
Lecture VI: Bott Periodicity

October 31, 2020

Our goal here is to give a proof of Bott periodicity for the unitary group.
There is a similar proof for the orthogoal group but we will not discuss that
case.

1 The Statement

Let U(n) ⊂ GLn(C) be the unitary group; that is to say the subgroup of

matrices A ∈ GLn(C) satisfying A
tr
A = Id. We have the closely related

subgroup SU(n) ⊂ U(n) of unitary matrices of determinant 1. Indeed there
is a smooth, locally trivial fibration

SU(n)→ U(n)
det−→ S1.

Since the natural inclusion U(1) ⊂ U(n) gives a section of this fibration, we
see

• det : U(n)→ S1 induces an isomorphism on π1, so that π1(U(n)) ∼= Z,

• the inclusion SU(n) ⊂ U(n) induces an isomorphism on πi for all i > 1.

There are natural inclusions U(n) ⊂ U(n+ 1).

Claim 1.1. There is a locally trivial smooth fibration

U(n)→ U(n+ 1)→ S2n+1.

In particular, the natural inclusion induces a map πi(U(n))→ πi(U(n+ 1))
that is an isomorphism for all i < 2n and a surjection on π2n.

Proof. The columns of A ∈ U(n + 1) give a unitary basis for Cn+1 with
its usual hermitian inner product. The map U(n + 1) → S2n+1 sends A to
the unit vector in Cn+1 given by the last column. The action of U(n) by
right multiplication on U(n + 1) has orbit space identified with S2n+1 by
this map.
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This result tells us that the homotopy groups of U(n) stabilize: For any
i for all n > (i/2), the group πi(U(n)) is independent of n.

One way to view this is to take the direct limit U of the U(n) under
the natural inclusions. This is the group of complex matrices with rows
and columns numbered 1, 2, . . . which are the image of some element in
U(n) for some n under the inclusion induced by the map Cn ⊂ C∞. Then
πi(U) = πi(U(n)) for any n > i/2.

Bott periodicity is a computation of the homotopy groups of U , or equiv-
alently of the homotopy groups of πi(U(n)) for i < 2n.

Theorem 1.2. (Bott Periodicity)

πi(U) ∼=

{
0 if i ≡ 0 (mod 2)

Z if i ≡ 1 (mod 2).
.

Furthermore, the second loop space Ω2(SU) is homotopy equivalent to U .

2 Grassmannians

For any n, k consider the space of n-dimensional complex linear subspaces of
Cn+k. We denote this space by GrC(n, n+ k). It is a manifold of dimension
nk, and indeed it is the homogeneous space U(n + k)/U(n) × U(k) where
U(n)× U(k) are block matrices (

A 0
0 B

)
where A ∈ (n) an B ∈ U(k). Given A ∈ U(n + k) we associate to A the
linear subspace spanned (over C) by its first n columns. It is elementary
to see that the right action of U(n) × U(k) leaves this map invariant and
identifies the quotient space with GrC(n, k).

The following is clear.
Let Gr(n,∞) be the limit of the Grassmannians of n-planes in n+k space

for fixed n as k 7→ ∞. Let Vn ⊂ U denote the subgroup of U consisting of
matrices of the form (

Idn 0
0 A

)
where A ∈ U , and let FC(n,∞) be the quotient of U/V . It is space of pairs
consisting of a n-plane P in C∞ together with a unitary frame (or basis) for
P . The natural action of U(n) is to act on the frame. This is a free action
with quotient GrC(n,∞).
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Since the inclusion of V ⊂ U is a homotopy equivalence, it follows that
πi(GrC(n,∞)) ∼= πi−1(U). Even stronger, we have

Proposition 2.1. There is a homotopy equivalence Ω(Gr(n,∞))→ U . )

We need a finite version of this result. Here is one that will suffice.
Consider the frame bundle FrC(n, n) = U(2n)(Idn × U(n)) associated to
the Grassmannian of n-planes in C2n. By Claim 1.1

πi(FrC(n, n)) = 0 for i ≤ 2n.

From the homotopy exact sequence of the fibration

U(n)→ FrC(n, n)→ GrC(n, n)

we see that

Theorem 2.2. πi(U(n)) = πi+1(GrC(n, n)) for i < 2n and the induced
map Ω(GrC(n, n))→ U(n) induces an isomorphism on homotopy groups in
dimensions < 2n

3 Jacobi Fields in a symmetric space

Let us recall the definition of a symmetric space.

Definition 3.1. A Riemannian manifold M is said to be a symmetric space
if for each p ∈ M there is an isometry Tp : M → M that fixes p and whose
differential at p is −Id.

It is equivalent to say that Tp reserves any geodesic passing though p
while reversing the direction of the geodesic..

Lemma 3.2. Let γ : [0, a] → M be a geodesic parameterized at unit speed
with endpoints γ(0) = p and γ(a) = q. Let µ(t) = Tq(γ(t)) and define

ρ(t) =

{
γ(t) if 0 ≤ t ≤ a
µ(2a− t) if a ≤ t ≤ 2a.

Then ρ is a geodesic of length 2a containing γ as an initial segment.

Proof. Since γ is a geodesic and Tq is an isometry µ is a geodesic. Thus,
α = ρ|[0,a] and β = ρ|[a,2a] are geodesics with α(a) = β(a). Also, α′(a) =
β′(a), so that these geodesics fit together to form a geodesic.
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As a consequence we see that the Riemannian manifold M is complete
since geodesics extend forever.

A similar argument shows that if γ is a geodesic γ(0) = p and γ(a) = q,
then TqTp(γ(t) = γ(t+ 2a).

Lemma 3.3. Let M be a symmetric space and let R(u, v) be the Riemannian
curvature operator:

R(u, v) = ∇u∇v −∇v∇u −∇[u,v].

Let γ be a geodesic with tangent vector V . Let W be a parallel vector field
along γ. Then R(W,V )V is also parallel along γ.

Proof. Let X be a vector field parallel along γ. Consider 〈R(W,V )V,X〉.
Fix two points p = γ(0) and q = γ(a), and let T = TqTp. This is an isometry
that stablizes γ and sends γ(t) to γ(t+ 2a). Since T is an isometry,

〈R(T (W ), T (V ))T (V ), T (X)〉 = 〈R(W,V )V,X〉.

Of course T (V ) = V . On the other hand, Tp(W (p)) = −W (p). Since W is
parallel, it follows that Tp(W ) = −W . By the same argument Tq(W ) = −W
and hence T (W ) = W . The same argument applies to X. It follows that
〈R(W,V )V,X〉 takes the same value at γ(t) and at γ(t + 2a). But a is
arbitrary so 〈R(V,W )V,X〉 is constant.

Since X is parallel along γ it follows that R(W,V )V is also.

Notice that W 7→ R(W,V )V is a linear map TMγ(t0) → TMγ(0). We
claim that it is self-adjoint with respect to the inner product on TMγ(t).
This follows from the symmetry of the Riemannian curvature tensor and the
skew-symkmetry of R under both the interchange of the first two variables
and the interchange of last two variables that

〈R(W1, V )V,W2〉 = 〈R(W2, V )V,W1〉.

Thus, R(·, V )V : TMγ(0) → TMγ(0) can be diagonalized in some orthonor-
mal basis for TMγ(0). Let {e1, . . . , ek} be the eigenvalues of this quadratic
form with respect to eigenvectors {w1, . . . , wk}. Since the quadratic form is
parallel along γ the wi extend to parallel fields Wi = wi(t) along γ. Then
R(Wi, V )V = eiWi. Writting W =

∑
i ai(t)Wi the Jacobi equation becomes

the diagonal system of equations

{äi(t) + eiai = 0}i
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4 The case of U(n)

We use the metric on U(n) which comes from the inner product on u(n)
given by 〈A,B〉 = −trace(AB)

We consider geodesics in U(n) from 1 to −1. First notice that any
A ∈ U(n) can be diagonalized with diagonal entries of norm 1. The cor-
responding statement for the Lie algebra is that any element of u(n) is in
the orbit under the adjoint action of U(n) a diagonal matrix with purely
imaginary entries down the diagronal. Given such a diagonal matrix in u(n)

ia1 0 · · · 0
0 ia2 · · · 0
...

... · · · 0
0 0 · · · ian


with the ai ∈ R the geodesic it generates is

eita1 0 · · · 0
0 eita2 · · · 0
...

... · · · 0
0 0 · · · eitan


All such geodesicsγ begin at 1 in the sense that γ(0) = 1. The condition

γ(1) = −1 is equivalent to ai is an odd integer of π for all 1 ≤ i ≤ n. Every
geodesic with γ(0) = 1 and γ(1) = −1 is conjugate in U(n) to one of this
form.

Let us specialize to SU(2n).

Proposition 4.1. Every geodesic from 1 to −1 in SU(2n) is conjugate in
SU(2n) to one of the form

A =


eita1 0 · · · 0

0 eita2 · · · 0
...

... · · · 0
0 0 · · · eita2n


with the ai being odd integral multiplies of π and with

∑2n
i=1 ai = 0. The

length of any such geodesic is π
√
a21 + · · ·+ a22n.

Proof. The first statement follows from the discussion above and the fact
that an element in su(2n) is an element of u(2n) of trace zero. The last
statement follows immediately from a computation of the trace of (A′)2.
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It follows directly that the minimal geodesics from 1 to −1 in SU(2n)
are those where each ai = ±1 and n of them are +1 and n of them are
−1. Associated to any minimal geodesic γ in SU(2n) with γ(0) = 1 and
γ(1) = −1 is an n-dimensional complex lineaer subspace of C2n, namely the
+iπ eiigenspace of γ′(0). Conversely, given any such subspace we let X be
the matrix in su(2n) that is +iπ on this subspace and −iπ on its orthogonal
complement. This element X is tangent vector at γ(0) of a unique geodesic
as required. We have established:

Lemma 4.2. The space of minimal geodesics from 1 to −1 in SU(2n) is a
Grassmannian Gr(n, n) of n-dimensional complex linear subspaces in C2n.

4.1 The Jacobi equation along a geodesic from 1 to −1 in
SU(2n)

Let

γ(t) =


eiπa1t 0 0 · · · 0

0 eiπia2t 0 · · · 0
...

...
... · · ·

...
0 0 0 · · · eiπa2nt

 .

We compute the eigenvalues of the form R(·, V )V on the tangent bundle
to SU(2n) along γ.

Lemma 4.3. The matrices in su(2n) with only entries on the diagonal are
in the 0-eigenspace of R(·, V )V . For each i < j the (real) two-dimensional
subspace of su(2n) with non-zero entries only in positions (i, j) and (j, i) is

contained in the eigenspace of R(·, V )V with eigenvalue π2

4 ((ai − aj)2.

Proof. (Following Milnor) Since the integral curves of any left-invariant vec-
tor field are geodesics, it follows ∇XX = 0 for X left-invariant. Let X and
Y be left-invariant vector fields. Using this and computing ∇X+Y (X + Y )
yields ∇X(Y ) +∇Y (X) = 0. The torsion-free condition then implies

∇X(Y ) =
1

2
[X,Y ].

It follows by direct computation that R(W,V )V = 1
4 [V, [W,V ]]. Now we

apply this with V a diagonal matrix with diagonal entries ia,π, . . . , ia2nπ
and W a matrix with Wij = w and Wji = −w and all other entries zero.
Clearly,

[V,W ] = iπ(aj − ai)W.
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It follows that

R(W,V )V =
1

4
π2(ai − aj)2W.

Corollary 4.4. Let γ is a minimal geodesic from 1 to −1 in SU(2n), then
the dimension of the kernel of the Hessian of E at γ is of (real) dimension
2n2. The minimal critical points of E on Ω1,2(SU(2n, 1,−1) are Bott-Morse.

Proof. In this case the tangent vector to γ at 1 has n eigenvectors with
eigenvalue iπ and n eigenvectors with eigenvalue −iπ. According to the
previous computation there is a (real) 2n2 dimensional eigenspace for linear
map W 7→ R(W,V )(V ) with eigenvalue π2 and the only other eigenvalue of
this operator is 0. For any Jacobi field J along γ vanishing at 1 and with
tangent vector W in this eigenspace satisfies

∇γ̇∇γ̇J + π2J = 0.

Letting W denote the extension of W to a parallel vector field along γ, we see
that the Jacobi field vanishing at γ(0) = 1 is sin(πt)W (t). Hence, this Jacobi
fields vanishes at γ(1) = −1. This gives a real 2n2 dimensional subspace
in the kernel of the Hessian of E at γ. On the other hand, Jacobi fields
vanishing at 1 and with tangent vector in the 0-eigenspace grow linearly
and hence do not vanish at −1. Thus, the kernel of the Hessian of E at a
minimal γ has real dimension 2n2. We have already seen that the space of
minimal geodesics is Gr(n, n) which has complex dimension n2 and hence
real dimension 2n2. It follows that the kernel of the Hessian at every minimal
geodesic is the tangent space to the space of minimal geodesics at that
point.

4.2 The index at a non-minimal geodesic

Now we give a lower bound for the index of the Hessain at a non-minimal
geodesic.

Proposition 4.5. Let γ be a non-minimal geodesic. Then the index of the
Hessian of E at γ is at least 2(n+ 1).

This proposition relies on the following general result about the index of
the energy functional at a geodesic.
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Theorem 4.6. Let M ⊂ RN be a properly embedded Ck+2 submanifold
(1 ≤ k ≤ ∞) and let E be the energy functional on the path space of W 1,2-
paths in M from p to q. Let γ be a critical point of E. Then γ is a Ck+2-
curve that satisfies the geodesic equation ∇γ̇(γ̇(t)) = 0 for all t ∈ [0.1] For
each t ∈ [0, 1] let Jγ(t) be lhe dimension of the space of Jacobi fields along
γ|[0,t] vanishing at both end points. Then:

1. Jγ(t) = {0} except for finitely many t ∈ (0, 1].

2. Jγ(t) is finite dimensional for all t ∈ [0, 1].

3. The index of the Hessγ(E) =
∑

t∈[0,1) dimJγ(t).

This theorem is proved in the last section of this lecture.

Proof. (of the proposition assuming the theorem.) The tangent vector to
γ at γ(0) = 1 is conjugate to a diagonal matrix with diagaonal entries
iπa1, . . . , iπa2n with the ai being odd integers summing to zero. Also, there
is at least one ai with |ai| ≥ 3. If ai < aj , there is 2 dimensional eigenspace
with eigenvalue π2(ai − aj)2 given by matrices with non-zero entries only
in positions (i, j) land (j, i). For any parallel vector field W along γ with
initial vector in this 2-dimensional eigenspace the Jacobi field vanishing at
γ(0) = 1 with tangent vector at γ(0) = 1 equal to W (0) is given by

sin(π(aj − ai))tW (t).

This Jacobi field vanishes at t = 2/(aj − ai), 4/(aj − ai), · · · . Thus, the
number of zeros of such a Jacobi field in the interval 0 < t < 1 is (aj − ai −
2)/2. Since this eigenspace is two-dimensional, it adds (aj − ai − 2) to the
dimension of the kernel of the Hessian of E at γ.

The following is an elementary exercise.

Claim 4.7. Suppose that a1, . . . , a2n are odd integers summing to 0 and
suppose that at least one of them has absolute value ≥ 3. Then∑

{i,j|aj>ai}

(aj − ai − 2) ≥ 2(n+ 1).

This proves the proposition.
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5 Completion of the proof of Bott Periodicity

We have just established that the minimal geodesics in Ω1,2(SU(2n), 1,−1)
are identified with Gr(n, n) and that the index on any non-minimal geodesic
in this space is 2(n+1). Thus, the inclusion GrC(n, n) ⊂ Ω1,2(SU(2n), 1,−1)
induces an isomorphism on the homotopy groups in diemsions ≤ 2n. Hence,
for i ≤ 2n we have

πi(Gr(n, n)) = πi(Ω
1,2(SU(2n), 1,−1)) = πi(Ω(SU(2n), 1) = πi+1SU(2n).

On the other hand, Theorem 2.2 says πi−1(U(n)) = πi(Gr(n, n)) for i ≤ 2n.
We conclude that πi−1(U(n)) = πi+1(SU(2n)) for all i ≤ 2n. Since the
inclusion SU(k) ⊂ U(k) induces an isomorphism on all πi for i > 1, we see
that πi−1(U(n)) = πi+1(U(2n)) for all 1 < i ≤ 2n. Of course, by stability
πi(U(n)) = πi(U(2n)) for i ≤ 2n+ 1. Thus, for all 1 < i ≤ 2n we have

πi−1(U(n)) = πi+1(U(n)).

We can reformulate this as

πi−1(U) = πi+1(U) for all i ≥ 2.

This of gives that for all i ≥ 1

π2i(U) = 0

π2i−1(U) ∼= Z.

Let Φ be the inclusion GrC(n, n) → Ω(SU(2n)). It induces an isomor-
phism on homotopy groups in degrees ≤ 2n. Let F : U(n) → Ω(GrC(n, n))
be the map induced by the fibration

U(n)→ FC(n, n)→ GrC(n, n).

It induces an isonorphism on homotopy groups in degrees < 2n. Hence
Ω(Φ)◦F : U(n)→ Ω2(SU(2n)) induces an isomorphism on homotopy groups
in degrees < 2n. Taking the limit as n 7→ ∞ gives a homotopy equivalence

U → Ω2(SU).

This completes the proof of Bott Periodicity.
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6 The index of the Hessian

In this section fix a properly embedded smooth n-dimensional manifold M ⊂
RN and we give a general description of the Hession of E : Ω1,2(M,p, q)→ R
at a geodesic γ.

Theorem 6.1. Let M ⊂ RN be a properly embedded Ck+2 submanifold
(1 ≤ k ≤ ∞) and let E be the energy functional on the path space of W 1,2-
paths in M from p to q. Let γ be a critical point of E. Then γ is a Ck+2-
curve that satisfies the geodesic equation ∇γ̇(γ̇(t)) = 0 for all t ∈ [0.1] For
each t ∈ [0, 1] let Jγ(t) be lhe dimension of the space of Jacobi fields along
γ|[0,t] vanishing at both end points. Then:

1. Jγ(t) = {0} except for finitely many t ∈ (0, 1].

2. Jγ(t) is finite dimensional for all t ∈ [0, 1].

3. The index of the Hessγ(E) =
∑

t∈[0,1) dimJγ(t).

Remark 6.2. What we are really saying is that the index of the Hessian
of E at γ|[0,1] is a weakly increasing function of t with finitely many jumps.
These occur at t for which γ|[0,t] is a degenerate critical point for the energy
functional, corresponding to eigenvalues zero for the Hessian of E at these
geodesics. Furthermore, all the zero eigenvalues at of the Hessian at γ|[0,t]
are limits of positive eigenvalues of the Hessian at γ|[0,t′] as t′ approaches t
from below. That is to say, it is never the case that as t increases a negative
eigenvalue becomes zero. Also, the zero eigenvalues for the Hessian of the
energy functional at γ|[0,t] cross zero and are positive eigenvalues for the
Hessian of energy at γ|[0,t′] for t′ < t and they are negative eigenvalues of
the Hessian of the energy functional at γ|[0,t′] for t′ slightly greater than t.
As t increases all the spectral flow is in the negative direction and this flow
occurs anytime there is a zero eigenvalue and makes the full eigenspace of 0
at t cross from positive before t to negative after t.

6.1 Finiteness of the index

Suppose that the have a continuous γ : (−ε, ε)×[0, 1]→M with the property
that there is a subdivision 0 = T0 < T1 < . . . , TN < TN+1 = 1 such that the
restriction of γ to each strip (−ε, ε) × [Ti, Ti+1] is Ck+2. Then for each s ∈
(−ε, ε) the velocity γ̇(t, s) is a piecewise smooth, but possibly discontinuous
at the Ti. Let λ = ((∂/∂s)γ)(t, 0) We denote δTi(γ̇) the difference of the
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limit of γ̇(t; ) for t′ 7→ t from above minus the limit from below. Then the
first variation formula for the energy is

d

ds
|s=0E(s) =

∫ 1

0
〈λ̇(t), γ̇(t)〉dt = −

∫ 1

0
〈λ(t),∇γ̇ γ̇(t)〉dt−

∑
i

〈λ(Ti, δTi γ̇〉.

The point is that shifting the t-derivative from the first factor to the second
uses integration by parts of 〈λ(t), γ̇(t)〉 and this function has discontinuities
whose sum has to be included as an error term.

A similar argument shows that if γ(t, s1, s2) is a two-parameter family
of continuous curves with a division 0 = T0 < T1 · · · < TN < TN+1 = 1 so
that for every (s1, s2) the curve γ(t, s1, s2) is smooth on each of the Ti, Ti+1],
then

∂

∂s1
| s1=0

∂

∂s2
| s2=0E = −

∫ 1

0
〈λ2,∇γ̇∇γ̇λ1+R(λ1, γ̇)γ̇(t)〉dt−

∑
Ti

〈λ2(Ti), δTi(λ1)〉.

We shall be working simultaneously with spaces associated with geodesics
γ|[a,b] for 0 ≤ a < b ≤ 1. We will keep the parametrization by t fixed, so
that these curves are maps [a, b] → M from qa to qb where qt = γ(t). Such
a geodesic sits in a space denoted Ω1,2(M, qa, qb, [a, b]) ⊂ W 1,2([a, b],RN ).
The tangent space to this space at a curve γ defined on [a, b] is a W 1,2-path
λ(t) defined for a ≤ t ≤ b with λ(t) ∈ Tγ(t)M for all t and λ(a) = 0 and
λ(b) = 0. The energy functional is

Ea,b =

∫ b

a
|γ̇(t)|2dt,

and critical points are curves defined on [a, b] that are critical points. These
are Ck+2-geodesics defined on [a, b] parametrized at constant speed. By a
Jacobi field along γ|[a,b] we mean a tangent vector λ satisfying the Jacobi
equation

∇γ̇∇γ̇λ(t) +R(λ(t), γ̇(t))γ̇(t) = 0.

These are automatically Ck+1-paths.
Let γ be a geodesic in Ω1,2(M,p, q) (defined on [0, 1]). Then there is an

ε > 0 such that for every t ∈ [0, 1] the the restriction of the exponential map
at γ(t) to the ball of radius ε in Tγ(t)M is a Ck+2-diffeomorphsim of this ball
onto an open subset of M . We choose 0 = T0 < T1 . . . < TN < TN+1 = 1 so
that the length of γ|[Ti,Ti+1] is less than ε for all 1 ≤ i ≤ N .

Claim 6.3. A Jacobi field along γ|[Ti,Ti+1] is determined by its endpoints,
and for each any values for λ(Ti) and λ(Ti+1 there is a Jacobi field along
γ|[Ti,Ti+1] with these values at the end points.
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Proof. The length of γ|[Ti,Ti+1] is γ̇(Ti) times (Ti+1 − Ti) so that expγ(Ti)(γ̇)
is a diffeomorphism on the ball of radius Ti+1 − Ti. This means that any
non-zero Jacobi field for γ|[Ti,Ti+1] vanishing at Ti is non-zero at Ti+1. Since
the space of Jacobi fields for γ|[Ti,Ti+1] vanishing at Ti is of dimension n, the
result follows.

Definition 6.4. A broken Jacobi field along γ is a tangent λ(t) that is a
smooth Jacobi field for the γ[Ti,Ti+1] but it is not necessarily differentiable at
the γ(Ti). Let BJγ be the space of broken Jacobi fields that vanish at γ(0)
and γ(1). The claim above shows that this space is the 2N dimensional
manifold

∏N
i=1 Tγ(Ti)M , the diffeomorphism being given by associating to

each broken Jacobi field its values at the Ti.
Let Ω1,2

0 (M,p, q)γ be the subspace of tangent vectors that vanish on all
the Ti.

Claim 6.5. We have an orthogonal decomposition

Ω1,2(M,p, q)γ = Ω1,2
0 (M,p, q)γ ⊕BJγ .

Proof. The intersection of the two subspaces is {0} since a broken Jacobi
field that vanishes at the Ti is identically zero. On the other hand, given
any tangent vector λ, let J(λ) be the unique broken Jacobi field that takes
the same values at the Ti as λ. Clearly, λ − J(λ) ∈ Ω1,2

0 (M,p, q)γ . This
proves that we have a direct sum decomposition.

We show that the two summands are orthogonal; i.e., that∫ 1

0
〈λ2(t),∇γ̇∇γ̇λ1(t) +R(λ1, γ̇)γ̇(t)〉dt+

∑
i

〈λ2(Ti), δTi λ̇1〉 = 0

for λ1 ∈ BJγ and λ2 ∈ Ω1,2
0 (M,p, q)γ . The point is that the integral vanishes

since λ1 is a Jacobi field on each of the subintervals [Ti, Ti+1] and the finite
sum vanishes since λ2(Ti) = 0 for all i.

Claim 6.6. The Hessian of E at γ is positive definite on Ω1,2
0 (M,p, q)γ.

Proof. There is no non-zero Jacobi field for each of the γ|[Ti,Ti+1]. This
implies that the Hessian of E at γ|[Ti,Ti+1] is non-degenerate. The space

Ω1,2
0 (M,p, q)γ decomposes as a direct sum of the tangent spaces to the

γ|[Ti,Ti+1]. But each of these geodesics is the unique shortest geodesic be-
tween its endpoints. These two facts together imply that the Hessian for E
at γ|[Ti,Ti+1] is positive definite. On the other hand, the Hessian for E at γ
is the sum of the Hessians for E at the γ|[Ti,Ti+1], and consequently is also

positive definite on their sum which is Ω1,2
0 (M,p, q)γ .
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Corollary 6.7. The negative eigensace of the Hessian of E at γ is contained
in BJγ and is the negative eigenspace of the restriction of the Hessian of E
at γ to this subspace. Since dimBJγ is finite, the index of the Hessian for
E at any geodesic γ is finite.

6.2 Completion of the Proof of Theorem 6.1

Let d(t) be the index of the Hessian of E at γ|[0,t]. We complete the proof
of the theorem by showing the following four things.
Step 1. d(t) = 0 for t ∈ [0, 1] sufficiently small.

Step 2. d(t) is a weakly monotone increasing function; i.e., if t′ > t
then d(t′) ≥ d(t).

Step 3. If tn is an increasing sequence converging to t∞ ∈ [0, 1],
then d(t∞) = d(tn) for all n sufficiently large.

Step 4. For any t ∈ [0, 1), there is ε > 0 such that for any t′ with
t < t′ < t+ ε we have d(t′) = d(t) + dim(Jγ(t)).

Here are the proofs of the four steps.

Proof of Step 1. We have already seen that for t > 0 sufficiently small
there are no non-zero Jacobi fields along γ|[0,t] vanishing at both end points.
From this Step 1 is immediate.

Proof of Step 2. If λ : [0, t] → M is a tangent, then the extension λ̃ of λ
to be zero on [t, t′] is a tangent vector for γ|[0,t′]. This defines an embedding

of ϕ : Ω1,2
0 (M,p, qt, [0, t])γ|[0,t] ⊂ Ω1,2

0 (M,p, qt′ , [0, t
′])|γ|[0,t′] with

Hessγ|[0,t](E)(λ1, λ2) = Hessγ|[0,t′](E)(λ̃1, λ̃2).

Thus, a maximal negative definite subspace of Hessγ|[0,t](E) maps to a neg-

ative definite subspace of Hessγ|[0,t′](E). This proves Step 2.

Proof of Step 3. We let i0 be the minimal index such that t∞ ≤ Ti0 . Then
we can assume that Ti0−1 < tn ≤ Ti0 for all n. Hence, for 1 ≤ n ≤ ∞ the
spaces BJγ|[0,tn]

are all identified with the space space, namely

i0−1∏
i=1

Tγ(Ti)M.

For n ≤ ∞, let En, denote the energy functional on Ω1,2(M,p, γ(tn), [0, tn])
restricted to BJγ|[0,tn]

.
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By Corollary 6.7, we know that for n ≤ ∞ the index of the En is the index
of the energy functional E at γ|[0,tn]. We view these as smooth functions on∏i0−1
i=1 Tγ(Ti)M . Then En for n <∞ converge smoothly to E∞. Under these

identifications the points γ|[0,tn] are identified with the origin. Let N(∞)
be the negative eigenspace of the Hessian for E∞ at γ|[0,t∞]. It follows that
for all n sufficiently large, En is negative definite on N(∞), and hence that
the index of En is at least as large as that of E∞. Since tn < t∞, we have
already seen that the index of En is less than or equal to that of E∞. Hence
they are equal.

Proof of Step 4. By choosing a different set of division points we can
assume that t is in the interior of one of the intervals; say Ti0 < t < Ti0+1.
Arguing exactly as before, for all t′ sufficiently close to t we can identify all
the BJγ|[0,t′] with

∏i0
i=1 Tγ(Ti)M in such away that the γ|[0,t′] are identified

with the origin and the restrictions of the energy functionals for t′ converge
to that of t as t′ 7→ t. It follows that for any sequence t′n 7→ t, after replacing
the sequence by a subsequence, the negative eigenspaces of the restriction to
BJγ|[0,t′n]

of the Hessian of energy functional at γ|[0,t′n] converge to a subspace

of the non-positive eigenspace for the Hessian of the energy functional at
γ(t) restricted to BJγ|[0,t] . Hence, the index of the Hessian for the energy

functional at γ|[0,t′n], d(t′n), is less than or equal to d(t) + dim(Jt(γ)).
Let us establish the opposite inequality. Let W1, . . . ,Wk ∈ BJγ|[0,t] be

tangent vectors along γ|[0,t] that are a basis for the negative eigenspace of
the Hessian of E at γ|[0,t], and let J1, . . . , J` be a basis for the Jacobi fields
along γ|[0,t] vanishing at γ(0) and γ(t). We extend all these vector fields
by zero along γ|[t,t′]] to become tangent vectors for γ|[0,t′]. Since the Ji are
Jacobi fields on [0, t] and identically zero on [t, t′],

Hessγ|[0,t′](E)(Ji, Jj) = 0

and
Hess|γ[0,t′](E)(Ji,W`) = 0.

We know that the map Jt(γ)→ Tγ(t)M given by Ji 7→ ∇γ̇J(t) is an injection.
Let X1, . . . , X` be smooth vector fields along γ|[0,t′] such that(

Aij
)

=
(
〈Xi(t),∇γ̇(Jj)(t)〉

)
is the identity matrix.

Let N(c) be the subspace of the tangent space to γ|[0,t′] generated by

{W1, . . . ,Wk, (c
−1J1 − cX1), . . . , (c

−1Js − cXs)}.
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As c 7→ 0

Hessγ|[0,t′](E)
(
W1, . . . ,Wk, (c

−1J1 − cX1), . . . , (c
−1Js − cXs)

)
converges to a negative definite matrix. Thus, for all c > 0 sufficiently
small the Hessian at γ|[0,t′] is negative definite on the subspace N(c). Thus,
d(t′) ≥ d(t) + dim(Jt(γ)).

This completes the proofs of the four steps and hence of the theorem.
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