Problem Set 1 for Lie Groups: Fall 2024

August 29, 2024

Problem 1. Fix a field K and consider the polynomial ring with variables X_{ij} with $1 \leq i, j \leq n$. This is the ring of polynomial functions (with coefficients in K) on K^{n^2} . We identify the space $M(n \times n, K)$ of $n \times n$ matrices over K with the vector space K^{n^2} in such a way that the function $X_{i,j}$ assigns to each matrix its (i, j)-entry. For any r, we give K^r the Zariski topology where the closed subsets are exactly the loci in K^r where some given collection of polynomial vanishes. (These are called subvarieties.) Show that this is indeed a topology. Show that $GL(n, K) \subset M(n \times n, K)$ is open in the Zariski topology. Show that SL(n, K), the matrices of determinant 1, is a closed subset in the Zariski topology. Show that it pulls back polynomial functions on $M(n \times n, K)$ to polynomial functions on $M(n \times n, K) \times M(n \times n, K)$. Show that this map is cotninuous in the Zariski topology. Show that GL(n, K) are groups under matrix multiplication.

Problem 2. A linear algebraic group over K is subvariety V of $M(n \times n, K)$ that is closed under multiplication and taking inverses. Show that any linear algebraic group V in $M(n \times n, K)$ is a subvariety contained in GL(n, K). Show that multiplication and inverse are given by rational functions of the matrix entries where the denominator is a power of the determinant and hence does not vanish on V. Show that GL(n, K) is a linear algebraic group in the sense that there is a linear algebraic group V in $M(n' \times n', K)$ for some n' and an isomorphism $GL(n, K) \to V$ of K-algebraic varieties that commutes with multiplication and inverses. Show that the polynomial functions on GL(n, K) are polynomials in the variables X_{ij} and det⁻¹. Show that any linear algebraic group over \mathbb{R} , resp. \mathbb{C} , is a Lie group, resp. a complex Lie Group.

Problem 3. Let Q be a positive definite quadratic form on a *n*-dimensional real vector space. Show that the orthogonal group of Q is a Lie group by showing that it is a smooth submanifold of $GL(n, \mathbb{R})$. [Hint: Show that there

is no loss of generality in taking Q to be the standard Euclidean quadratic form. Then show a matrix $A \in M(n \times n, \mathbb{R})$ is in the orthogonal group if and only if its columns form an orthonormal basis of \mathbb{R}^n . Then use the implicit function theorem to show establish the result.] The result is the orthogonal group of Q, denoted O(n).

Problem 4. Show that O(n) has two components. Define SO(n) to be the component of orthogonal matrices of determinant 1. Show SO(n) is a subgroup of O(n) and is the component of the identity.

Problem 5. Given any non-degenerate quadratic form Q on \mathbb{R}^n (meaning that if Q(x + y) = Q(y) for all $y \in \mathbb{R}^n$, then x = 0). Show any such form can be diagonalized, i.e., there is a basis e_1, \ldots, e_n such that $Q(e_i) = \pm 1$ and $Q(e_i + e_j) = Q(e_i) + Q(e_j)$ for all $i \neq j$. Define the orthogonal group of Q and show that it is a sub Lie group of $GL(n, \mathbb{R})$.

Problem 6. Show that the group of unitary $n \times n$ -matrices, i.e., $A \in GL(n, \mathbb{C})$ satisfying $\overline{A}^{tr} = A^{-1}$ is a real Lie subgroup of $GL(n, \mathbb{C})$. Show that in general it is not a complex Lie subgroup.

Problem 7. Let A be a non-degenerate skew symmetric pairing on \mathbb{R}^{2n} . Define $Symp(2n, \mathbb{R})$ as the set of elements in $g \in GL(2n, \mathbb{R})$ that preserve A in the sense that A(x, y) = A(gx, gy) for all $x, y \in \mathbb{R}^{2n}$. Show that $Symp(2n, \mathbb{R})$ is a sub-Lie Group of $GL(n, \mathbb{R})$.

Problem 8. Let \mathbb{R}^+ act on $\mathbb{R}^2 \setminus \{(0,0)\}$ by $t \cdot (x,y) = tx, t^{-1}y$. Show that this is a smooth action free action and every orbit is a closed submanifold of $\mathbb{R}^2 \setminus \{(0,0)\}$. Show the quotient space is not Hausdorff.