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Throughout G is a compact Lie group. We fix an orientation for g and
extend this to a global orientation of the the tangent spaces of G which is
both left- and right-invariant.

1 Invariant Measure and Integration on a Com-
pact Lie Group

Recall that a Riemannian metric on a manifold is a smoothly varying family
of positive definite, symmetric inner products on the tangent bundle. Fix
a positive definite symmetric inner product Be on g. There is a unique
left-invariant Riemannian metric on G whose value at the identity is Be.
This and the orientation of g produce a volume form ω ∈ Ωn(G). A frame
{v1, . . . , vn} at a point g ∈ G is a positively oriented frame if and only if
ω(g)(v1 ∧ · · · ∧ vn) > 0. In this case the value of ω on this frame is the
n-dimensional of the parallelpiped spanned by the frame as measured in the
inner product g∗Be. This volume form is left-invariant in the sense that
(g·)∗ω = ω. This leads to a notion of measure and integration. The measure
of an open subset U is

∫
U ω where U has the induced orientation. Integration

is denoted ∫
G
fdvol(G) =

∫
G
fω,

for a continuous function f on G. Since G is compact every open subset
has finite measure and every continuous function has finite integral. This
notion is left invariant in the sense that g∗(U) and U have the same volume
and

∫
G g
∗fdvolG =

∫
G fvolG.

Since the space of n-forms is the space of sections of a line bundle over
G, if we fix an orientation on G, then two left-invariant n-forms ω and ω′

that are positive on this orientation differ by a positive constant: ω′ = λω
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where
λ = vol′(G)/vol(G) > 0,

with vol(G), resp. vol′(G) is the volume of G with respect ω′, resp. ω, the
measure and the notion of integration are determined up to a multiplicative
constant

Since left and right multiplication commute, right multiplication by an
element g ∈ G produces a new left-invariant measure R(g)∗ω, which as we
have seen is a positive multiple of ω. But since right multiplication by g is an
orientation-preserving diffeomorphism ofG to itself,

∫
GR(g)∗ω =

∫
G ω. This

implies that R(g)∗ω = ω. Thus, the left-invariant measure and integration
are also right-invariant. That is to say we have constructed a bi-invariant
measure and a bi-invariant notion of integration.

Left- and right-invariant measures exist more generally on topological
groups and are called Haar measures. By the same argument, for a com-
pact topological group, a left invariant Haar measure is automatically right-
invariant, so one has bi-invariant Haar measures.

2 Invariant metrics for G-spaces

Fix a bi-invariant measure on G as in the previous section, leading to a
bi-invariant integration over G. Suppose that G × V → V is a real linear
representation of G on a finite dimensional vector space. Then there is a
positive definite, symmetric inner product on V that is invariant under G
in the sense that for all g ∈ G and all v, w ∈ V we have

〈gv, gw〉 = 〈v, w〉.

Begin with an arbitrary positive definite symmetric inner product B(·, ·)
on V and define

〈v, w〉 =

∫
G
B(gv, gw)dvolG.

Clearly, 〈v, w〉 is bilinear, symmetric and positive definite.

Claim 2.1. 〈·, ·〉 is G-invariant.

Proof. By the right-invariance of integration

〈hv, hw〉 =

∫
G
B(ghv, ghw)dvolG =

∫
G
B(gv, gw)dvolG.

Corollary 2.2. There is a symmetric, positive definite inner product on g
that is invariant under the adjoint representation.
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3 Complete Reducibility

Definition 3.1. An R-linear G-module is simple if it has no R-linear G-
submodules except {0} and the entire R-module. A finite dimensional R-
linear representation of G is completely reducible if it can be written as a
direct sum of simple R-linear G-modules. A Lie group G is reductive if every
finite dimensional R-linear G-module is completely reducible.

Corollary 3.2. Any compact Lie group is reductive. That is to say, let
G × V → V be a finite dimensional real linear representation of G. Then
there is a direct sum decomposition v = ⊕i∈I|Vi where the Vi are invariant
under the G-action and each Vi is a simple G-module.

Proof. Suppose that V is an R-linear representation of G and W ⊂ V is a
proper G-submodule. Take a positive definite, symmetric G-invariant inner
product on V and consider W⊥ ⊂ V . Since the inner product is positive
definite, V = W ⊕W⊥. Since the inner product is G-invariant, W⊥ is a
G-submodule. Using this result and induction on dimension we see that V
is completely reducible.

This proves that G is a reductive group.

Replacing the symmetric positive definite inner product by a positive
definite hermitian inner product, one can prove in the same manner that
any finite dimensional C-linear representation of G is completely reducible.
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