
Lie Groups: Fall, 2024

Lecture VII:

Compact Lie Groups

October 24, 2024

Fix for this lecture a non-trivial, compact, connected Lie group G with
Lie algebra g. We begin with a basic lemma.

Lemma 0.1. The component group of any compact Lie group is finite.

Proof. Since a Lie group is a manifold and hence locally connected, each
connected component of G is an open subset of G. Were there infinitely
many connected components, this would give an infinite covering by disjoint
open sets, contradicting compactness.

1 Linear Actions of S1 and tori

1.1 Complex Actions of S1

Let S1×V → V be a finite dimensional, complex linear action. Let R→ S1

be the exponential map t 7→ exp(it). The induced map on Lie algebras sends
1 ∈ R to some A ∈M(n×n,C). According to the Jordan canonical form, we
can find a basis of V in which A = Ass+Anil with Ass is diagonalizable and
Anil is a strictly upper trianglar matrix commuting with Ass. Let λ1, . . . , λn
be the diagonal entries of Ass. Since exp(2πA) is trivial, we see that each
λj is of the form inj for some integers nj .

Since exp(itA) and exp(itAss) are periodic of period 2π and since Ass
and Anil commute, it follows that exp(itA) = exp(itAss)exp(itAnil), so that
(itAnil) is also periodic of period 2π. On the other hand, since Anil is strictly
upper triangular, some power of Anil is identically zero. Thus, exp(itAnil)
a finite polynomial expression in itAnil whose constant term is Id and the
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linear term is itAnil. The only periodic polynomials of t are constant poly-
nomials.. This implies that Anil = 0 and A = Ass is diagonalizable with
eigenvalues inj for integers nj .

Definition 1.1. A character of S1 is a homomorphism S1 → S1. The group
of characters of S1 is naturally identified with Z given by θ 7→ θn.

A representation of S1 on a complex vector space of dimension n is, up
to conjugation, given by n characters. That is to say there is a basis in
which the action of given by diagonal matrices, and each diagonal entry is
a character of S1.

1.2 Complex Actions of a Torus

Definition 1.2. By a torus we mean a compact, connected abelian Lie
group T . The Lie algebra t of T is an abelian Lie algebra and hence the BCH
series is H(X,Y ) = X+Y . This converges on all of t× t and defines a group
structure of t which is the usual addition. The exponential map is a Lie group
map from t with its addition to T and is a local diffeomorphism. Hence,
the kernel of exp is a discrete subgroup Λ of t and the exponential mapping
induces an isomorphism from t/Λ→ T . Since T is compact, Λ ⊂ t must be
a lattice; i.e., a discrete subgroup generated by an R-basis {a1, . . . , an} of t,
where n = dim(t).

Remark 1.3. The circle is a one-dimensional torus. Any torus is isomorphic
as a Lie group to a finite product of circles with the product Lie group
structure. (This is a homework problem.)

The results about complex actions of S1 generalize to any torus T .

Definition 1.4. A character of a torus T is a homomorphism T → S1. If
we write T = t/Λ then a character of T is a linear map t → R that sends
Λ → Z. The group of characters is the dual group Λ∗ = Hom(Λ,Z), to
Λ. The formula for the character T → S1 associated to the linear function
α : t→ R sending Λ→ Z is

exp(v) 7→ exp(2πiα(v)).

Let T × V → V be a complex linear action. We write the torus as a
product of commuting circles. LetX1, . . . , Xk be the elements of t generating
these circles as before. We have seen that each Xi is diagonalizable. Since
the Xi commute, they have common eigenspaces. This means that we can
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find a basis for V , {e1, . . . , en} so that T stabilizes each of the complex lines
Cei. The action of T on Cei is a by a character of T , and up to conjugation,
an action of T on an n-dimensional vector space is the same as n characters
of T .

Definition 1.5. The characters of this action are the weights of the repre-
sentation of T on V .

1.3 Real Actions

Now let V be a finite dimension real vector space S1 × V → V be a real
linear action. We can complexify the action and diagonalize the result:

V ⊗R C = E0 ⊕j∈I Enj

where the action on E0 is trivial and the action of the Enj are given by
eit · w = einjtw for w ∈ Enj a non-zero integer.. Since the action is real, we

have Enj = E−nj . In particular, E0 is real, meaning that E0 = (E0∩Rn)⊗R
C, and each Enj ⊕ E−nj is real. The action of S1 on (E0 ∩ Rn) is trivial.
The intersection of Enj ⊕E−nj with the real subspace projects equivariantly
and isomorphically onto each of Enj and E−nj . Depending on the choice of
which subspace we project onto, we see that the action of S1 on this real
subspace is given by eit rotates by either eint or e−int. (These two actions
are equivalent by the isomorphism eit 7→ e−it of S1.)

This generalizes to tori. Any real linear action of a torus T on V is a
direct sum of a trivial action and actions on two-dimensional spaces given
by a character (i.e., a homomorphism) αj : T → S1 followed by the standard
action of S1 on R2. As in the case of the circle the character is only defined
up to inverse. The weights of the real action are defined to be {α±1j }j . In
fact, these are the weights of the complexification of the representation.)

From now on we view characters of the torus T = t/Λ as Hom(Λ,Z)
and write characters additively instead of multiplicatively.

2 Maximal Tori

2.1 Definition and Existence

Proposition 2.1. G contains a positive dimensional torus.

Proof. Since G is positive dimensional, its Lie algebra is non-trivial. For
X 6= 0 in t. Then exp(tX) is a non-trivial one-parameter subgroup A ⊂
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G. The group A is connected, positive dimensional and abelian. So is its
closure, which is a Lie subgroup according to Theorem 3.10 of Lecture 2.
By definition, this sub group is a positive dimensional torus.

Corollary 2.2. There is a positive dimensional torus in G that is not prop-
erly contained in any other torus in G.

Proof. We have seen that G contains a positive dimensional torus. Let T
be a torus of maximal dimension in G. Then T is not properly contained
in any other torus in G. For, if T is properly contained in a torus T ′, then
since T ′ is connected, the Lie algebra of T ′ is strictly larger than that of T .
This means that the dimension of T ′ is larger than the dimension of T .

Definition 2.3. Any torus satisfying the conclusion of the previous claim
is a maximal torus.

2.2 Generators for Abelian Lie Groups

Definition 2.4. Let A be an abelian Lie group. An element g ∈ A is said
to generate the A if the cyclic group generated by g is dense in A.

Corollary 2.5. Every torus has a generator.

Proof. Let T be a torus written as V/Λ, a vector space modulo a lattice Λ.
A codimension-1 subtorus is determined by a linear surjection π : V → R
that induces πZ : Λ → Z. The subtorus is the quotient of the kernel of π
modulo the lattice by a lattice ker(πZ). There are only countably many such
maps and subtori.

Consider the union over the countable collection of all these maps of
π−1(Q) ⊂ V . This is a nowhere dense subset D̃ invariant under the action
of Λ. Let D be the image in T of D̃. It is nowhere dense in T . For any
g 6∈ D, no positive power of g is contained in a codimension-1 subtorus.
Let C be the closure of {gn}∞n=1. This is an abelian sub Lie group of G.
The component group of C is finite and hence some positive power of g is
contained in the component of the identity C0 of C. Being a connected,
abelian Lie group C0, is a torus. Since it contains a positive power of g, it
follows from the fact that g and all its positive powers are in the complement
of D that no positive power of g is contained in a proper subtorus of T . Thus,
C0 = T .

Corollary 2.6. 1. Let A ⊂ G be an abelian Lie sub group containing a
torus T with finite cyclic quotient. Then A has a generator.
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2. If A ⊂ G is the closure of an abelian group that is generated by a connected
sub group of G and a single element of G, then A has a generator.

Proof. We prove the first statement. Let a ∈ A generate the finite cyclic
quotient. Let n be the order of this quotient. Then an ∈ T . Let g ∈ T be
such that ang generates T . Since T is divisible, there is h ∈ T with hn = g.
Then the element ha generates the finite cyclic quotient and (ha)n generates
T . The first statement follows.

Suppose that A ⊂ G is the closure of an abelian sub group of G generated
by a connected sub group R and an element of g ∈ G. The component group
of A is finite. Let B ⊂ A be the union of the connected components of A
that contain a power of g. Then B is a closed sub group of A that contains
both R and g. This means B = A and g generates the component group,
implying that the component group is cyclic. Since the component of the
identity of A is a compact, connected abelian Lie group, it is a torus. The
result now follows from the first statement.

2.3 The normalizer and Weyl group

Lemma 2.7. The automorphism group of a torus is a discrete group.

Proof. An automorphism of a torus T , lifts to a linear automorphism of its
Lie algebra which stabilizes the kernel, Λ, of the exponential map. Since a
linear isomorphism of a vector space that fixes the lattice Λ point-wise is
the identity, we have an embedding of Auto(T ) ⊂ Auto(Λ). [It is easy to see
that these automorphism groups are equal.] There are only countable many
automorphisms of a lattice, and hence this is a discrete Lie group.

Definition 2.8. Let T be a maximal torus of a connected Lie group H. The
Weyl group W (H,T ) of T is defined to be the quotient of the normalizer
NH(T ) of T in H by T :

W (H,T ) = NH(T )/T.

When H is the fixed Lie group G we denote W (G,T ) by W (T ) by we denote
by N(T ) the normalizer NG(T ).

Proposition 2.9. The Weyl group of G is finite and is the component group
of N(T ).

Proof. LetN0(T ) be the component of the identity of the normalizer, MN(T ),
of T . First of all we have a surjection W (T ) = N(T )/T → N(T )/N0(T ) with
kernel N0(T )/T . The proposition follows once we show that N0(T ) = T .
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We suppose that N0(T ) properly contains T and deduce a contraction.
Since T andN0(T ) are connected, the Lie algebra t of T is properly contained
in the Lie algebra of N0(T ). Choose a X in the Lie algebra of N0(T ) that is
not contained in t. Since the automorphism group of the torus is discrete, the
Adjoint action of the component of the identity N0(T ) on T is trivial, and
consequently the adjoint action of the Lie algebra of N0(T ), and in particular
the adjoint action of X, on t is trivial. Consider the subspace V of g spanned
by t and X. As we have just argued, [X, t] = 0. Of course, [X,X] = 0. It
follows that V is an abelian Lie sub-algebra properly containing t. The image
of V under the exponential map is a connected abelian group A properly
containing T . The closure of A is a torus properly containing T , which
contradicts the fact that T is a maximal torus.

Corollary 2.10. (of the proof) If T is a maximal torus, then its Lie algebra
t is not properly contained in an abelian sub Lie algebra of g. If g ∈ T is a
generator of T , then the Lie algebra of the centralizer Z(g) of g is t.

Applying the discussion of the first subsection and this corollary, we have
the following.

Corollary 2.11. The action of T decomposes g as

g = t⊕ V1 ⊕ · · · ⊕ Vr

where each Vi is two-dimensional and on which T acts by a non-trivial char-
acter αi : T → S1 followed by a standard semi-free rotation action of the
circle on Vi.

Remark 2.12. The characters αi : T → S1 are only defined up to sign,
since reversing the orientation of Vi replaces αi by −αi.

Definition 2.13. The non-zero weights of the action of T on g; i.e., the
non-trivial characters {±αi} of the action of T on g are the roots of (G,T ),
or simply the roots of G if T is clear from context. The associated two-
dimensional subspaces Vi ⊂ g are the root spaces, with Vi being the root
space for ±αi.

Proposition 2.14. We define a Weyl group action on T ∗ = Hom(T, S1) by
wϕ = ϕ ◦ w−1 so that 〈wϕ,wt〉 = 〈ϕ, t〉 for every ϕ ∈ T ∗ and t ∈ T . The
Weyl group action on T ∗ preserves the set of roots.

Proof. Fix w ∈ W (G,T ). By definition, for ϕ ∈ T ∗ and w ∈ W (T ), we
have w · ϕ = ϕ ◦ Ad(w−1). Consider the composition ad ◦ Ad(w−1) : T →

6



Auto(g) and the action ad: T → Auto(g). Since these two actions differ by
pre-composition with an automorphism of the torus, these two actions give
exactly the same decomposition of g as a direct summand of eigenspaces,
though the eignevalues associated to the various invariant subspaces may
be (and indeed are) different for the two actions. In fact, the non-trivial
characters for ad ◦ (Ad(w−1) are {wα} as α ranges over the roots of T .

On the other hand, for g ∈ T and X ∈ t, the first representation is given
by

〈g,X〉 = w−1gw(X)w−1g−1w = ad(w−1) ◦ ad(g) ◦ ad(w)(X).

That is to say ad ◦ Ad(w−1) is the conjugate to ad(g) by ad(w) : g → g.
Hence, ad(w) : g→ g sends an eigenspace for ad ◦Ad(w−1) to an eigenspace
for ad with the same character. That is to say the roots of ad are identified
with the non-trivial characters, wα, of ad ◦ Ad(w−1). Thus, we see that
ad(w) : g→ g permutes the roots of T .

2.4 All maximal tori are conjugate and the maximal tori
cover G

Theorem 2.15. Let T ⊂ G be a maximal torus. Then every point g ∈ G is
contained in a conjugate of T . All maximal tori of G are conjugate.

Proof. Let g ∈ G. Then g ∈ xTx−1 if and only if g(xT ) = xT . Said another
way, g ∈ G is in a conjugate of T if and only if, under the natural left action
of G×G/T → G/T , the element g has a fixed point.

Lefschetz theory tells us that if f : M → M is a continuous map of
compact oriented manifolds and if L(f) =

∑
i(−1)iTrace(f∗ : Hi(M ;Q) →

Hi(M ;Q)) is non-zero, then f has a fixed point. Of course, L(f) depends
only on the homotopy class of f . Furthermore, if f is smooth, has only
isolated fixed points, and at each fixed point the graph of f is transverse
to the diagonal, then L(f) is the sum over the fixed points of ±1 that
measures the local intersection number of the graph of f with the diagonal.
A fixed point x ∈ M is a transverse intersection of the graph of f and the
diagonal if and only if Df∗(x) does not have 1 as an eigenvalue. In this
case, the local intersection number of the graph of f and the diagonal at x
is sign(det(df∗(x)− Id)) as a map of TMx → TMx.

Let us compute the L(g0) for g0 a generating element of T . First, if
g0 ∈ xTx−1, then since the cyclic group generated by g0 is dense in T , it
follows that T = xTx−1, meaning that x ∈ N(T ). Conversely, if x ∈ N(T )
then T = xTx−1 and g0 ∈ xTx−1. Thus, the fixed points of the action
of left multiplication by g0 on G/T are the finite set W (T ) = N(T )/T .
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Let us compute the local Lefschetz number of g0 at [T ] ∈ G/T . We have
seen that the adjoint action of T on g is given by V0 ⊕ri=1 Vi where T acts
trivially on V0 and by a non-trivial characters, αi, on the two dimensional
spaces Vi. The tangent space of G/T at [T ] is identified with ⊕ri=1Vi. Since
g0 ∈ T , left multplication by g0 on G/T agrees with the map induced on
G/T by the action ofAd(g0) on G. Hence, the differential of action of g0 on
TeT (G/T ) is the restriction of the adjoint action to ad(g0) to ⊕ri=1Vi That
is to say, D(g0·)∗ acting on TeT (G/T ) = ⊕ri=1Vi preserves the direct sum
decomposition and acts on Vi by(

cos(αi(g0) −sin(αi(g0)
sin(αi(g0) cos(αi(g0))

)
Thus

det(Df∗(g0·)− Id) =
r∏
i=1

(2− 2cos(αi(g0))).

Since g0 is a generator of T , each non-trivial character of T is non-trivial on
g0. Hence, the graph of the action of g0 is transverse to the diagonal and
the local intersection number is a sign, +1.

Now let w ∈ N(T ). Left multiplication by w : G/T → G/T sends w−1T
to eT and conjugates the left multiplication of g0 to left multiplcation of
wg0w

−1. Thus, the local Lefschetz number of left multiplication by g0 at
the fixed point w−1T is the same as the local Lefschetz number of left multi-
plication of wg0w

−1 at eT . Since wg0w
−1 is a generator for T , the commu-

tation above showing that the local Lefschetz number of left multiplication
by g0 at eT applies equally well to wg0w

−1, proving that the local Lefschetz
number for left multiplication by wg0w

−1 at eT is 1. This shows that its
local intersection number for left multiplication by g0 at w−1T ∈ G/T is
+1. This is true for every winW (G,T ) and consequently, the intersection
number Γ(g0 ·∆) = #W (G,T ) > 0.

Now consider an arbitrary g ∈ G. Since G is connected, g and g0 are
connected by a path. Thus, left multiplication by g and g0 on G/T are
homotopic, and hence these actions onG/T have the same Lefschetz number,
which we have just seen is non-zero. It follows that g : G/T → G/T has a
fixed point xT , meaning that g ∈ xTx−1. This proves that the conjugates
of T cover G. Of course, each of these conjugates is a maximal torus.

Now let T ′ be another maximal torus of G and let g be a generator for
T ′. Then g is contained in a conjugate xTx−1. Since g generates T ′, it
follows that T ′ ⊂ xTx−1. Since T ′ is maximal, T ′ = xTx−1. This proves
that all maximal tori are conjugate
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Definition 2.16. The dimension of a maximal torus T in G is the rank of
G.

2.5 Consequences

Corollary 2.17. The exponential map exp: g→ G is onto.

Proof. Let T ⊂ G be a maximal torus. Then the Lie algebra t is an
abelian Lie algebra and the exponential map is surjective homomorphism
from (t,+0) to T . Thus, T is in the image of exp. We have just seen that
every g ∈ G is contain in a maximal torus.

Proposition 2.18. Let T ⊂ G be a maximal torus. Then the action of
W (T )× T → T is effective.

Proof. Let Z(T ) ⊂ N(T ) be the centralizer of T . The statement in the
proposition is equivalent to the statement that Z(T ) = T . So suppose
there is an element z ∈ Z(T ) \ T . We have already seen that W (T ) is
the component group of N(T ). This implies that A = {z} ∪ T generates
an abelian group containing T as a subgroup with finite cyclic quotient.
According to Corollary 2.6 there is a generator a for A. The element a
is contained in a maximal torus, T ′. Since a generates A, A ⊂ T ′, and a
fortiori T ⊂ T ′ Since z ∈ T ′ \ T , T 6= T ′. This contradicts the fact that T is
a maximal torus.

Corollary 2.19. The center of a compact, connected Lie is contained in
every maximal torus.

Proof. Let z be a central element of G. Then z is contained in a maximal
torus T . Since every maximal torus is conjugate to T , every maximal torus
contains z. This shows that every element of the center is contained in every
maximal torus.

Corollary 2.20. 1. Let A be an abelian subgroup of G containing a torus
with cyclic quotient. Then A is contained in a maximal torus.
2. If A ⊂ G be an abelian group generated by a connected abelian group A0

and a single element g, then A is contained in a maximal torus.

Proof. According to Corollary 2.6, in either case the closure of A has a
generator. That generator is contained in a maximal torus and hence so is
the closure of A.
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Proposition 2.21. For g ∈ G the Lie algebra of the centralizer Z(g) is the
kernel of ad(g).

Proof. Suppose that ad(g)(X) = 0. Then g commutes with the one-parameter
subgroup generated by X showing that this one-parameter subgroup is con-
tained in Z(g). Since Z(g) is a topologically closed subgroup of G, by
Theorem 3.10 of Lecture 2, it is a sub Lie group, This proves that the Lie
algebra of Z(g) contains X. The converse is clear.

Since all maximal tori are conjugate, the roots of the maximal torus, the
Weyl group W (T ) and its action on T are independent, up to isomorphism,
of the choice of maximal torus T .

Definition 2.22. We have defined an effective action of W (T ) on T . Taking
the differential of this action at the identity gives us a action W (T )× t→ t
preserving ker(exp). It is also an effective action.

3 Subgroups of G whose derived subgroups are
rank 1

3.1 Rank-1 groups

Theorem 3.1. Let the rank of G be 1. Then G is isomorphic to one of the
three following groups:

• S1

• SO(3)

• S3.

In the second and third case there is one pair of roots for G and the Weyl
group is a group of order 2 acting on the maximal torus by t 7→ t−1.

Proof. Let G be a rank one group and T ⊂ G a maximal torus. Then
G/T is even dimensional. We claim that this dimension is either 0 or 2.
If the dimension is 0, then since G is connected T = G and we have the
first of the groups listed above. Suppose that the dimension of G is n > 0.
Choose a positive definite inner product on g that is invariant under the
adjoint representation. Denote by S(g) be the unit sphere about 0 in g. It is
diffeomorphic to Sn−1. Let v be a unit vector in t. The map ρ̃ : G → Sn−1

defined by g 7→ ad(g)(v) factors to define a smooth map ρ : G/T → S(g). We
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claim this map is one-to-one and is a local diffeomorphism. For if ad(g1)(v) =
ad(g2)(v), then ad(g−11 g2)(v) = v and ad(g−11 g2) fixes v and hence g−11 g2
commutes with T . Since T is a maximal torus his implies that g1g

−1
2 ∈ T .

A direct computation shows that the kernel of Dρ̃g is the linear subspace of
t generated by ρ̃(g) and hence Dρ is an isomorphism at every point of G/T .

Since both G/T and are compact, connected manifolds of dimension
(n − 1), it follows that ρ is a diffeomorphism. In particular there is g ∈ G
with ad(g)(v) = −v so that g ∈ N(T ) and has non-trivial image in N(T )/T .
It acts on T by sending θ to θ−1. Connecting g by a path g(t) to e, we have
a path of homomorphisms ad(g(t)) : S1 → G from the identity map to the
inverse map. From this it follows that the map π1(T )→ π1(G) sends twice
the generator of π1(T ) to the trivial element in π1(G). From the long exact
sequence of a fibration

π2(G/T )→ π1(T )→ π1(G)

we conclude that π2(G/T ) 6= 0. Since G/T is homeomorphic to Sn−1 we
conclude that n = 3.

The adjoint map is a homomorphism G → SO(g) ≡ SO(3) with kernel
equal to the center of G. Also, the center of G is finite since G has rank
1 and is not abelian. In particular, the adjoint form of G (by definition
G/(center(G))) is three dimensional and is a subgroup of SO(3). This shows
that the adjoint form of G is SO(3). It follows that G ≡ SO(3) or S3, the
simply connected double cover of SO(3).

The statement about the roots and Weyl group follow immediately.

3.2 Reflections in W (T )

We begin with a tehnical lemma.

Lemma 3.2. Let K be a compact, connected Lie group. Let T ⊂ K be a
maximal torus and let H ⊂ T be a normal sub Lie group of K. Then:

• The pre-image in K of NK/H(T/H) is NK(T ).

• T/H is a maximal torus of K/H.

• The map K → K/H induces an identification

W (K,T ) = W (K/H, T/H).

Proof. Clearly, if w ∈ K normalizes T , then the image, w, of w in K/H
normalizes T/H. Conversely, suppose that w ∈ K/H normalizes T/H and
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let w ∈ K be a lift of w. Then for t ∈ T , wtHw−1 = t′H for some t′ ∈ T .
Since H is normal in K, the element w normalizes H. This implies that
wtw−1 = t′h′ for some h′ ∈ H. Since H ⊂ T , this implies that wtw−1 ∈ T .
Since this is true for every t ∈ T , we conclude that that w ∈ NK(T ). This
establishes Item 1.

T/H is a torus in K/H. Let U/H ⊂ K/H be a maximal torus in K/H
containing T/H. Then U/H commutes with T/H and hence normalizes
T/H. From Item 1 it follows that T ⊂ U ⊂ NK(T ). Since T is a maximal
torus of K, dim(T ) = dim(NK(T ). It follows that dim(T ) = dim(U) and
hence dim(T/H) = dim(U/H). Since both these groups are tori, they are
equal.

Item 3 is immediate from Items 1 and 2.

Theorem 3.3. Let k be the rank of G. Let T ⊂ G be a maximal torus and
let α be a root for G. Let Ûα = ker(α : T → S1) and let Uα be its component
of the identity.

1. Uα is a codimension-1 torus in T and the component group of Ûα is a
cyclic.

2. The component of the identity of the normalizer of Uα, N0(Uα), has
dimension k + 2 and there are the only roots of G that vanish on Uα,
namely ±α.

3. T is a maximal torus of N0(Uα) and W (N0(Uα), T ) ∼= Z/2Z. Let wα
be the non-trivial element of W (N0(Uα), T ). The action of wα on T
fixes Uα and acts by inverse on the quotient T/Uα.

4. Ûα is central in N0(Uα), so that N0(Ûα) = N0(Uα).

5. Ûα has at most 2 components and wα also acts on T/Ûα by inverse.

Proof. 1). Uα is the component of the identity of ker(α) and thus is a
subtorus of T of codimension-1. The group of components of Ûα is cyclic
group of order equal to the order of divisibilty of α in the group of characters.
2). Since the automorphism group of Uα is finite N0(Uα) centralizes of Uα.
Being a a torus, Uα has a generator g and N0(Uα) is equal to the centralizer,
Z(g), of g. According to Corollary 2.10, the Lie algebra of this centralizer
is equal to ker(ad(g)). This kernel is t ⊕{β|β(g)=1} Vβ. In particular, the
dimension of N0(Uα) is k + #{β|β(g) = 1}.

We must show that ±α are the only roots sending g to the identity,
or equivalently the only roots vanishing on Uα. Suppose that there were a
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second pair {±β} 6= {±α} vanishing on g. Then ad(g) vanishes on t⊕Vα⊕Vβ
the dimension of Z(g) = N0(Uα) is at least k+4. It follows from Lemma 3.2
that T/Uα is a maximal torus of N0(Uα))/Uα. Thus, N0(Uα)/Uα is of rank
1 and dimension ≥ 5, contradicting Theorem 3.1. This shows that is exactly
one pair of roots that vanish on Uα; namely ±α.
3). Since T is a maximal torus of G contained in N0(Uα), it is a maximal
torus of N0(Uα). Lemma 3.2 identifies the Weyl group W (N0(Uα), T ) with
the Weyl group W (N0(Uα)/Uα, T/Uα). But N0(Uα)/Uα is a group of rank
one and dimension 3, and hence is isomorphic to SO(3) or S3, and the
non-trivial element in the Weyl group acts by inverse on the maximal torus.
4). Under the adjoint representation Ûα acts trivially on the root space Vα.
Since Ûα ⊂ T , it commutes with T and its adjoint action on t is trivial.
Being an extension of finite cyclic group by a torus, Ûα has a generator,
say v and the adjoint action of v on the Lie algebra of N0(Uα) is trivial. It
follows that v is contained in the center of the connected group N0(Uα) as is
its closure Ûα. This shows that N0(Uα) centralizers, and hence normalizes,
Ûα. Clearly any element that normalizes Ûα also normalizes Uα. It follows
that N0(Uα) = N0(Ûα).
5). Since wα centralizes Ûα it acts trivially on Ûα/Uα ⊂ T/Uα. But since
the action of wα on T/Uα is inverse, there are only two fixed points of the
action. Thus, Ûα/Uα has cardinality 1 or 2. Since wα centralizes Ûα it
acts on the quotient T/Ûα and the natural projection T/Uα → T/Ûα is a
covering map. Since wα acts by inverse on T/Uα, it also acts by inverse on
T/Ûα.

One item is worth restating:

Corollary 3.4. Let α : T → S1 be a root of G and wα ∈ W (G,T ) be the
reflection in α⊥. Then wα fixes ker(α) = exp(α−1(Z)).

Remark 3.5. Examining the proof above closely, one can see that we have
given a complete description of N0(Uα). We have the inclusion i : Uα ⊂
N0(Uα) whose image is a central subgroup. We also have the three di-
mensional Lie algebra generated by a basis X,Y of Vα. The element Z =
[X,Y ] ∈ t and the line it generates is complementary to L(Uα). Since the
adjoint action of t on g stabilizes Vα, we see that R(Z) ⊕ Vα is closed un-
der bracket and is the Lie algebra so(3). Hence, there is a map of Lie
groups ρ : S3 → N0(Uα) whose Lie algebra image is exactly this so(3). Since
i : Uα ⊂ N0(Uα) is central, we can form the product map

i× ρ : Uα × S3 → N0(Uα).
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This Lie group homomorphism induces an isomorphism on Lie algebras.
The kernel of the homomorphism is a discrete central subgroup A. Since
i : Uα ⊂ N0(Uα) is an injection, A∩Uα = {e}. This means that the projection
onto S3 induces an injection from A→ S3 whose image obviously lies in the
center of S3. There are two possibilities for N0(Uα):

• A = {e} and N0(Uα) ∼= Uα × S3.

• A ∼= Z/2Z and
N0(Uα) ∼= Uα ×A S3

where the projection to S3 induces an isomorphism to A to the center
of S3 and the projection of A to Uα is an element of order 2 or 1 of T .

In the first case Ûα has two components and in the second it has one.

Definition 3.6. The derived sub-algebra of a Lie algebra L is the sub-algebra
[L,L].

Corollary 3.7. The derived sub-algebra of the Lie algebra of N0(Uα) is
so(3) generated by a basis X,Y of Vα ⊂ g. Furthermore, the line spanned
by [X,Y ] is contained in t, is invariant under wα, and the action of wα on
this line is multiplication by −1.

Proof. Since the Lie algebra of N0(Uα) is isomorphic to L(Uα) ⊕ so(3), it
is clear that its derived algebra is so(3). A direct computation with the
presentation of so(3) shows that under the decomposition so(3) = t⊕Vα, the
bracket of two elements X,Y forming a basis of Vα lies in t. The inclusion of
so(3) into the Lie algebra ofN0(Uα) integrates to give a map S3 → N0(Uα, T )
that sends the Weyl group of S3 isomorphically onto the Weyl group of
W (N0(α), T ). Thus, the line spanned by [X,Y ] in t is invariant under the
Weyl group and the non-trtivial element of this groups acts by −1 on the
line spanned by [X,Y ].

Corollary 3.8. For each pair of roots ±α of T , there is an element of order
two wα ∈ W (G,T ) that fixes the kernel of α : t → R pointwise and acts by
−1 on the quotient t/ker(α).

Proof. The previous theorem constructs exactly such an element inW (N0(Uα), T ).
Of course, W (N0(Uα), T ) is naturally a subgroup of W (G,T ).

Definition 3.9. The element wα ∈W (G,T ) associated to ±α is called the
reflection in ker(α).
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Corollary 3.10. Let T ⊂ G be a maximal torus. Any element in g ∈ T that
is not in the kernel of any root is contained in no maximal torus distinct
from T . If g ∈ ker(α) ⊂ T for some root α, then g is contained in at least
two distinct maximal tori.

Proof. If g ∈ T is not contained in the kernel of any root, then g acts non-
trivially on each root space Vα. Thus, the subspace of g on which ad(g) acts
by the identity is t. By Proposition 2.21, this means that the Lie algebra of
the centralizer of g is t. This means that the component of the identity of
the centralizer of g is T . Obviously, then g is contained in only one maximal
torus, which is T .

Now suppose that g ∈ ker(α). Then g ∈ Ûα which is contained in the
center of N0(Uα). Thus, g is contained in every maximal torus N0(Uα).
Since T is a maximal torus of N0(Uα), all these tori are maximal tori of
G. Since dim(N0(Uα) > dim(T ), there is more than one maximal torus of
N0(Uα). (In fact, there is a two-dimensional family of them.)

4 Weyl Chambers and the Weyl Group action

For each pair of roots ±α there is the torus Uα, which is the component of
the identity of ker(α : T → S1), and its Lie algebra Wα ⊂ t. Each Wα is a
codimension-1 linear subspace of g. The adjoint action of wα on t fixes Wα

and interchanges the half-spaces that Wα divides t into. The Wα are the
walls of the Weyl group action.

Definition 4.1. Let T ⊂ G be a maximal torus and let R ⊂ Hom(t,R) be
the set of roots for (G,T ). A Weyl chamber is a connected component of
t \ (∪α∈RWα) where the wall Wα is the kernel of the root α : t→ R. Notice
that Wα = W−α. The hyperplane Wα is a wall of a Weyl chamber C iff
intersection of the closure of C and Wα contains a non-empty open subset
of Wα. If Wα is a wall of a chamber C, then there is a unique chamber
C ′ 6= C such that C

′ ∩Wα = C ∩Wα. Those chambers are interchanged by
the element in the Weyl group that is the reflection in Wα.

4.1 Weyl chambers as intersections of half-spaces

Definition 4.2. A straight-line segment ω : [0, 1]→ t is generic if:

• each of its endpoints is contained in a chamber, and

• it is disjoint from all the codimension-2 intersections of walls, Wα∩Wβ

for roots α and β 6= ±α.
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Lemma 4.3. Let ω : [0, 1] → t be a straight-line segment with end points
in chambers ω(0) ∈ C and ω(1) ∈ C ′. Then there is an arbitrarily close,
generic straight-line segment. It has end points in the same chambers as ω
does.

Proof. Fixing one endpoint, the condition that a straight-line segment meet
a codimension-2 linear subspace is a single linear condition on the other
endpoint of ω. The result follows easily.

Proposition 4.4. Let C be a chamber and let Wα1 . . .Wαk
be the walls of

C, with the αi chosen so that αi|C > 0. Then

C = ∩ki=1{αi > 0}.

Lemma 4.5. Let ω is a generic path with ω(0) ∈ C. If ω crosses a wall,
then the first wall it crosses is a wall of C.

Proof. Suppose that ω crosses a wall and let t ∈ (0, 1] be the smallest number
with the property that ω(t) is in a wall, say Wβ with β > 0 on C. Clearly,
ω(s) ∈ C for s ∈ [0, t) and ω(t) 6∈ C, so that ω(t) ∈ C. Since ω is generic,
ω(t) does not lie in any Wβ ∩Wγ for any root γ 6= ±β. Thus, there is an
open subset U ⊂ t around ω(t) that meets no wall except Wβ. In addition,
we can suppose that U meets Wβ in a connected set and meets each of β > 0
and β < 0 in a connected set. The intersection of U with the open half-space
{β > 0} contains ω(t− ε) for all ε > 0 sufficiently small. Thus, U ∩ {β > 0}
is contained in C. It follows that C ∩Wβ contains U ∩Wβ, and hence that
Wβ is a wall of C.

Proof. (of the proposition) It is clear that C ⊂ ∩ki=1{αi > 0}.
We must prove the converse. Arguing by contradiction, suppose that

C is properly contained in ∩ki=1{αi > 0}. Then some wall Wβ must meet
∩ki=1{αi > 0}. For if not, then ∩ki=1{αi > 0} is contained in a chamber
which, since it contains C, must then be C.

Thus, there is a root β 6∈ {α1, . . . , αk} with β|C > 0 and with

Wβ ∩ki=1 {αi > 0} 6= ∅.

Let q be a point of this intersection. Then there is a generic path with one
endpoint p ∈ C and the other endpoint arbitrarily close to q with β(q) < 0.
This path is contained in ∩ki=1{αi > 0}. As such it crosses no wall of C.
But it crosses Wβ. This contradicts Lemma 4.5.
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4.2 The Weyl Group Acts Simply Transitively on the set of
Weyl Chambers

Theorem 4.6. The action of the Weyl group on t sends Weyl chambers to
Weyl chambers. The Weyl group acts simply transitively on the set of Weyl
chambers.

Proof. According to Proposition 2.14 the action of the Weyl group preserves
the set of roots and hence stablizes the ∪α∈RWα. Consequently, it preserves
the union of the Weyl chambers and hence permutes the chambers.

Fix an Weyl-invariant metric on t. Then the reflection element associated
with Uα is an orthogonal reflection in the codimension 1 linear subspace
Wα of t in W (T ). Notice that each Weyl chamber is the intersection of
a finite collection of open half spaces, the half-spaces determined by the
codimension-1 linear subspaces {αi > 0} as αi range over the roots that are
positive on the Weyl chamber and whose walls are walls of C. As such, each
Weyl chamber is a convex subset of t.

Suppose that C is a chamber fixed by w ∈W (T ) with w 6= e. Let n > 1
be the order of w. Let v ∈ C and consider the average

v̂ =
1

n

n∑
k=1

wkv.

Since wkv ∈ C for all k and C is convex, v̂ ∈ C and is invariant under w.
Let H = exp(tv̂) and w̃ ∈ NG(T ) be a lift of w. Since w · v̂ = v̂,

the element w̃ commutes with H. This means that the group generated
by H and w̃ is an abelian group, as is its closure K. Some power of w̃ is
contained in the component of the identity of K. Also, H is contained in
the component of the identity of K. Thus, the component group of K is
cyclic. It follows from Corollary 2.20 that K is contained in a maximal torus
T ′. Since w ∈ W (T ) and w 6= e, if follows that w̃ 6∈ T , and, as a result,
T 6= T ′. Thus, H is contained in two distinct maximal tori. That implies
that H ⊂ ∪αÛα. Since he intersection of H with each component of each Ûα
is a closed subset, for some ε > 0 and for some root α exp(tv̂) is contained
in Uα for all t ∈ [0, ε). Hence, that v̂ ∈Wα. This is a contradiction, showing
that no non-trivial element of W (T ) fixes any Weyl chamber.

For any Wα, by Corollary 3.8 there is a reflection in Wα in W (T ). Notice
that if β 6= ±α, then by Theorem 3.3 Wβ and Wα are distinct hyperplanes so
that their intersection is of codimension 2. Let C and C ′ be Weyl chambers.
There is a generic straight-line segment γ in t from a point of C to a point of
C ′. Enumerate in order the chambers that γ meets C = C0, C1, . . . , Ck = C ′
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and let Wβi be the wall that γ crosses in going from Ci to Ci+1. Then the
closures of Ci and Ci+1 each contain a non-empty open neighborhood of
γ ∩ Wβi and thus Wβi is a wall of both Ci and Ci+1. Let wβi ∈ W (T )
be the reflection in Wβi . Then wβi maps Ci to Ci+1. We easily see by
induction that there is an element of W (T ) that sends C0 to Ci for every
i ≤ n. In particular, there is an element w ∈ W (T ) that sends C = C0 to
C ′ = Cn. This show that the action of W (T ) on the set of Weyl chambers
is transitive.

Corollary 4.7. The reflections wα in the roots α generate the Weyl group.

Proof. Fix a Well chamber C0. By the previous theorem the map

W (T )→Weyl Chambers

defined by w 7→ wC0 is a bijection. On the other hand, in the proof of the
theorem we constructed a product of reflections in walls that sent C0 to any
other chamber, so that the subgroup of W (T ) generated by the reflections
in the walls also acts transitively on the chambers. Hence, this subgroup
must be all of W (T ).
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