Lie Groups: Fall, 2024
Lecture VIII:
Root Systems

October 31, 2024

For this section we fix a compact connected Lie group GG, a maximal
torus T C G. We have the action of the Weyl group W on T and the
induced linear action of W on t. We define the dual action W x £ — ¢* by
wp(X) = p(w'z).

We fix a Weyl invariant metric, denoted (-, -). This allows us to identify
tand t* by z — (z,-). We then transport the metric from ¢ to * by this
identification. The identification of t with t* is Weyl-equivariant. For ¢ € ¢*,
we denote by z, € t the corresponding element. Tt satisfies (Zp,y) = o(y).
With these choices, we see that ol C ¢* is identified with Ker(a) =zt C t.

Let Z C T C G be the center of G. We denote by A C t be exp™! (2). It
is the co-weight subspace. The weight space, A* in t*, is the dual to A; i.e,,
the set of A € ¢ that take integral values at every point of A. The adjoint
action of the Weyl group W on T presevres the center. Hence, the induced
action of W on t preserves A C t and the dual action of W on ¢* preserves
A%,

Claim 0.1. Every root is a weight.

Proof. Every root a: T — S vanishes on the center and hence every
|root: t — R takes integral values on A. O

Claim 0.2. The action of the reflection wy on t* is given by

2, p)o
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The action of w, on t is given by
¥y o 22K )0
(o, )



Proof. Let w], be the map defined by the formula in the first equation of
the claim. Clearly, w/, a linear map t* — ¢* that is the identity on at. But
under the identification of t with t*, the subspace o is tidentiied with he
kernel of the root : t — R. On the other hand, one checks immediately that
(w,)? = Id, that w/, interchanges the half-spaces (@,-) > 0 and (a,-) < 0,
and that w), is an isometry. Thus, w), is the unique orthogonal reflection in
the codimension-1 subspace a. These properties also characterize wy, so
that we = wy,. This proves the first statement.

The second, dual, statement is prove analogously. O

Claim 0.3. For every root o and every weight A € A*, we have

_ 2(a, )
o) € Z.

Proof. (Following Adams) Fix a root a and choose v € L(T) a vector with
a(v) = 1. Then exp(v) € ker(a: T — S). Hence, is fixed by wy. This
means that wa(v) —v = %’%ﬂ is in A. Hence, for any weight A € A* we

have
—2a(v){a, \) ez
(o, @) '

Since a(v) = 1, we see that

_2a )
T €Z.

Claim 0.4. For roots o and 8 we have

_ 2{q, Ba
7= o)

is a Toot, and
(o, 0)

Proof. The second statement follows from Claim 0.3. The first statement
follows from Claim 0.2 and the fact that the Weyl group action preserves
the roots. El




1 Root Systems

In this section we formalize the properties that we established in the previous
section and the previous lecture.

Definition 1.1. A oot system consists of a finite dimensional real vector
space V' and a finite set of non-zero vectors R = {a1,...,01} of V, the roots,
a finite group W, the Weyl group, acting linearly and effectively on V' and
a positive definite W-invariant inner product on V, satisfying the following
properties:

e If o is a root then so is —a but no other real multiple of « is a root.
e W preserves the set of roots.

For each o € R there is an element w, € W that is the reflection in
the hyperplane orthogonal to «.

The reflections associated with the roots generate W.

For each pair of roots a, 8 we have

2(a, B)
ea o

Theorem 1.2. For any compact, connected Lie group G with mazimal torus
T, the data (t*,roots of T, W(T'), W-invariant metric) form a root system.

Proof. The first four properties are established in Theorem 3.5, Proposition
2.16, Corollary 3.7, and Corollary 4.3, respectively, of the previous lecture.
The last property is established in the previous section of this lecture. [J
2 Properties of Root Systems

We fix a root system (V, R, W, (-,-,)).

Lemma 2.1. Let o, be a pair of roots with B # +a. Then

. (—-2<a,ﬂ)) (-2<ﬁ,a>) cd

T\ (@) (B,B)
Proof. This is an immediate consequence of the fact that since o and B are
not multiples of each other we have(a, 8)? < (o, a)(3, B). O



Corollary 2.2. Let o, 8 be roots with B # *o and with (o, 8) < 0. Then
either (@, B) = 0 or one of

2ef)  ~2(p,a)
@a) ” (3,8

is equal to 1 and the other takes value in the set £1,2.3).

Proposition 2.3. Suppose 8 # +a.

1. If (o, B) = 0, then the angle between o and B is w/2, the reflections in the
hyperplanes perpendicular to o and B commute and generate dihedral group
of order 4.

2. Suppose that

(B, 8) ’
then the angle between o and B is /3, w/4, or w/6 depending on whether
'U=ZM=1, 2, -or3.
(o, @)

Also, % = \/v. In these cases the reflections in the hyperplanes perpendic-
ular to o and B generate a dihedral group of order 6,8, or 12.
3. Furthermore, under the hypothesis of previous statement, B+ ka is a Toot
for all

0<k< j(_ﬂ,_a_)-

(o, @)

Proof. The first statement is a tautology. Let us consider Statement 2. Let
6 be the angle between o and f3, so that 0 <0< /2. Set

—2(a, B)
Y= 07t
Then
cos?(6) = g,
or
cos(f) = %—-5

Statement 2 is now clear.
If %ﬁgﬁ = 1, then the reflection of £ is the hyperplane perpendicular

. {a,2))
toais B+ .



If %%gl = 2, then reflection of & in the hyperplane perpendicular to 8
is B+ a, whereas the reflection of 8 in the hyperplane perpendicular to « is
B+ 2a.

Finally, if %%al = 3, the reflection of « in the hyperplane perpendicular
toBisa+ S, a;n({ reflection of & + § in the hyperplane perpendicular to

@ is B+ 2a. Lastly, reflection of B in the hyperplane perpendicular to « is

B + 3a.
Since the roots are invariant under the Weyl group action, this establishes
Statement 3 in all cases. O

3 Examples

3.1 SU(n)

SU(n) is the real sub Lie group of GL(n,C), consisting of all matrices such
that A" = A~! and det(A) = 1. Notice that this is not a complex Lie
group since the first equation, which involves conjugation, is not holomorphic
equation. Indeed SU(2) is isomorphic to S3.

The usual maximal torus for SU(n) consists of the matrices in SU(n)
that have non-zero entries only along the diagonal.

B 0 - D
0 8 --- 0
il | Ty
where the 6; € S and [, 6; = 1.
The roots are {o; j}1<izj<n Where a; ;(01,...,0,) = 0,-01.'1. The associ-

ated reflection w;,; interchanges 6; and 6;, and the Weyl group they generate
is the symmetric group permuting the n coordinates.
The Lie algebra L = su(n) is the subspace of R™ consisting of

{(tl,...,tn)IZt,- =0}

Passing to L the differential of o  is the root ¢; —¢;: t — R. The co-weight
lattice is LNZ™. Each root acts by permuting two of the coordinates. Thus,
the Euclidean metric in the coordinates (¢i,...,%,+1) restricts to a Weyl
invariant metric on t. In this metric, (¢; — ¢;,¢; —¢;) = 2 for all 7 # j and



(t: —tj,t — t;) is equal to +1 if the sets {3,7} and {k,1} have exactly one
element in common and 0 if the sets {i,;} and {k,I} are disjoint.

The dual vector space to L is R?/R(1,1,...,1) and the weight lat-
tice (the dual to the lattice in +* spanned by the roots) is the quotient
of Z"/Z(1,1,...,1). The weight lattice consists of all (ay,..., an) € L with
na; € Z for all i, with a; = a; (mod Z) for all 4,7. This contains the
co-weight lattice as a sub lattice with quotient a cyclic group of order n
generated by the element (1/n,1/n,...,1/n).

A Weyl chamber is

{iwta)] X B=0did 5 > 6553,
2z

Its walls are given by the equations {t; = #;41}, for 1 <i < n— 1, which are
the kernels of the roots (t; —t2), ..., (tn_3 — tn). The other Weyl chambers
are given by {t;(1) > t,(2) > -+ > t4(,)} as o ranges over the permutations
of {1,...,n}H

3.2 SO(2n) forn>3

S0(2n) is the sub Lie group of GL(n,R) consisting of all matrices that
satisfy A" = A~ and det(A) = 1. Its standard maximal torus consists of
all 2 x 2 block diagonal matrices

/ (cos(al) —sin(Hl)) \

Sin(el) COS(91)
(cos(az) —sin(Hg))
sin(f2) cos(6s)

cos(f,) —sin(6,)
(Sin(ﬂn) cos(Gn)) /

\

where the 6; € S*.
The Lie algebra of SO(2n) is the space of skew symmetric matrices. The
tangent space to the maximal torus described above is the space of matrices



of the form
/ 0 — \
t17 O

0 —io
ta 0

0 _tn
\ (tn 0 )}
The rest of the Lie algebra decomposes into four dimensional subspaces
of skew symmetric matrices. Each of these subspaces consists of a 2 x 2 block
with columns in 25 — 1,2s and rows 2r — 1,2r, with r > s together with the

negative of the transpose below the diagonal of this block. We decompose
one of these blocks as direct sum of matrices of the form

&
o

These subspaces are invariant under the action of the torus and these root
spaces have roots (6,0;1)*! and (6,05)*! respectively. Thus, the roots of T
are 016 with 1 <r <s<n.

The Lie algebra t of this maximal torus is identified with R” with coordi-
nates ti,...,%,. Under passage to t the roots become the linear functionals
i, £ 15 for 1 <r < s < n. Each root acts by exchanging a pair of the ¢;
coordinates, possibly also changing the sign of each exchanged coordinate.
Thus, the Euclidean metric in the coordinates (1, ..., t,) is Weyl-invaraint.
The weight lattice is

and matrices of the form

{0,1, s, ,an)l2ai €Z and q; = a; (Z)}

The co-weight lattice is Z™ C R™. Thus, the center of S0(2n) is Z/2Z. As
in the case of SU(n) all the roots have the same length and the possible
angles between two roots a and 8 # +oa are 7/2 and /3.

A Weyl chamber in t is given by fb >8> >1,9 > ) and
{tn—1+tn > 0}. The walls of this chamber are the kernel of the roots

{t1 —ta,t2—13,... ,tn—1 — o, b1 + tn}.

7
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Consider the semi-direct product of II;=1 Z/2Z with the permutation group
Y, where i** factor of the product is reflection of the ¢; coordinate, and
¥, acts by permuting the factors. The Weyl group is R x X,,, where
R C [I1Z/2Z is the subgroup of index 2 that reverses an even num-
ber of coordinate directions. This is the group generated by the reflections
in the walls of the given Weyl chamber.

33 SO(2n+1)forn>2

As before this group consists of the matrices in GL(2n + 1,R) that satisfy
A" = A1 and det(A) = 1. The Lie algebra consists of the skew-symmetric
matrices in M((2n + 1) x (2n + 1),R). The standard maximal torus is the
image under the natural embedding SO(2n) C S0(2n + 1) of the standard
maximal torus for SO(2n). Thus, all the root spaces with roots #F10F! for
1 < r < s < n are roots of the maximal torus for S0(2n + 1) and the sum
of t and these roots spaces form so(2n) C $0(2n + 1). The additional root
spaces consist of skew symmetric matrices that are zero except in their last
row and column. The dimension of this space is 2n and hence there are
n more pairs of roots for T' C SO(2n + 1) that are not roots coming from
SO(2n). Direct computation shows that these roots are 0l for 1 <r < n.

The Lie algebra of the maximal torus of s50(2n+1) is equal to the Lie alge-
bra of the maximal torus of SO(2n). Hence, there are coordinates bysiooydin)
for the Lie algebra of this maximal torus just as for the maximal of S0O(2n).
The roots are +; tijfor 1 <i<j<nand 4t for 1 < ¢ < n. This is
the first time we encounter roots of different lengths. The long roots act by
permutation of two of the ¢;, possibly with a sign change of the exchanged
variables. The short roots act by sign change of one of the ;. Thus, the
Euclidean metric on the coordinates (¢y,... »tn) is Weyl invariant. In this
metric the roots +t, all have length 1 and the roots +t, + t; have length
V2. For r # s the angle between ¢, and ¢, is m/2. The angle between t,
and and +t, + ¢, is 7/4. The angle between the roots tr +ts; and ¢, — £, is
7/2. A Weyl chamber is given by #; > t2--- > t, > 0. The walls of this
Weyl chamber are given by the kernels of the roots ti—ioy. ..t 34t
The Weyl group is (H;‘zl Z/ ZZ) X Xy, where the i** factor acts by reversal
of the i* coordinate.

The co-weight lattice is Z™ C R™ and the root lattice is dual to the co-
weight lattice, so that the weight lattice is equal to the co-weight lattice.
This means that the center of SO(2n + 1) is the trivial group.



3.4 The compact symplectic groups

Let K be a field of characteristic 0 and let V be a finite dimensional K-
vector space. A symplectic form on V is a non-degenerate skew symmetric
pairing V® V — K. Such a pairing exists if and only if the dimension of V
is even. In fact, for any such pairing there is a basis {e1,-..,e} for V so
that the pairing, denoted (-,-) is given by

(e2i—1,€2j-1) = (ezs,€2;) =0 forall1<i,j<n

and
(€2i—1,€25) = —(ezj,€2i-1) = &;; foralll1<i,j<n.

Writing elements of V' as column vectors using the basis {e; ..., ean} the
form is given by
(z,y) =z Iy

where [ is the block diagonal matrix with 2 x 2 blocks

(% o)

down the diagonal. Then an element A € GL(2n, F) is in the symplectic
group if and only if
A"TA=1.

This algebraic group over K is denoted Sp(2n, K)

We are especially interested in Sp(2n,R), which is a real Lie group, and
Sp(2n,C), which is a complex Lie group. These groups are not compact.
Indeed, Sp(2,R) = SL(2,R). The compact form of the symplectic group,
denoted Sp(n) is the intersection Sp(2n,C) N U(2n) in GL(2n, C). Clearly,
this is a compact real Lie group.

There is a different description of Sp(n). First we take the usual positive
definite hermitian inner product on C??, and the resulting isometry group
is the unitary group U(2n). We choose a slightly different symplectic form.
In the standard basis {es,..., e, } the complex symplectic form is given by

8 I
-I 0
where I is the n x n identity complex matrix.

Next we define the structure of a quaternion (left) vector space structure
on C** extending the given complex structure by defining j (Ce) = Ceipn



for all 1 <7 < mnand ¢ € C. It follows that JCenti=—Ce;forall1 <i<n
and ¢ € C. Multiplication by 4, 4, k are all isometries of the positive definite
inner product.

One of the exercises is to show that a unitary matrix (acting from the
left) commutes with the quaternion structure (i.e., commutes with left mul-
tiplication by j) if and only if it is an element of the complex symmetric
group defined by 7. This then tells us that Sp(n) is the group of automor-
phisms (acting on from the left) of the left quaternion vector space structure
that we have defined on C2” that preserve the positive definite hermitian
inner product.

Taking the second description, we see that the Lie Algebra of Sp(n) is
the sub Lie algebra of u(2n) consisting of the matrices M (2n x 2n,C) that

satisfy
AR
(%5 2)

with A € u(n) and B is symmetric. The standard maximal torus of Sp(n)
consists of subspace matrices with diagonal entries of norm 1 such that for
1 <4 < n the (n+14,n + i) diagonal entry equal to the inverse of the (4,2)
diagonal entry.

The adjoint action of the maximal torus on the sub Lie algebra given by
B = 0 is the usual adjoint action of the maximal torus of I/ (n) on its Lie
algebra so that the roots for this action are 6:0; ) for 1<i<j <
The adjoint action of the maximal torus on an element in position (z,n+ j)
is 059;,1_3- = 6;0;. Thus, the roots for the action of the maximal torus on B
are (0;0;)* forall 1 <i<j <n.

The maximal torus is identified with [J7, S given by the coordinates
(61,-..,0y,). the differential of this map is an identification of the Lie algebra
of the maximal torus with R™ with coordinates (1;...;1n). On the Lie
algebra of the maximal torus, there are 2n(n — 1) roots of the form +; + t;
for 1 <4 < j < n, the short roots, and 2n roots of the form +2¢;, the
long roots. Every short root acts by permutation of two of s .o bl
possibly reversing the sign of the exchanged coordinates. The long roots act
by changing the sign of one of the coordinates. Hence, the usual Euclidean
metric on the coordinates (Z1,...,%,) is Weyl invariant. Under this inner
product the first group of roots have length /2, then the second group have
length 2. As in the case of SO(2n + 1) the angles between the roots are
7/2,7/3, and /4.

A Weyl chamber is given by 1 > #3 > --- > £,, > 0. Its walls are given by
the vanishing hyperplanes of the roots {(t1—22), (t2—13), - - -, (bn_1—tn), 2t,}-
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The Weyl group [[?, Z/2Z x %, just as in the case of SO(2n + 1). The
co-weight lattice is the usual integral lattice in the coordinate (t1,---,tn)
whereas the weight lattice is given by the equations ; = ; (mod Z) and

ot; € Z. Tt follows that the center of Sp(n) is Z/2Z.

4 Positive Roots and Simple roots

In each of the examples above we specified a Weyl chamber and then de-
scribed things in terms of that choice. Of course, all Weyl chambers are
equivalent under the action of the Weyl group, so different choices lead to
an isomorphic description up to conjugation. We now formalize the impor-
tant notions relative to a fixed Weyl chamber. For this section we fix a root
system and use all the associated notation from above.

Definition 4.1. We fix a Weyl chamber Cj, the fundamental Weyl chamber.
Since Cp is disjoint from the walls defined by the roots, each root is either
positive or negative on Cy. Those that are positive on Cy are called positive
roots, and those that are negative are called negative roots (relative, of
course, to Cp which we consider as fixed for this discussion).

Remark 4.2. Every root is either positive or negative and the involution
—1 on V interchanges positive and negative roots. Thus, each wall is defined
as the kernel of a unique positive root.

In the last lecture we established the following claim.

Claim 4.3. Let ay,...,ax define the walls of Cy, chosen so that a; > 0 on
C. Then Co =¥ {c; > 0}.

Lemma 4.4. The fundamental Weyl chamber Cy is the only chamber on
which all positive roots are positive.

Proof. Let C be a chamber distinct from Cp. We claim that there is a wall
separating Co and C. If not then all the positive roots defining walls of Cy
are positive on C and hence C C Cp which implies C' = Cp. If the wall Wy,
associated to a positive root o separates C' and Co, then « is negative on

Cs (]
4.1 Simple Roots

Lemma 4.5. If o and f3 are positive roots and o+ is a root, then a+ [ is
a positive root. A non-trivial sum of positive roots with positive coefficients
18 Mever zero.

11



Proof. The first statement is obvious from the definition. As to the second
any sum of positive roots with positive coefficients takes positive value at
any point of Cy. O

Definition 4.6. A positive root is a simple root if it cannot be written as
a sum of two positive roots.

Lemma 4.7. Every positive root is a sum of simple Toots.

Proof. Suppose that « is a positive root that cannot be written as a sum of
simple roots. Then « is not simple so that it can be written as a sum B+ 81
If each of B; and S| can be written as a sum of positive roots then so can
a. Thus, renumbering if necessary, we can assume B; cannot be written as
a sum of simple roots.

We continue this process 81 = 3o + B3 with f2 not a sum of simple roots,
etc., creating a list {8; = ;11 + B!, ;}; with each B; not expressible as a
sum of simple roots.

Claim 4.8. In any ezxpression for « as a positive sum of two or more positive
roots the coefficient of « in the sum is 0.

Proof. Otherwise, @ = a+pu where p is a positive sum of positive roots. Then
1 = 0 which by Lemma 4.5 means p is the trivial sum. O

Since

& = itk Ba (G H)
Bi = Bima+-—-Bii+(Bi+pB) for j<i

it follows from the previous claim a, 31, B, . .. are all distinct. Since there
is a finite number of roots, this is a contradiction. £l

Lemma 4.9. If o and (3 are simple roots, then (a,8) < 0.

Proof. If (o, ) > 0, the by Part 3 of Proposition 2.3 the element B—ais
a root. Either f — a or @ — 3 is a positive root and consequently, either

B=a+(B-a)or a=p+ (a— pB)is not simple. £
Definition 4.10. We denote by S be the set of simple roots.

Proposition 4.11. The simple roots are linearly independent.

12



Proof. Suppose we have a linear relation > aesAa = 0. We form two
disjoint subsets of simple roots: Sy = {a|A\, > 0} and S_ = {ajrq < 0}.

Then define v by
v= }: Aot = Z —Ao
acSy acS_

with both sides having positive numerical coefficients. We have

(moy= > Aadg{e,p) <0.

(a,B)ES+ xS

This implies that v = 0, and consequently that e s, Aqa = 0. It follows
from Lemma 4.5 that S; = @. The same argument shows that S_ = 0,
proving the linear independence of the simple roots. O

Corollary 4.12. The simple roots are a basis for the orthogonal space to
the subspace on which the Weyl group acts trivially, and

naes{a > 0}

18 the fundamental Weyl chamber.

Proof. Since every root is either a positive linear combination or negative
linear combination of the simple roots, the simple roots span the same space
as all the roots. This is clearly the orthogonal complement to the maximal
linear subspace on which Weyl group action is trivial. By the linear inde-
pendence of the simple roots, they form a basis for this subspace.

Let a1, --- , o be the simple roots. Then every positive root is positive
on D =¥ ;{e; > 0}. This means that no wall meets this sub space and
hence it is contained in a Weyl chamber C. On the other hand, D \ D is
contained in the union of the walls so that no connected open subset of V
that properly contains D is contained in a chamber. Thus, D is a chamber
and its walls are the walls defined by oy, ..., az. O

4.2 The Dynkin diagram

Definition 4.13. The Dynkin diagram has nodes and connections between
the nodes. The nodes are indexed by the simple roots. Two nodes have
no connection if the roots that index the nodes are orthogonal. Two nodes,
indexed by «, 8 have a single line connection between them if the angle
between a and B is 7/3; they have a double line connection between them
if the angle between a and § is w/4, and they have a triple line connection

13



between them if the angle between o and 8 is /6. In the last two cases
we add an arrow to the multiple connection that points toward the shorter
root.

4.3 Examples of Dynkin Diagrams

The Dynkin diagram of a product G x H is the disjoint union of the Dynkin
diagrams of G and H. The Dynkin diagram of any torus is empty.
SU(n). The maximal torus 7 of SU(n) is diagonal n x n matrices with
complex numbers of norm 1 down the diagonal whose product is 1. The Lie
algebra t is diagonal n x n matrices with purely imaginary entries down the
diagonal that sum to zero. Let tj: t — R be the function that assigns to
a matrix in t the imaginary part of its (j, j)-entry. The roots of SU (n) are
+t; Ft; for all 1 < i # j < n. The usual fundamental Weyl chamber is the
region of t given by {t; > t5... > t,}. The positive roots are #; — t; with
¢ < j and the simple roots are (¢; — t5), (t2 —t3),...,tn—1 — ty. Clearly, for
@ # k we have (¢; — ti11,t5 — tg41) = O unless k = {¢ —i,2+ 1}, and in the
exceptional case

~2<a1 ﬂ) =1

(a,a) :

Thus, the nodes of the Dynkin diagram for SU(n) are indexed by S OS5
1} and two nodes are connected (by a single line) if and only if the nodes
are adjacent in the order determined by their indices.

A, SV ) ey

‘‘‘‘‘

h7p 1 n Nm?zi

SO(2n). The usual maximal torus for SO(2n) is block diagonal matrices
with two-by-two blocks down the diagonal, with the - block being

(cos(e,-) —sin(e,-)>

sin(@;) cos(6;)-

Thus, the lie algebra is block diagonal matrices with two-by-two blocks down
the diagonal of the form
0 —
(ti 0. )

We restrict now to the case when n > 4. The roots are +it;+t; foralla < i #
J < n and the usual fundamental Weyl chamber is {t; >3 > --- > tn} and

14



{tn—1 + 1t} > 0. The positive roots are ¢; — tjand f; +¢;for1<i<j<n
and the simple roots are t; — &gty — #3,...,8p—1 — tn,tn—1 + tn- The first
n — 1 simple roots form the Dynkin diagram for SU (n), namely a chain of
length (n—1) with simple connections. The last simple root is orthogonal to
all other simple roots except e,_2 — €,1 and together with the first (n — 2)
simple roots forms another chain with single connections of length (n—1).

U = 500 o

e, el d
N7y g B
nw Nopes
S0(2n + 1). The usual maximal torus for SO(2n + 1) is the image under
the natural embedding of the usual maximal torus for SO(2n). Likewise,
the maximal torus for SO(2n + 1) is the image of the maximal torus from
SO(2n) and we use the same functions #; on .

We assume that n > 2. As we have seen the roots of SO(2n + 1) are
*(ti—1;), £(ti+1;) for 1 <i # j < mand ¢; for 1 < i < n. The usual Weyl
chamber is t; > t3--- > t, > 0 and the simple roots are #; — Lo, v oylbniq =
tn;tn- The first (n — 1) simple roots form the Dynkin diagram SU(n), a
chain of length (n — 1) with single connections. The last root is orthogonal
to all roots except the (n — 1) and the angle between these roots is m/4.
Thus, there is a double line connection between the two nodes indexed by
these roots. The last root is the shorter of the two, so the arrow points
toward the n** node.

* Solan)
BV{ SR i ,.A¢->:_a

R 1 hode

Sp(n). The group Sp(n) is a subgroup of U(2n). Its standard maximal
torus is a sub torus of the standard maximal torus of U(2n) consisting of
diagonal matrices with diagonal entries of norm 1 with the (7,7)-entry equal
to minus the (n +4,n + i)-entry for all 1 < i < n. The maximal torus
is diagonal matrices with purely imaginary entries down the diagonal with
the (4,1)-entry equal to minus the (n + 4,n + i)-entry. For 1 < j < n, we
set £;: £ & R equal to the imaginary part of the (j,j)-entry. Then the
roots are £(t; — £ — j) for 1 < i # j < n and 2tj for 1 < 5 < n. The
standard Weyl chamber is {¢; > 23 > --- > #,, > 0} and the simple roots are
(t1 —2),. .-, (tn—1 — tn),2t,. As before the first (n — 1) simple roots form
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the Dynkin diagram for SU(n), namely a chain of length n — 1 with single
line connections. The last simple root is orthogonal to all other simple roots
except the (n — 1)* and it makes angle /4 with this root. Thus, the nth
root is connected to the (n — 1) by a double line connection. Since the
last root is longer than the others, the arrow on the connection points away
from the n** node.
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4.4 Classification of Connected Dynkin diagrams

There is a complete classification of connected Dynkin diagrams of root
systems. In addition to the four infinite series listed above: A, forn > 1;
B, for n > 2; Cy, for n > 2; and D,, for n 2 4 there are exacly 5 exceptional
connected Dynkin diagrams of root systems. They are Fg, Ey, Eg, Fy, and
G2 as pictured below. The general Dynkin diagram is a finite disjoint union
of diagrams of these types. *
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