Problem Set 1 for Lie Groups: Fall 2024

August 29, 2024

Problem 1. Fix a field K and consider the polynomial ring with variables
X;j with 1 <,j <mn. This is the ring of polynomial functions (with coeffi-
cients in K) on K™. We identify the space M(n x n, K) of n x n matrices
over K with the vector space K "* in such a way that the function X; ; assigns
to each matrix its (7, j)-entry. For any r, we give K" the Zariski topology
where the closed subsets are exactly the loci in K" where some given col-
lection of polynomial vanishes. (These are called subvarieties.) Show that
this is indeed a topology. Show that GL(n,K) C M(n x n, K) is open in
the Zariski topology. Show that SL(n, K), the matrices of determinant 1,
is a closed subset in the Zariski topology. Show that matrix multiplication
is an algebraic map, meaning that it pulls back polynomial functions on
M (n x n, K) to polynomial functions on M (n xn, K) x M(n xn, K). Show
that this map is cotninuous in the Zariski topology. Show that GL(n, K)
and SL(n, K) are groups under matrix multipliciation.

Problem 2. A linear algebraic group over K is subvariety V of M(nxn, K)
that is closed under multiplication and taking inverses. Show that any linear
algebraic group V in M(n x n, K) is a subvariety contained in GL(n, K).
Show that multiplication and inverse are given by rational functions of the
matrix entries where the denominator is a power of the determinant and
hence does not vanish on V. Show that GL(n,K) is a linear algebraic
group in the sense that there is a linear algebraic group V in M (n' x n/, K)
for some n’ and an isomorphism GL(n,K) — V of K-algebraic varieties
that commutes with multiplication and inverses. Show that the polynomial
functions on GL(n, K) are polynomials in the variables X;; and det™!. Show
that any linear algebraic group over R, resp. C, is a Lie group, resp. a
complex Lie Group.

Problem 3. Let @) be a positive definite quadratic form on a n-dimensional
real vector space. Show that the orthogonal group of () is a Lie group by
showing that it is a smooth submanifold of GL(n,R). [Hint: Show that there



is no loss of generality in taking @ to be the standard Euclidean quadratic
form. Then show a matrix A € M (n xn,R) is in the orthogonal group if and
only if its columns form an orthonormal basis of R”. Then use the implicit
function theorem to show establish the result.] The result is the orthogonal
group of @, denoted O(n).

Problem 4. Show that O(n) has two components. Define SO(n) to be
the component of orthogonal matrices of determinant 1. Show SO(n) is a
subgroup of O(n) and is the component of the identity.

Problem 5. Given any non-degenerate quadratic form ¢ on R” (meaning
that if Q(xz +y) = Q(y) for all y € R™, then = = 0). Show any such form
can be diagonalized, i.e., there is a basis ej,...,e, such that Q(e;) = +1
and Q(e; +e;) = Q(e;) + Q(e;) for all i # j. Define the orthogonal group of
@ and show that it is a sub Lie group of GL(n,R).

Problem 6. Show that the group of unitary n X n-matrices, ie., A €
GL(n,C) satisfying A" = A1 is a real Lie subgroup of GL(n,C). Show
that in general it is not a complex Lie subgroup.

Problem 7. Let A be a non-degenerate skew symmetric pairing on R?".
Define Symp(2n,R) as the set of elements in g € GL(2n,R) that preserve
A in the sense that A(z,y) = A(gz,gy) for all z,y € R*". Show that
Symp(2n,R) is a sub-Lie Group of GL(n,R).

Problem 8. Let RT act on R?\ {(0,0)} by t- (x,y) = tz,t~1y. Show that
this is a smooth action free action and every orbit is a closed submanifold
of R?\ {(0,0)}. Show the quotient space is not Hausdorff.



