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1 Introduction

The Baker-Campbell-Hausdorff Theorem asserts the existence of a univer-
sal power series in two variables in a Lie algebra where the terms are sums
iterated brackets of the two variables. For any finite dimensional real Lie
algebra L, this series converges absolutely in some neighborhood of (0, 0) in
L × L. This series defines a local Lie group multiplication on some neigh-
borhood of 0 ∈ L. If L = g for some Lie group G, the exponential mapping
is an isomorphism between this local Lie group on a neighborhood of 0 ∈ g
and a local Lie group determined by a neighborhood of e ∈ G.

In this lecture we prepare the way to prove this theorem by establishing
it in a formal sense, working with power series completions. The homework
carries out the appropriate estimates to show that for a finite dimensional
real Lie algebra L, for V ⊂ L a sufficiently small neighborhood of 0, the
power series converge absolutely.

Let me begin the discussion by pointing out the issue. We write

exp(a+ b) =

∞∑
k=0

(a+ b)k

k!
.

If we are in an algebra where a and b do not commute, then (a + b)k is
the sum of all 2n strings of a’s and b’s of length n. The quadratic term is
a2+ab+ba+b2 and the cubic term is a3+a2b+aba+ba2+ab2+bab+ba2+b3.
It is only when a and b commute that we can rearrange these terms of degree
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k to produce
k∑

m=0

(
k

m

)
ambk−m.

In this case the factorials cancel nicely to yield exp(a) · exp(b) = exp(a+ b).
In particular, in a non-commutative Lie algebra and Lie group we cannot

assert that exp(X)exp(Y ) = exp(X + Y ). Of course, one can keep track of
the switches by replacing Y X by XY − [X,Y ], so it is not unreasonable
that the product can be written as a power series using iterated brackets
of X,Y . Indeed, one for this. Working by induction, one can write write
an explicit formula to any finite order. In fact there is a general formula
which we establish in the problems. But there is a more conceptual way to
approach the question using free Lie algebras and bi-algebra structure on
their universal enveloping algebra. This lecture introduces all this structure.

2 PBW Theorem concerning the Universal En-
veloping Algebra of a Lie Algebra

For this section we fix a field K of characteristic 0. By an associative algebra
we mean an associative K-algebra with unit. Maps of such are K-linear
multiplicative maps sending the unit to the unit. A vector space will mean
a K-vector space. A Lie algebra will mean a Lie algebra over K

The Poincaré-Birkhoff-Witt Theorem (PBW Theorem) says that every
finite dimensional Lie algebra L is a sub Lie algebra of the Lie algebra given
by an associative algebra with the bracket [A,B] = AB − BA. There is a
universal such associative algebra which is called the Universal Enveloping
Algebra of the Lie algebra.

2.1 The Construction

Definition 2.1. By a linear representation of a Lie algebra L on a vector
space V we mean a Lie algebra map ρ : L→ End(V ); that is to say a linear
map that satisfies

ρ([X,Y ]) = ρ(X)ρ(Y )− ρ(Y )ρ(X).

N.B. If K = R (or C) and ρ : G×V → V is a linear representation of a real
(or complex) Lie group G, then the differential at the identity Deρ : g →
End(V ) is a linear representation of the Lie algebra g of G.

2



Let (L, [·, ·]) be a Lie algebra. Consider the tensor algebra

T (L) =
∞∑
n=0

⊗nL

(tensor product over K) with the usual (associative) multiplication defined
by juxtaposition of tensors. This is the free associative algebra generated
by L in the sense that given an associative algebra A and a linear map
ψ : L→ A there is a unique extension of ψ to a map of associative algebras
T (L)→ A.

We define the universal enveloping algebra of L, denoted U(L), to be the
quotient of T (L) by the two-sided ideal generated by (x⊗ y− y⊗ x− [x, y])
for all x, y ∈ L. By construction U(L) is an associative algebra and there is a
natural map L→ U(L) which is a homomorphism of Lie algebras when U(L)
is given the AB−BA Lie bracket coming from its associative multiplication.
Clearly, any linear representation of the Lie algebra L → End(V ) extends
to a unique algebra homomorphism U(L) → End(V ). Indeed, L → U(L)
is the universal solution to the problem of mapping L to the Lie algebra
determined by an associative algebra. For, if we have an associative algebra
A and a linear map ρ : L → A with ρ([X,Y ]) = ρ(X)ρ(Y ) − ρ(Y )ρ(X)
then there is a unique map ρ̂ : T (L) → A extending ρ. Since ρ is a map of
Lie algebras, ρ̂ sends every defining relation for U(L) to zero in A. Hence,
ρ̂ a map of associative algebras U(L) → A. This is the unique map of
associative algebras U(L) → A extending ρ, showing that U(L) has the
universality property stated above.

Of course, we have not yet ruled out that for some non-zero Lie algebra
L, we have U(L) = 0. The PBW Theorem does rule this out for it says
that the natural map L → U(L) is injective. By the universal property of
L→ U(L), any linear representation of L on a vector space V extends to a
map of algebras U(L)→ End(V ). So, if the map L→ U(L) has a non-zero
kernel L0, this would mean that every linear representation of L vanishes on
L0. One special case is that the adjoint representation adL : L → End(L)
extends to an algebra map U(L)→ End(L).

Theorem 2.2. (PBW) Let L be a finite dimensional Lie algebra. The tensor
algebra on the vector space L has a natural increasing filtration on the tensor
algebra T (L) defined by Fn(T (L)) =

∑n
k=0⊗kL. We define an increasing

filtration of U(L) by setting Fn(U(L)) equal to the image of Fn(T (L)) under
the natural map. This is a multiplicative filtration in the sense that the
multiplication induces a map Fn(U(L))⊗ Fm(U(L)) 7→ Fn+m(U(L)). Let

GrF∗ (U(L))) = ⊕∞n=0Fn(U(L)/Fn−1(U(L))
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be the associated graded algebra. The map L → F1(U(L)) induces with a
linear map µL : L → GrF1 (U(L)). The map µL extends to an isomorphism
of associative graded algebras from the polynomial algebra, P (L), on L to
GrF∗ (U(L)). In particular, the natural map µL : L→ U(L) is an injection.

Corollary 2.3. Every (finite dimensional) Lie algebra is a sub Lie algebra
of a Lie algebra given by the AB−BA Lie bracket of an associative algebra.

Remark 2.4. If L is an abelian Lie algebra (meaning the bracket is identi-
cally zero), then U(L) is the quotient of T (L) by the two-sided ideal gener-
ated by xy−yx. In this case U(L) is naturally isomorphic to the polynomial
algebra P (L).

Proof. (of the theorem) We fix a K-basis {Xi}i∈I for L and choose a total
ordering for the basis, or equivalently a total ordering on the index set
I. The images of the Xi in the polynomial algebra P (L) generated by L
are a multiplicative basis. To avoid confusion we use the notation zi for
the element in P (L) determined by Xi, so that P (L) is the algebra of all
polynomials on the {zi}i∈I .

For a finite sequence J = {j1, . . . , jk} of elements of I and i ∈ I, the
notation i � J means that i ≤ jr for all jr ∈ J . We denote the number of
elements in the sequence J by |J |. We denote by zJ the product zj1 · · · zjr
in P (L). Of course, this element depends only on the set J not the ordering
of its elements.

Our goal is to define an action of the Lie algebra L on the vector space
P (L).

σ : L⊗ P (L)→ P (L);

that is to say a map of Lie algebras from L→ End(P (L)) (where End(P (L))
refers to the endomorphism algebra of the vector space P (L)). We do this
by induction on the degree p of the polynomial. Let P≤i(L) denote the
subspace of polynomials of degree ≤ i. The inductive hypothesis for p is
that we have a map σp : L⊗ P≤p(L)→ P≤(p+1)(L) satisfying the following:

A(p): If i � J for |J | ≤ p, then σp(Xi)zJ = zizJ .

B(p): For J with |J | = q ≤ p we have σp(Xi)zJ − zizJ ∈ P (L)q.

C(p): For J with |J | < p,

σp(Xi)σp(Xj)zJ − σp(Xj)σp(Xi)zJ = σp([Xi, Xj ])zJ .
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(Also, σp|P≤(p−1)(L) = σp−1.)

We construct the maps σp by induction on the P≤p(L). For p = 0, it
follows from Condition A(0) that σ0(Xi)1 = zi. Extending by K-linearity
defines σ0 as required since B(0) is equivalent to A(0) and C(0) is vacuous.

Now suppose that for some p ≥ 1 we have defined σp−1 : L⊗P≤(p−1)(L)→
P≤p(L) satisfying Conditions A(p− 1), B(p− 1), and C(p− 1). We define
σp on all monomials zJ with |J | = p. If i � J , invoking Condition A(p) we
define σp(Xi)zJ = zizJ . Otherwise, re-odering J we have J = (k,K) with
k � K and k < i. By Condition A(p − 1) we have zJ = σp−1(Xk)zK . We
invoke Condition C(p) to equate

σp(Xi)zJ = σp(Xi)σp−1(Xk)zK = σp(Xk)σp−1(Xi)(zK) + σp−1([Xi, Xk])zK .

We claim that the right-hand side of this expression is defined by induc-
tion and Condition A(p). To see that, notice by Condition B(p − 1) we
have σp−1(Xi)zK = zizK + w for some w ∈ P≤(p−1)(L) Thus, the term
σp(Xk)σp−1(Xi)zK = σp(Xk)(zizK) + σp−1(Xk)(w) is defined by invoking
Condition A(p) (for the first summand) and the inductive hypothesis (for
the second summad). Of course, σp−1([Xi, Xk])ZK is defined by induction.
By linearity this defines the unique extension of σp−1 to σp to linear map
L ⊗ P≤p(L) → P≤(p+1)(L). We must show this extension satisfies A(p),
B(p), and C(p).

Clearly, by construction Conditions A(p) and B(p) hold for σp. It re-
mains to show that C(p) holds. Consider a multi-index K with |K| = p− 1.
By construction C(p) holds for σp(Xi)σp−1(Xj)zK if j � K and i ≥ j. By
symmetry it holds if i � K and j ≥ i. Thus, the remaining cases are where
K = (k,M) with k � M and k < i, j. To simplify the notation we drop σp
and σp−1 from the notation and simply write the product as a juxtaposition.
By induction and the cases where we already know that C(p) holds we have

XiXjzK = XiXjXkzM = XiXkXjzM +Xi[Xj , Xk]zM

= (XkXiXjzM + [Xi, Xk]XjzM ) +Xi[Xj , Xk]zM

= (XkXjXizM +Xk[Xi, Xj ]zM ) + [Xi, Xk]XjzM

+Xi[Xj , Xk]zM

By the symmetric argument we have

XjXiXkzM = XkXiXjzM +Xk[Xj , Xi]zM + [Xj , Xk]XizM +Xj [Xi, Xk]zM .
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The first equation minus the second one yields:

XiXjzK −XjXiZK =−Xk[Xi, Xj ]zM + 2Xk[Xi, Xj ]zM

+ [[Xi, Xk], Xj ]zM + [Xi, [Xj , Xk]]zM

=(Xk[Xi, Xj ] + [[Xi, Xk], Xj ] + [Xi, [Xj , Xk]])zM .
(2.1)

The Jacobi identity tells us that

[[Xi, Xk], Xj ] + [Xi, [Xj , Xk]] = −[Xk, [Xi, Xj ]] = [Xi, Xj ]Xk −Xk[Xi, Xj ].

Thus, Eequation 2.1 becomes

XiXjzK −XjXizK = [Xi, Xj ]XkzM = [Xi, Xj ]zK .

This completes the proof of property C(p) and hence completes the inductive
proof of the existence of the action σ : L ⊗ P (L) → P (L) with properties
A(p), B(p), C(p) for all p ≥ 0.

By Condition C(p) for all p, the map resulting map σ : L→ End(P (L))
is a map of Lie algebras and hence extends to an action σ : U(L)⊗ P (L)→
P (L). By definition σ(Xi)zM = zizM modulo F|M |P (L) and hence

σ(Xi1 · · ·Xit)zM = zi1 · · · zitzM modulo F|M |+t−1U(L).

We define a vector space map ϕ : U(L) → P (L) be sending a ∈ U(L)
to ϕ(a) = σ(a) · 1. Then ϕ : U(L) → P (L) is compatible with the gradings
by degree. Of course, P (L) is already a graded algebra and hence naturally
isomorphic to its associated graded algebra. The associated graded GrFϕ
induces a map of graded algebras GrFϕ : GrF∗ U(L) → P (L) sending the
element Xi1 · · ·Xit to the monomial zi1 · · · zit . This shows that the map of
graded algebras is surjective.

We claim that the map of graded algebras is also injective. Since every el-
ement of FnU(L) is represented by a sum of monomials of degrees ≤ n in the
Xi. Monomials of degree less than n and any two monomials of degree n that
involve exactly the same Xi each the same number of times, just in different
orders, are equal modulo Fn−1U(L). It follows that FnU(L)/Fn−1U(L) is a
quotient of the vector space generated by the monomials of length n given
by weakly ordered sequences of the elements Xi. Since the weakly ordered
sequences map via GrF (ϕ) to a basis for the homogeneous polynomials of
degree n, it follows that for each n ≥ 1 these monomials of degree n are
linearly independent and hence are a basis for FnU(L)/Fn−1U(L).
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This shows that GrF (ϕ) : GrF (U(L)) → P (L) is an isomorphism of
graded algebras. Hence, ϕ : U(L) → P (L) is a linear isomorphism of the
filtered vector spaces that induces an isomorphism of the associated graded
algebras.

Obviously, the composition of GrFϕ following the natural map L →
F1(U(L)) is the identity from L to polynomials of degree 1 in L. Thus, the
inverse of GrFϕ is an isomorphism of graded algebra P (L) → GrF∗ (U(L))
extending the given map µ : L→ GrF1 (U(L)).

Corollary 2.5. Give P (L) the increasing filtration associated to the grading
by degrees. Let ψ = ϕ−1 : P (L) → U(L). Then ψ is a filtered, linear
isomorphism whose associated graded

GrF (ψ) : P (L)→ GrF (U(L))

is an isomorphism of graded algebras.

Remark 2.6. This result should not be surprising: We saw that if L is
abelian the U(L) ∼= P (L) as graded algebras. Also, the identity xy − yx =
[x, y] is a correction of the commutative relation xy − yx = 0 by a term of
lower order. Thus, it is not too surprising that these two relations induce
isomorphic graded algebras. Still it is not completely formal since one makes
essential use of the Jacobi identity in the proof.

2.2 The Bi-Algebra Structure on U(L) and Its Primitive El-
ements

Now we introduce the structure that allows us to tell when an element in
U(L) lies in L.

Not only is U(L) an associative algebra, it also has a natural co-multiplication.
We define a map c : L→ U(L)⊗ U(L) by setting c(x) = x⊗ 1 + 1⊗ x.

Proposition 2.7. c extends uniquely to an algebra map c : U(L)→ U(L)⊗
U(L). The map c is an algebra homomorphism that is co-associative and
co-commutative and has a co-unit. Thus, by definition U(L) with this co-
multiplication is a co-associative, co-commutative bi-algebra with a co-unit.

Proof. Direct computation shows that c(x)c(y)− c(y)c(x) = c([x, y]) for all
x, y ∈ L. Thus, c : L → U(L) ⊗ U(L) is a map of Lie algebras from L to
the AB − BA Lie algebra structure on U(L) ⊗ U(L). Thus, c extends to
an algebra map c : U(L) → U(L) ⊗ U(L). Since c(x) is symmetric under
interchange of factors for all x ∈ L, the image of c is symmetric under this
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interchange. This is the definition of a co-commutative co-multiplication.
Similarly, for all x ∈ L we have

(1⊗ c) ◦ c(x) = x⊗ 1⊗ 1 + 1⊗ x⊗ 1 + 1⊗ 1⊗ x = (c⊗ 1) ◦ c(x),

from which it follows that (1⊗ c) ◦ c = (c⊗ 1) ◦ c on all elements of L. Since
L generates U(L) as an algebra and c is an algebra map, it follows that this
equation holds for all u ∈ U(L), which is the definition of a co-associative
co-multiplication. Finally, the co-unit of c is the map U(L) → K of unital
algebras that sends x ∈ L to zero for all x ∈ L.

Definition 2.8. An element x ∈ U(L) is primitive if c(x) = x⊗ 1 + 1⊗ x

Lemma 2.9. The primitive elements form a real vector subspace of U(L)
containing L ⊂ U(L).

Proof. Exercise.

We define the standard co-multiplication c0 on the polynomial algebra
P (V ). It is characterized by c0(v) = v⊗1+1⊗v and c0 is a homomorphism
of associative, commutative algebras. It is a homework problem to show the
following:

Claim 2.10. In the polynomial algebra P (V ) (over a field of characteristic
zero) the only primitive elements for the standard co-multiplication are the
elements on V .

There is an analogous proposition for U(L).

Proposition 2.11. The primitive elements in U(L) for the co-multiplication
are exactly the elements in L.

Proof. We define an increasing filtration Fn[U(L)⊗U(L)] =
∑

i+j≤n Fi(U(L))⊗
Fj(U(L)). Then c : U(L)→ U(L)⊗U(L) preserves the filtration and hence
induces a co-multiplication c′ = GrF (c) on GrF∗ (U(L)), which is a homo-
morphism of algebras with every element in degree 1 being primitive. Thus,
under the identification of GrF∗ U(L) with P (L) the co-multiplication c′ be-
comes the standard co-multiplication c0 on polynomials.

Suppose that a ∈ U(L) is primitive and non-zero. Since no multiple of
the identity is primitive, there is n ≥ 1 such that a ∈ Fn(U(L)) and has
non-trivial projection to Fn(U(L))/Fn−1(U(L)). We shall show that n = 1.
Let a ∈ Fn(U(L))/Fn−1(U(L)) be the image of a. Since a ∈ GrF∗ (U(L)) is
primitive, under the identification of GrF∗ (U(L)) with P (L), the element a
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is identified with a primitive element for c0. It follows from the previous
claim that a = 0 unless n = 1. But by construction a 6= 0. This implies that
n = 1. Thus, a is the sum of an element in L and a multiple of the identity:
a = x+λ1 where x ∈ L and λ ∈ K. But c(x+λ1) = x⊗ 1 + 1⊗ x+λ1⊗ 1,
so that this element is primitive if and only if λ = 0 and consequently, if
and only if a ∈ L.

3 Free (Non-Associative) Algebras and Free Lie
Algebras

Definition 3.1. By an algebra (over K) we mean a K-vector space V with a
multiplication, which is a K-linear map µ : V ⊗K V → V . A map of algebras
is a K-linear map preserving the multiplications.

Let S be a set. (We are primarily interested in the case when S has
cardinality 2.) By induction on i ≥ 1 we define sets Si. We begin with
S1 = S. Given Si for i < n. we define Sn =

∐
i+j=n;i,j≥1 Si × Sj . We can

view Sn as all expressions that are a composition of ordered binary products
of pairs of elements. Fox example, S2 = (x · y) for x, y ∈ S1. S3 has two
types of elements: those of the form (x1 · (x2 · x3)) and those of the form
((x1 · x2) · x3) for x1, x2, x3 ∈ S. S4 has the following types of elements:

S1 × S3 : (x1, ((x2, x3), x4)), (x1, (x2, (x3, x4)))

S2 × S2 : ((x1, x2), (x3, x4))

S3 × S1 : (((x1, x2), x3), x4), ((x1, (x2, x3)), x4)

We set S∞ =
∐∞
n=1 Sn, and we denote by F (S) to be the K-vector space

generated by S∞. The multiplication of x ∈ Si and y ∈ Sj is the element
(x, y) ∈ Si×Sj ⊂ Si+j . We extend this multiplication on the basis elements
S∞ by bilinearity to a multiplication on F (S). The freeness of F (S) is
captured in the following property.

Lemma 3.2. Given an algebra A and a set function ψ : S → A, There is a
unique extension of the function of ψ to a map of algebras ψ̂ : F (S)→ A.

Proof. Exercise.

The grading on S∞ induces a grading on F (S) making F (S) a graded
algebra.
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Definition 3.3. Let S be a set. The free Lie algebra generated by S, denoted
FL(S), is the quotient of F (S) by the two-sided ideal generated by Q(a.a) =
a · a and J(a, b, c) = a · (b · c) + c · (a · b) + b · (c · a) for a, b, c ∈ S. The Lie
bracket on FL(S) is induced from the multiplication on F (S). Since the
relations are homogeneous with respect to the grading on F (S), there is an
induced grading on FL(S) that makes it a graded Lie algebra.

We have imposed by fiat the skew symmetry and Jacobi identity on the
multiplication in FL(S) (and the multilinearity over K comes from the fact
that F (S) is an algebra over K). Thus, FL(S) is indeed a Lie algebra over
K. The proper way now to write an element of this quotient is to replace
(a · b) by the Lie bracket [a, b]. For example, (a · ((b · c) · d)) is written as
[a, [[b, c], d]]. Then each each element of S∞ is a legitimate expression in
the Lie algebra generated by FL(S). The fact that it is a free Lie algebra
generated by S is the content of the next proposition.

Proposition 3.4. Given a Lie algebra L and a set function ϕ : S → L, there
is a unique extension of ϕ to a homomorphism of Lie algebras F (ϕ) : FL(S)→
L.

Proof. First use the universal property of F (S) to define an algebra map
F (ϕ) : F (S) → L extending S → L and sending the product in F (S) to
the bracket in L. Then notice that the generators of the two-sided ideal
Q(a, a) and J(a, b, c) map to zero in L since L is a Lie algebra. That im-
plies that F (ϕ) factors through the quotient FL(S), and thus defines a Lie
algebra homomorphism L(ϕ) : FL(S)→ L. Uniqueness of the is clear since
S generates F (S) and hence FL(S).

Demote by T (S) the tensor algebra on the K vector space with basis S.
As we have seen this is the free associative algebra (with unit) generated by
S meaning that if A is any associative algebra with unit and S → A is a set
function, then there is a unique unital algebra map T (S)→ A extending the
given map S → A. It has a multiplicative grading by setting the elements
of S to be homogeneous of degree 1. This is the usual grading on T (S)

Proposition 3.5. Let S be a set.

1. The inclusion S → T (S) extends uniquely to a map of Lie algebras
ψS : FL(S) → T (S), where the Lie algebra structure on T (S) is the
XY − Y X bracket T (S). This map preserves the gradings.

2. The map ψS extends uniquely to a map of associative algebras

ψ̂S : U(FL(S))→ T (S).
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This map also preserves the gradings

3. The map ψ̂S is an isomorphism of graded, associative algebras and
identifies the universal enveloping algebra of FL(S) with the tensor
algebra T (S).

Proof. By the universal property of the free Lie algebra FL(S), the in-
clusion of S → T (S) extends uniquely to a Lie algebra homomorphism
ψS : FL(S) → T (S), when T (S) is equipped with the XY − Y X bracket.
By the universal property of U(FL(S)), this map extends uniquely to an
algebra homomorphism ψ̂S : U(FL(S)) → T (S). In particular, ψ̂S is the
identity on the natural inclusions of S into U(FL(S)) and into T (S).

On the other hand, the universal property of T (S) implies that the in-
clusion S → U(FL(S)) extends to an algebra homomorphism ρS : T (S) →
U(FL(S)). Both ρS ◦ ψ̂S and ψ̂S ◦ ρS are the identity on S and hence by
the uniqueness part of the universal properties of T (S) and U(FL(S)) both
compositions are the identity. Thus, they are inverse isomorphisms and each
preserves the gradings.

4 Formal completions of T (S) and FL(S)

The reason for introducing the completions of the tensor algebra T (S) and
the Lie algebra FL(S) is so that our power series will have meaning, with-
out having to worry about convergence issues. In this algebra context no
convergence is possible without completing.

We give U(FL(S))⊗ U(FL(S)) the grading defined by

(U(FL(S)⊗ U(FL(S)))n = ⊕i+j=nU i(FL(S))⊗ U j(FL(S))

then the co-multiplication preserves the grading. Hence, image of this co-
multiplication transported by the isomorphism ψ̂ : U(FL(S)) → T (S) de-
fines a co-multiplication that preserves the grading on T (S).

According to Proposition 2.11, the co-multiplication of U(FL(S) has as
primitives FL(S) ⊂ U(FL(S)). Taking the image of this co-multiplication
in T (S), we have:

Corollary 4.1. There is a co-associative, co-commutative co-multiplication
c′ on T (S) making it a bi-algebra with a co-unit. The primitive elements are
exactly FL(S) ⊂ T (S). The co-multiplication is compatible with the grading,
so that an element a1+· · ·+ak ∈ T (S) with ai ∈ T i(S) is contained in FL(S)
if and only if each ai ∈ FL(S).
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4.1 The Completions T̂ (S) and F̂L(S)

Define a decreasing filtration Fn(T (S)) = ⊕k≥nT k(S). This is a decreasing
filtration given by the powers of the ideal F 1(T (S)). We form the completion
T̂ (S) of T (S) with respect to the powers of this ideal. It is identified with
T̂ (S) =

∏∞
n=0 T

n(S) with the topology being the product topology of the

discrete topologies on each factor. We let F̂L(S) be the closure of FL(S) ⊂
T (S) in T̂ (S). Then

F̂L(S) =

{ ∞∏
n=0

FLn(S)

}
.

with the product topology.

Corollary 4.2. Let Bn(S) =
∏
i+j=n T

i(S)⊗T j(S) and set B̂(S) =
∏
n≥0B

n(S)
with the product topology. The co-multiplication in Corollary 4.1 induces a
continous map ĉ : T̂ (S)→ B̂(S) sending

∑
n an to

∑
n c
′(an). Let δ′(

∑
n an) =∑

n an ⊗ 1 and δ′′(
∑

n an) =
∑

n 1 ⊗ an. These are continuous maps of

T̂ (S)→ B̂(S). Then an element
∑

n an is primitive for ĉ, i.e.,

ĉ(
∑
n

an) = δ′(
∑
n

an) + δ′′(
∑
n

an),

if and only if an ∈ FL(S) for all n ≥ 1; i.e., if and only if
∑

n an ∈ F̂L(S).

Proof. All of this is immediate from the fact that the only primitive elements
in Tn(S) are the elements of FL(S) ∩ Tn(S).

The filtration F on T (S) induces a filtration on T̂ (S), which we also
denote by F . The subspace F1(T̂ (S)) is the maximal ideal of T̂ (S). For
x ∈ F1(T̂ (S)), set e(x) =

∑
n≥1 x

n/n! and `(x) =
∑

k≥1(−1)kxk/k. These

power series are well defined on the maximal ideal F1(T̂ (S)), and take values
in T̂ (S). The reason is that for x ∈ F1(T̂ (S)), for each n ≥ 1, all but finitely
many of the terms in the series for e or ` vanish modulo Fn(T̂ (S)). Thus,
the infinite sum represents a well-defined element of the inverse limit T̂ (S).

Now for t ∈ (−1, 1) the power series for e(t) and `(t) are convergent
and converge to exp(t)− 1 and log(1 + t). Thus, for t sufficiently close to 0
these are inverse functions: we have e(`(t)) = t and `(e(t)) = t. For each n,
this leads to finite number algebraic equations for the coefficients terms of
degree n of the composition. These manipulations are valid for composing
the power series for e and ` in either order applied to x ∈ F1(T̂ (S). The
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reason is that, since all homogeneous terms of `((x) and e(x) are rational
coefficients times a power of x, they commute with each other and with x.
Hence, the same manipulations can be carried out for e(x) and `(x). Thus,
for any x ∈ F1(T̂ (S)) we have `(e(x)) = x and and e(`(x)) = x. Hence, for
any x ∈ F1(T̂ (S)) we have log(exp(x)) = x and exp(log(1 + x)) = 1 + x.

4.2 Case S = {X, Y } and the exponential and logarithm series

Now we specialize to the case when S = {X,Y }. Consider

exp(X) =
∑
n≥0

Xn

n!
; exp(Y ) =

∑
n≥0

Y n

n!
.

These formal power series are elements in T̂ (S) and as is their product

∑
n≥0

 ∑
i+j=n

XiY j

i!j!

 .

Now consider

log(exp(X)exp(Y )) =
∑
m≥1

(−1)m−1

m

∑
r,s≥0

XrY s

r!s!

m

.

Working modulo Fn(T̂ (S)) all but finitely many of the terms vanish
and thus there is no issue about convergence of the rearrangement of the
coefficients modulo Fn(T̂ (S)) for each n. Applying the discussion above in
this context we have

exp(log(exp(X)exp(Y ))) = exp(X)exp(Y ).

Clearly

exp(log(exp(0)exp(X))) = exp(log(exp(X)exp(0))) = exp(X),

and exp(X)exp(−X) = 1 so that

exp(log(exp(X)exp(−X))) = exp(log(1)) = 1.

Lastly, we claim that letting S = {X,Y, Z}

exp(X)(exp(Y )exp(Z)) = (exp(X)exp(Y ))exp(Z)

in T̂ (S). The terms from the left-hand side are of the form
(Xn

1 Y
n2 )(Zn3 )

n1!n2!n3!
,

whereas the terms from the right-hand side are
Xn

1 (Y
n2Zn3 )

n1!n2!n3!
. Since T̂ (S) is

associative, these terms are equal.

13



4.3 The Hausdorff Series

Theorem 4.3. (Hausdorff Series) The series H(X,Y ) = log(exp(X)exp(Y ))

in T̂ (S) actually lies in F̂L(S).

Proof. We have the image ĉ : T̂ (S) →
∏
nBn where Bn =

∑
i+j=n T

i(S) ⊗
T j(S) given by ĉ(x) =

∑
n c(xn) where c(xn) ∈ Bn. Because the only

primitive elements in T (S) for c are elements on FL(S), it follows that

ĉ(x) = x⊗ 1 + 1⊗ x if and only if x ∈ F̂L(S), or equivalently xn ∈ FLn(S)
for all n ≥ 1. To prove the theorem we must show that ĉ(H(X,Y )) =
H(X,Y )⊗ 1 + 1⊗H(X,Y ).

Notice that δ′(x) and δ′′(x) commute and an element x is primitive if
and only if ĉ(x) = δ′(x) + δ′′(x).

Since ĉ is an algebra map, for any x in the maximal ideal, we have

ĉ(exp(x)) = exp(ĉ(x))

and for any y congruent to 1 modulo the maximal ideal we have

ĉ(log(y)) = log(ĉ(y)).

Since X,Y ∈ FL(S), they are each primitive elements of T̂ (S). Thus,

ĉ(exp(X)) = exp(X ⊗ 1 + 1⊗X).

Since exp(X ⊗ 1) and exp(1⊗X) commute we have

ĉ(exp(X)) = exp(X ⊗ 1)exp(1⊗X)

= (exp(X)⊗ 1)(1⊗ exp(X))

= δ′(exp(X))δ′′(exp(X)).

Elements x ∈ T̂ (S) congruent to 1 modulo the maximal ideal and sat-
isfying ĉ(x) = δ′(x) ⊗ δ′′(x) are called group-like. It is an easy exercise to
show that if x, y in T̂ (S) are group-like, then so is xy. We have just seen
that the exponential map sends primitive elements in F1(T̂ (S)) to group-like
elements.congruent to 1 modulo F1(T̂ (S)).

Claim 4.4. log sends group-like elements congruent to 1 modulo F1(T̂ (S))
to primitive elements in F1(T̂ (S)) and exp and log are inverse isomorphisms
between these primitive elements and group-like elements.

14



Proof. Suppose that x is a group-like element congruent to 1 modulo F1(T̂ (S)).
Then

ĉ(log(x)) = log(ĉ(x)) = log(δ′(x)(δ′′(x)).

Since δ′(x) and δ′′(x) commute we have

log(δ′(x)(δ′′(x)) = log((δ′(x)) + log(δ′′(x))

= log((x⊗ 1) + log(1⊗ x))

= log(x)⊗ 1 + 1⊗ log(x),

so that log(δ′(x)(δ′′(x)) is a primitive element of F1(T̂ (S)).
We already know that log and exp are inverses of each other.

We now see that X,Y are primitive and hence exp(X) and exp(Y ) are
group-like. This means that exp(X) · exp(Y ) is group-like. Consequently,
H(X,Y ) = log(exp(X) · exp(Y )) is primitive. By Corollary 4.2 it follows

that H(X,Y ) ∈ F̂L(S) ⊂ T̂ (S).

The direct computations above translate to H(0, X) = H(X, 0) = X,
proving that 0 is the identity for the multiplication defined by H. Also,
H(X,−X) = 0, which means that −X is the inverse of X.

Claim 4.5. S = {X,Y, Z} we have H(X,H(Y,Z)) = H((X,Y ), Z).

Proof. We have the following expressions:

H(X,H(Y,Z)) =
∑
r,s,t

Xr

r!

(Y sZt

s!t!

)

H(H(X,Y ), Z) =
∑
r,s,t

(XrY s

r!s!

)Zt
t!
.

Since T̂ (S) is an associative algebra, these expressions are equal.

This proves the formal version of associative law for H.

5 Appendix: Algebraic Fondations

5.1 I-adic Topology and Completions

Suppose that we have an algebra A and an ideal I ⊂ A. We define the I-adic
topology on A by taking as the open neighborhoods 0 as In (and then the
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open neighborhoods of a ∈ A as a + In). We can then form a complete
algebra with respect to this topology by setting Â = limnA/I

n with the
natural homomorphisms πn,k : A/In → A/Ik for k < n. By the definition

of (projective) limits there are homomorphisms π̂n : Â → A/In compatible
with the πn,k in the sense that πn,k ◦ π̂n = π̂k. Furthermore, for any algebra
B a system of compatible homomorphisms B → A/In is equivalent to a
homomorphism B → Â The ideal I generates an ideal Î of Â, namely all
elements in the kernel of π̂1 : Â→ A/I.

The algebra Â is complete with respect to the Î-adic topology in the sense
that any sequence of elements xn that is eventually constant modulo Îr for
each r > 0 converges to a point of Â in the Î-adic topology. If ∩n>0I

n = 0,
the the natural homomorphism A → Â is an injection with dense image in
the I-adic topology. In this case Â is the completion of A with respect to
the I-adic topology.
Example (i). For a prime p, the p-adic integers Ẑp is the completion of Z
with respect to the p-adic topology where the ideal is the prime ideal (p)
generated by p. An element of this ring can be written uniquely as a power
series ∑

n≥0
anp

n,

where the integers an range from 0 to p − 1. More generally, any series∑
n≥0 anp

n for arbitrary integers an determines an element of Ẑp.
Example (ii). Let K[x] be a polynomial ring over a field and let I = (x)
be the ideal generated by x. Then the I-adic completion of K[x] is the ring
of formal power series in one variable K[[x]].
Example (iii). Let K[x1, . . . , xn] be the polynomial ring in n variables over
a field and let I = (0) be the ideal of all polynomials vanishing at 0. This is
the ideal generated by (x1, . . . , xn). The I-adic completion of K[x1, . . . , xn]
is the formal power series ring on n variables K[[x1, . . . , xn]]. This is thought
of as the function field of a formal neighborhood of 0 in affine n-space.
Example (iv). Let A = ⊕∞n=0A

n be a graded ring or algebra, meaning that
the multiplication is homogeneous with respect to the grading in the sense
that m : Ak ⊗ A` → Ak+`. Then let I = ⊕n≥1An be the ideal of element
of positive degree. Clearly, Ik is the ideal of elements of degree at least k
and ∩∞k=1I

k = 0. The completion Â with respect to the I-adic topology is∏∞
n=0A

n with the obvious multiplication. Elements in this ring are formal
sums

∑∞
n=0 an, with an of degree n and the multiplication is the natural one

on these infinite series.
Example (v). There is a generalization of Example (iv). Instead of a
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graded ring or algebra we consider a ring or algebra A with an increasing
filtration

F0(A) ⊂ F1(A) ⊂ · · · ⊂ Fn(A ⊂ · · ·

that is required to be multiplicative in the sense that m : Fk(A)⊗ F`(A)→
Fk+`(A). Then we can form the associated graded algebra

GrF (A) = ⊕∞n=0Fn(A)/Fn−1(A)

with the induced graded multiplication. We can then form the completion
of this graded ring as in Example (iv).

5.2 Bi-Algebras

Recall that if A and B are associatve unital algebras then so is A ⊗ B. Its
unit is the tensor product of the units of A and B and the multiplication is
given by (a⊗ b) · (c⊗ d) = ac⊗ bd.

Definition 5.1. Let A be an associative algebra over a field K with mul-
tiplication m with unit 1. A bi-algebra structure on A is in addition a
comultiplication

c : A→ A⊗A

that (i) is a (unital) algebra homomorphism and (ii) has a co-unit, which is
a K-linear map εA→ K satisfying

K ⊗A −−−−→
IdA⊗ε

A⊗A −−−−→
m

A

is the natural identification of K⊗A→ A, and analogously for m◦(ε⊗IdA).

Equivalently, we can suppose that c : A → A ⊗ A is a co-algebra with
co-unit and m : A⊗A→ A is an associative algebra with unit and a homo-
morphism of co-unital co-algebras.

We say that the bi-algebra is co-commutative if T ◦ c = c where T : A⊗
A → A ⊗ A is the interchange of factors. We say that the bi-algebra is
co-associative if

(1⊗ c) ◦ c = (c⊗ 1) ◦ c.

Definition 5.2. In a co-algebra of a bi-algebra an element x is primitive if
c(x) = x⊗ 1 + 1⊗x. In a co-algebra or bi-algebra an element is group-like if

c(x) = x⊗ x.
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Example (i). Let P (V ) be the polynomial algebra on a finite dimensional
vector space over a field of characteristic 0. The usual multiplication of
polynomials makes this an associative algebra. Define c : V → V ⊗ V by
c(v) = v ⊗ 1 + 1 ⊗ v. Since V generates P (V ) as an algebra there is at
most one algebra map c0 : P (V ) → P (V ) ⊗ P (V ) extending c. Since P (V )
is the free commutative and associative algebra generated by V and since
P (V ) ⊗ P (V ) is also a commutative, associative algebra, there is a unique
extension of c to a co-algebra map

c0 : P (V )→ P (V )⊗ P (V ).

Its value on an nth power is given by

c0(v
n) =

n∑
k=0

(
n

k

)
vk ⊗ vn−k.

This is the standard co-multiplication on P (V ). It is an easy exercise to
show it makes a co-commutative, co-associative bi-algebra.

It is an exercise to show (since K has characteristic 0) that every homo-
geneous polynomial of degree n is a sum of nth powers.

Corollary 5.3. For V a finite dimensional vector space over a field of char-
acteristic the only primitive elements in P (V ) the usual co-multiplication are
the homogeneous polynomials of degree 1.

Proof. Since c0 is homogeneous with respect to degree, if x is a primitive
element then each of its homogeneous terms is. Thus, it suffices to assume
that x is homogeneous, say of degree n. Polynomials of degree 0 are elements
of K and since c0(1) = 1 ⊗ 1, there are no primitive elements of degree 0.
Suppose that x is non-zero and homogeneous of degree n ≥ 1. Then x =∑

i λiv
n
i and hence the terms of degree (1, n−1) in c(x) are

∑
i nλivi⊗v

n−1
i

and the product of this term in P (V ) is nx. Thus, this term is non-zero.
Hence, x is not primitive if n 6= 1. Lastly, if x is homogeneous of degree 1
then x ∈ V and c0(x) = x⊗ 1 + 1⊗ x, so that x is primitive
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