
Problem Set 1 for Lie Groups: Fall 2024

August 29, 2024

Problem 1. Fix a field K and consider the polynomial ring with variables
Xij with 1 ≤ i, j ≤ n. This is the ring of polynomial functions (with coeffi-

cients in K) on Kn2
. We identify the space M(n× n,K) of n× n matrices

over K with the vector space Kn2
in such a way that the function Xi,j assigns

to each matrix its (i, j)-entry. For any r, we give Kr the Zariski topology
where the closed subsets are exactly the loci in Kr where some given col-
lection of polynomial vanishes. (These are called subvarieties.) Show that
this is indeed a topology. Show that GL(n,K) ⊂ M(n × n,K) is open in
the Zariski topology. Show that SL(n,K), the matrices of determinant 1,
is a closed subset in the Zariski topology. Show that matrix multiplication
is an algebraic map, meaning that it pulls back polynomial functions on
M(n×n,K) to polynomial functions on M(n×n,K)×M(n×n,K). Show
that this map is cotninuous in the Zariski topology. Show that GL(n,K)
and SL(n,K) are groups under matrix multipliciation.

Problem 2. A linear algebraic group over K is subvariety V of M(n×n,K)
that is closed under multiplication and taking inverses. Show that any linear
algebraic group V in M(n × n,K) is a subvariety contained in GL(n,K).
Show that multiplication and inverse are given by rational functions of the
matrix entries where the denominator is a power of the determinant and
hence does not vanish on V . Show that GL(n,K) is a linear algebraic
group in the sense that there is a linear algebraic group V in M(n′ × n′,K)
for some n′ and an isomorphism GL(n,K) → V of K-algebraic varieties
that commutes with multiplication and inverses. Show that the polynomial
functions on GL(n,K) are polynomials in the variables Xij and det−1. Show
that any linear algebraic group over R, resp. C, is a Lie group, resp. a
complex Lie Group.

Problem 3. Let Q be a positive definite quadratic form on a n-dimensional
real vector space. Show that the orthogonal group of Q is a Lie group by
showing that it is a smooth submanifold of GL(n,R). [Hint: Show that there
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is no loss of generality in taking Q to be the standard Euclidean quadratic
form. Then show a matrix A ∈M(n×n,R) is in the orthogonal group if and
only if its columns form an orthonormal basis of Rn. Then use the implicit
function theorem to show establish the result.] The result is the orthogonal
group of Q, denoted O(n).

Problem 4. Show that O(n) has two components. Define SO(n) to be
the component of orthogonal matrices of determinant 1. Show SO(n) is a
subgroup of O(n) and is the component of the identity.
Problem 5. Given any non-degenerate quadratic form Q on Rn (meaning
that if Q(x + y) = Q(y) for all y ∈ Rn, then x = 0). Show any such form
can be diagonalized, i.e., there is a basis e1, . . . , en such that Q(ei) = ±1
and Q(ei + ej) = Q(ei) +Q(ej) for all i 6= j. Define the orthogonal group of
Q and show that it is a sub Lie group of GL(n,R).
Problem 6. Show that the group of unitary n × n-matrices, i.e., A ∈
GL(n,C) satisfying A

tr
= A−1 is a real Lie subgroup of GL(n,C). Show

that in general it is not a complex Lie subgroup.

Problem 7. Let A be a non-degenerate skew symmetric pairing on R2n.
Define Symp(2n,R) as the set of elements in g ∈ GL(2n,R) that preserve
A in the sense that A(x, y) = A(gx, gy) for all x, y ∈ R2n. Show that
Symp(2n,R) is a sub-Lie Group of GL(n,R).

Problem 8. Let R+ act on R2 \ {(0, 0)} by t · (x, y) = tx, t−1y. Show that
this is a smooth action free action and every orbit is a closed submanifold
of R2 \ {(0, 0)}. Show the quotient space is not Hausdorff.
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