′)−1. Then g−1g′ conjugates t′0 to t0. Since these are elements of Treg

it follows that g−1g′ ∈ N(T ). Let w be the element of the Weyl group rep-
resented by g−1g′. Then wt′0w

−1 = t0 and wT = g−1gT so that gwT = g′T .
This proves that w ∗ (g′T, t′0) = (gT, t0).

Lemma 1.4. The complement G \Greg is a finite union of the images in G
of smooth maps from manifolds of dimension 3 less than the dimension of
G.
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Proof. The regular elements in maximal torus are the complement of ∪αÛα.
Thus, the complement of Greg in G is the union over the roots α of the
conjugates of Ûα.

Let n be the dimension of G and k its rank. Then Ûα is a (k − 1)-
manifold and its conjugates are the image of

(
G/N(Ûα)

)
× Ûα → G induced

by (g, u) 7→ gug−1. The normalizer N(Ûα) has dimension k + 2 so that(
G/N(Ûα)

)
× Ûα has dimension n− 3.

Corollary 1.5. For any g ∈ Greg, the inclusion Greg ⊂ G induces an iso-
morphism π1(Greg, g)→ π1(G, g).

Proof. Since the complement of Greg in G has codimension 3, any loop in
G based at g deforms, relative to the base point, into Greg and if a map of
the 2-disk into G has the image of the boundary contained in Greg then the
map deforms relative to its boundary into Greg.

1.2 G/T is simply connected

Proposition 1.6. Let T be a maximal torus of G. Then π1(G/T ) = {1}.

Corollary 1.7. The inclusion T → G induces a surjection π1(T )→ π1(G).

Proof. (of the corollary) Since we have a fibration T → G→ G/T , there is
a long exact sequence of homotopy groups ending in

π1(T )→ π1(G)→ π1(G/T ).

But we have just seen that π1(G/T ) = {e}. The result follows.

Proof. (of the proposition) The inclusion of Greg → G induces an isomor-
phism on fundamental groups. The map (G/T )× Treg → Greg is a covering
space and hence injective on fundamental groups. Fix t0 ∈ Treg. Then the
inclusion G/T × {t0} → G/T × Treg is injective on the fundamental group
based at (eT, t0). Thus, the composed map G/T × {t0} → G is injective on
fundamental groups based at t0.

But fixing a path in T from t0 to e, we see that the map G/T → G given
by gT 7→ gt0g

−1 is homotopic to the map G/T → G given by gT 7→ geg−1 =
e. Thus, any map S1 → (G/T ) × {t0} → G and bounds a disk mapping
to G. Together with the fact that the map π1((G/T × {t0}) → π1(G) is
injective, this proves the result.
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2 The Case of Finite Center

2.1 The Results

Proposition 2.1. Let G be a compact, connected Lie group with finite cen-
ter. Then π1(G) is finite, and thus the universal covering group of G is also
compact.

Proof. The Lie algebra of the center of G is the subspace of t on which all
the roots vanish. Since the center of G is finite, this subspace is trivial.
That is to say, the roots span t∗ over R. Consequently the elements xα
identified with roots α under the isomorphism t∗ ∼= t span t of R. The same
is true of the λα = 2xα/〈α, α〉 On the other hand, by Proposition 3.2 of
the previous lecture, all these elements lie in the lattice Λ0. Thus, Λ0 is a
finitely generated subgroup of t and spans t over R; i.e., Λ0 is a full lattice
in t in the sense that t/Λ0 is a torus.

Since Λ is discrete and Λ0 ⊂ Λ, it follows that Λ/Λ0 is a finite group.
Again by Proposition 3.2 of the previous lecture, the lattice Λ0 is contained
in the kernel of the map Λ→ π1(G). By Corollary 1.7 the map Λ→ π1(G)
is surjective. Hence, π1(G) is a quotient of Λ/Λ0 and hence is finite.

In fact, the next theorem says that Theorem 0.1 holds when the center
of G is finite. That is to say, the map Λ/Λ0 → π1(G) is an isomorphism in
the special case.

Theorem 2.2. Let G be a compact, connected Lie group with finite center.
Let T be a maximal torus and Λ ⊂ t the co-weight lattice. Then the inclusion
T ⊂ G induces an isomorphism Λ/Λ0

∼= π1(G).

Before beginning the proof proper of the theorem we need some prelim-
inary results.

2.2 Preliminary Results

Claim 2.3. Since the center of G is finite, the affine Weyl chambers have
compact closure in t.

Proof. Since the affine Weyl group acts transitively on the set of affine Weyl
chambers, it suffices to prove this result for one affine Weyl chamber. Fix a
fundamental Weyl chamber C0 with walls given by {α1 = 0}, . . . , {αk = 0},
with the αi > 0 on C0. This gives a notion of positive roots and the αi are
the simple roots. Hence, the αi are an R-basis for the subspace spanned
over R by the roots. Since the center is finite, this subspace is all of t. That
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is to say the {αi}i are an R-basis for t. Consider the unique affine Weyl
chamber X contained in C0 whose closure contains 0. Then

X ⊂ ∩ki=1{0 ≤ αi ≤ 1}.

Since, according to results in Lecture 8, the αi form a basis for t, this is a
compact set.

Corollary 2.4. The action of Λ0 on the set of affine Weyl chambers is free.

Proof. If some non-zero element λ ∈ Λ0 stabilized a chamber, then all powers
of λ would stabilize that chamber. This is impossible since the chamber is
contained in a compact subset of t and λ is a non-trivial translation of t.

Claim 2.5. Let T ′ = t/Λ0. The images in T ′ of the affine walls in t divide
T ′ into Weyl chambers, each one of which is the isomorphic image of an
affine Weyl chamber in t. The Weyl group action on t descends to an action
on T ′. The action of W on T ′ is simply transitively on the set of Weyl
chambers of T ′.

Proof. Since the action of Λ0 on the set of Weyl chambers is a free action,
the first statement is immediate. Since Λ0 ⊂ Waff is a normal subgroup
with quotient W , the Weyl group action of t descends to an action on T ′

stabilizing the set of Weyl chambers. Since Waff acts simply transitively on
the set of affine Weyl chambers, W acts simply transitively on the Weyl
chambers of T ′.

2.3 The Action of W on Λ∗R/Λ0

Proposition 2.6. Translation by Λ∗R, the dual lattice to the root lattice,
leaves invariant the set of affine walls and hence Λ∗R acts freely on the set
of affine Weyl chambers. The Weyl group action on t stabilizes Λ∗R. Thus
there is a group Λ∗R oW stabilizing the set of affine Weyl chambers. The
induced Weyl group action on Λ∗R/Λ0 is trivial. The group Λ∗RoW contains
Waff as a normal subgroup.

The analogue of these results hold when we replace Λ∗R by the fundamental
lattice Λ

Proof. Let x ∈ Λ∗R. Then for each root α we have α(x) ∈ Z. Thus, trans-
lation by x takes the wall {α = k} to the wall {α = k + α(x)}, and hence
preserves the set of affine walls. Thus, Λ∗R acts as a group of translations
stabilizing the affine Weyl structure. Since the affine Weyl chambers have
compact closure, this action is a free action on the set of affine Weyl cham-
bers.
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Claim 2.7. The action of the Weyl group W on the quotient Λ∗R/Λ0 is
trivial.

Proof. For any x ∈ Λ∗r and any root α, we show that the image of x under
reflection in the wall {α = k} is congruent modulo Λ0 to x. The reflection
is given by

x 7→ x+ (k − α(x))λα.

The difference of these two elements is (k − α(x))λα, which, for x ∈ Λ∗R, is
an integral multiple of λα and hence an element of Λ0.

Corollary 2.8. The action of W on Λ/Λ0 is trivial.

Proof. Λ ⊂ Λ∗R.

Lastly, we show that Waff is a normal subgroup of Λ∗RoW with quotient
naturally isomorphic to Λ∗R/Λ0. To show that Waff is a normal subgroup we
need only show that conjugation by an element of Λ∗R stabilizes Waff . Let
λ ∈ Λ∗R. Then

λ(λ0w)λ−1 = λλ0(λ−1)ww = λ(λ−1)wλ0w.

Since (λ−1)w ∼= λ−1 modulo Λ0, the result is immediate.
We define a map (Λ∗r oW )/Waff → Λ∗R/Λ0 by λw 7→ [λ] ∈ Λ∗R/Λ0.
Since Λ0 ⊂ Λ ⊂ Λ∗R and Λ is a Weyl invariant lattice, it is clear that

these results restrict to give analogous results for Λ instead of Λ∗R.

2.4 The Chamber Structure for T

Now we pass from T ′ = t/Λ0 to T = t/Λ. Here is the basic result.

Proposition 2.9. Each component of Treg is the diffeomorphic image of a
Weyl chamber in t. The Weyl group action on T preserves Treg and acts
transitively on the components of Treg. The stablilzer of each component of
Treg is isomorphic to Λ/Λ0.

Proof. As we have just seen, the set of affine walls projects to T ′ to give a
wall structure and a chamber structure on which the Weyl group acts simply
transitively on the chambers.

Claim 2.10. Λ/Λ0 acts on T ′ preserving its Weyl chamber structure and
acting freely on the set of chambers.
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Proof. Since Λ ⊂ Λ∗R, for every λ ∈ Λ and every root α, the evaluation
〈α, λ〉 ∈ Z. From this it is clear this that translation by λ stabilizes the set
of affine walls and hence stabilizes the set of affine Weyl chambers and acts
freely on the affine Weyl chambers. Thus, Λ/Λ0 acts freely on the set of
Weyl chambers of t/Λ0 = T ′.

The Weyl chambers of T are isomorphic images of affine Weyl chambers
of t and their union is Treg.

Since W acts trivially on Λ/Λ0, the semi-direct product (Λ/Λ0) oW is
in fact a direct product (Λ/Λ0) ×W . Let C be a chamber of T ′ and let
S(C) ⊂ (Λ/Λ0)×W be the stabilizer of C.

Lemma 2.11. The projection S(C) → (Λ/Λ0) is an isomorphism. The
projection of S(C)→ W is an isomorphism onto the stabilizer in W of the
chamber C that is the image in T of C.

Proof. Since the stabilizer of C is a subgroup of the product, its projection to
either factor is a homomorphism. Since (Λ/Λ0) acts freely on the chambers
of T ′, the function from [λ] ∈ (Λ/Λ0) to chambers in T ′ that sends [λ] to
λC is an injection. Thus, for each (λ] ∈ (Λ/Λ0), where is a unique w ∈ W
such that wλC = C, and hence a unique element ([λ], w) ∈ (Λ/Λ0)×W in
the stabilizler of C with first component [λ]. This proves that the projection
from the stabilizer of C in (Λ/Λ0)×W to (Λ/Λ0) is an isomorphism.

Now consider the projection of S(C) → W . Clearly, any element in
the image of this homomorphism stabilizes the image chamber C of C.
Conversely, suppose that wC = C. Then wC and C are in the same
(Λ/Λ0) orbit, and hence there is λ ∈ Λ such that λwC = C. The ele-
ment ([λ], w) ∈ (Λ/λ0) × W stabilizes C. This proves that the image of
S(C) in W is the stabilizer of C. On the other hand, since (Λ/Λ0) acts
freely on the chambers of T ′ no element S(C) is contained in (Λ/Λ0) and
hence the homomorphism S(C) → W is injective and consequently is an
isomorphism onto its image.

This completes the proof of the proposition.

Corollary 2.12. Under the action of W , the stabilizer of any chamber of
Treg is isomorphic to Λ/Λ0.
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2.5 Proof of Theorem 2.2

We have already established that the map induced by T ⊂ G defines a
surjection Λ → π1(G), and that Λ0 ⊂ Λ is contained in the kernel of this
map. It remain to show that Λ0 is equal to the kernel.

Consider the isomorphism G/T ×W Treg
∼= Greg. The components of Treg

are isomorphic to convex subsets of t and hence are contractible. The Weyl
group acts transitively on the components of Treg and the subgroup stabiliz-
ing any component is isomorphic to Λ/Λ0. Thus, we have an isomorphism

(G/T )×Λ/Λ0
C0 → Greg, (2.1)

where C0 is a component of Treg and Λ/Λ0 is the subgroup of W stabilizing
this chamber.

Since the W action on G/T is free, we can write the space in Ex-
pression (2.1) as fiber bundle over (G/T )/(Λ/Λ0) with fiber C0. Since
C0 is contractible, the fundamental group of this space is identified with
π1((G/T )/Λ/Λ0)). Since G/T is simply connected and the action of Λ/Λ0

on G/T is free, the fundamental group of the quotient is identified with
Λ/Λ0. This is the fundamental group of Greg and hence by Proposition 2.1,
the fundamental group of G. This completes the proof of Theorem 2.2.

Corollary 2.13. Let G be a compact, connected Lie group. Then the fun-
damental lattice Λ is equal to the lattice Λ0 generated by the λα as α ranges
over the roots if and only if G is simply connected In this case, the center
of G is Λ∗R/Λ0.

More generally, for any compact Lie group with finite center, the center
is identified with Λ∗R/Λ and its fundamental group is identified with Λ/Λ0.

3 The Case of General Compact Lie Group

Now we turn to proving Theorem 0.1 for general compact Lie groups.

3.1 The Decomposition

Proposition 3.1. Let G be a compact, connected Lie group. Let Z ⊂ G
be the connected component of the center of G. There is a compact simply
connected group H and a central subgroup A ⊂ Z ×H and an isomorphism
Z ×A H → G. The projection of A→ H is an injection of A onto a central
subgroup of H.

9



Proof. Let z ⊂ t be the Lie algebra of Z, let h be the quotient Lie algebra
g/z. Choose a G-invariant symmetric, positive definite inner product on g.
The adjoint representation G×g→ g acts trivially on z and hence stabilizes
it. Thus, the adjoint action of G also stablilzes z⊥. Thus, [g, z⊥] ⊂ z⊥, and
in particular, z⊥ is an ideal, and hence a sub Lie algebra of g.

In fact, this shows that g = z⊕z⊥ is a decomposition of g as a direct sum
of two Lie algebras. In particular, the Lie algebras z⊥ and g/z are identified.
Let H = G/Z. Since the intersection of the kernels of the roots α : t→ R is
z, it follows that the center of H is finite. Let H be the universal covering
group. By Proposition 2.1 H is a compact, connected Lie group. The Lie
algebra of H is g/z.

The inclusion of h→ g by an isomorphism onto z⊥ induces a map H →
G. We also have the inclusion Z ⊂ G. Since Z is central in G the product
of these two homomorphism defines a map of Lie groups Z × H → G.
By construction it induces an isomorphism on Lie algebras. Since G is
connected, this map is onto with discrete kernel. Since Z ×H is compact,
the kernel is a finite, central subgroup A ⊂ Z×H. Since the map restricted
to Z is injective, A ∩ Z = {0}, meaning that the kernel of the projection
mapping A→ H is injective.

Theorem 3.2. Let G be a compact Lie group. Then Λ and Λ0 are, as
before, the fundamental lattice of G and the translation lattice for the affine
Weyl group of G. Then the map T → G induces a surjection Λ(G)→ π1(G)
whose kernel is Λ0(G). Thus, the inclusion T → G induces an isomorphism
π1(G) ∼= Λ(G)/Λ0(G).

Proof. In the previous lecture we showed that the map Λ → π1(G) is sur-
jective and that Λ0(G) is contained in the kernel. It remains only to show
that Λ0 is equal to the kernel of this map.

First Case: G = Z ×H with H having a finite center.
Let us consider the case when G = Z × H (i.e., when A = {e}). A

maximal torus of G is of the form Z × TH and its Lie algebra is z⊕ tH . We
denote by Λ0(G) and Λ0(H) the lattices in t and tH that are the translation
subgroups of the affine Weyl groups, Waff(G) and Waff(H), of G and H,
respectively. Analogously let Λ(G) Λ(H), an Λ(Z) be the fundamental lat-
tices of G,H, and Z, respectively. In this case the roots of G are trivial on
z and are identified with the roots of H. Thus, Λ0(G) ⊂ z⊥ and is identified
with Λ0(H). Also, we have Λ(G) = Λ(Z)× Λ(H). By Theorem 2.2 for the
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compact group H with finite center, Λ(H)/Λ0(H) = π1(H) Thus,

Λ(G)/Λ0(G) = Λ(Z)× Λ(H)/{0} × Λ0(H)

= Λ(Z)× π1(H) = π1(Z)× π1(H) = π1(G).

This establishes the Theorem 0.1 in the product case.

The General Case.
Now consider G = Z ×A H, with H simply connected, where is a finite

subgroup whose projection to H is an injection onto a central subgroup.
Since Z × H → G is a finite covering, it is an isomorphism on the Lie
algebras. Since H is simply connected, Λ(H) = Λ0(H). Thus, we have

Λ0(G) = Λ0(H) = Λ(H).

We have a commutative diagram:

{0} −−−−→ {0} −−−−→ {0}x x .
x

{0} −−−−→ π1(Z ×H) −−−−→ π1(G) −−−−→ A −−−−→ {0}x x x=

{0} −−−−→ Λ(Z)× Λ(H) −−−−→ Λ(G) −−−−→ A −−−−→ {0}x x x
{0} −−−−→ {0} × Λ(H) −−−−→ {0} × Λ(H) −−−−→ {0}x x x

{0} −−−−→ {0} −−−−→ {0}

The rows are exact. The first column is exact by what we established
in the product case. The last column is obviously exact. A simple diagram
chase shows that in fact the second column is exact, too. Hence,

π1(G) ∼= Λ(G)/Λ(H) = Λ(G)/Λ0(G).

This completes the proof of Theorem 0.1.

3.2 Description of Λ∗R and Λ0 when the center is not finite

Let us begin with the product case: G = Z ×H where Z is a central torus
in G and H has finite center. Then:
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• Λ0(G) = {0} × Λ0(H) is a co-compact attice in h ⊂ g.

• Λ(G) = Λ(Z)× Λ(H)

• ΛR(G) = ΛR(H) acts trivially in z. and is a full lattice in the subspace
of g∗ of elements that annihilate z.

It follows that ΛR(G)∗ = ΛR(H)∗ × z, is the product of a lattice in h
with z, and hence has positive dimension.

The quotient Λ(G)/Λ0(G) is identified with Λ(Z) × Λ(H)/Λ0(H), ane
hence Λ(G)/Λ0(G) ∼= π1(G). In this case, the Weyl chambers are no longer
compact and the action of Λ on the set ha fixed points. The subgroup
ΛZ ⊂ ΛG stablilizes every Weyl chamber.

I will leave the general case Z ×A H as a homework exercise.
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