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1 Introduction

Any elliptic curve E over the rational field Q is isomorphic to a unique curve of the form
EA,B : y2 = x3 + Ax + B, where A,B ∈ Z and for all primes p, p6 ∤ B whenever p4 | A.
Let HA,B denote the (naive) height of EA,B, defined by H(EA,B) = max{4|A|3, 27B2}. Let
△(EA,B) = −4A3 − 27B2 be the discriminant, and

C(EA,B) =
∏
p

pfp(E)

denote the conductor. Here fp(E) = 0, 1, 2, depending on whether E has good, multiplica-
tive, or additive reduction at p.

The document aims to prove the following statement:

Let p ≤ 5 be a prime. When elliptic curves in any large family are ordered by height, the
average size of the p-Selmer group is p+ 1.

Here, we need to recall the definition of ”large family.” For each prime l, let Σl be a closed
subset of {(A,B) ∈ Z2

l : △(A,B) = −4A3 − 27B2 ̸= 0} with boundary of measure zero. To
such a collection Σ = (Σl)l, we associate the set FΣ of elliptic curves over Q, where EA,B ∈ FΣ

if and only if (A,B) ∈ Σl for all l. We then say that FΣ is a family of elliptic curves over
Q that is defined by congruence conditions. Furthermore, we can also impose ”congruence
conditions at infinity”, where Σ∞ consists of all (A,B) with △(A,B) positive, negative, or
either.

A family F = FΣ of elliptic curves defined by congruence conditions is said to be large
if, for all sufficiently large primes l, the set Σl contains all EA,B with (A,B) ∈ Z2

l such
that l2 ∤ △(A,B). In particular, any family of elliptic curves EA,B defined by finitely many
congruence conditions over A and B is large, and the set of all elliptic curves over Q is large
(no congruence conditions).

Finally, by the statement above, we can prove a majority (66.48%) of all elliptic curves
over Q, when ordered by height, satisfies the BSD rank conjecture.
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2 The case p = 2

This section is divided into two parts. For the first part, we study the distribution of GL2(Z)-
equivalence classes of binary quartic forms f(x, y) = ax4 + bx3y + cx2y2 + dxy3 + ey4 with
respect to their fundamental invariants I(f) = 12ae − 3bd + c2 and J(f) = 72ace + 9bcd −
27ad2 − 27eb2 − 2c3; In particular, we prove the following theorem:

1○Let h(i)(I, J) denote the number of GL2(Z)-equivalence classes of irreducible binary
quadratic forms having 4− 2i real roots in P1 and invariants equal to I and J . Then:

(a)
∑

H(I,J)<X h(0)(I, J) = 4
135

ζ(2)X5/6 +O(X3/4+ϵ)

(b)
∑

H(I,J)<X h(1)(I, J) = 32
135

ζ(2)X5/6 +O(X3/4+ϵ)

(c)
∑

H(I,J)<X h(2)(I, J) = 8
135

ζ(2)X5/6 +O(X3/4+ϵ)

Here H(f) = max{|I|3, J2

4
} is the height.

2○A pair (I, J)× Z× Z occurs as the invariants of an integral binary quartic form if and
only if it satisfies one of the following congruence conditions:

(a)I ≡ 0(mod 3) and J ≡ 0(mod 27)
(b)I ≡ 1(mod 9) and J ≡ ±2(mod 27)
(c)I ≡ 4(mod 9) and J ≡ ±16(mod 27)
(d)I ≡ 7(mod 9) and J ≡ ±7(mod 27)
We say the pair (I, J) is eligible if it satisfies the above condition.

3○Let h(i)(I, J) denote the number of GL2(Z)-equivalence classes of irreducible binary
quadratic forms having 4 − 2i real roots in P1 and invariants equal to I and J . Let n0 =
4, n1 = 2, n2 = 2. Then for i = 0, 1, 2, we have

lim
X→∞

∑
H(I,J)<X h(i))(I, J)

|{(I, J)eligible | (−1)i△(I, J) > 0, H(I, J) < X}|
=

2ζ(2)

ni

Here △(f) = 4I(f)3−J(f)2

27
is the discriminant.

The second part describes the precise connection between binary quartic forms and ele-
ments in the 2-Selmer groups of elliptic curves. This connection allows us, through the use of
certain mass formulae for elliptic curves over Qp, to compute the average size of the 2-Selmer
groups of elliptic curves (or of appropriate families of elliptic curves) via a count of binary
quartic forms satisfying a certain weighted infinite set of congruence conditions. We then ap-
ply the uniformity results of the first part to count these binary quartic forms, thus completing
the proof.

2.1 Part I: The number of classes of integral binary quartic forms
having bounded invariants

Let VR denote the vector space of binary quartic forms over the real numbers, f(x, y) =
ax4 + bx3y + cx2y2 + dxy3 + ey4. We say f ∈ VZ, or f is integral if a, b, c, d, e ∈ Z. The group
GL2(R) acts on VR naturally by
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γ · f(x, y) = f((x, y) · γ), γ ∈ GL2(R), x, y ∈ R, f ∈ VR

For i = 0, 1, 2, let V
(i)
Z denote the set of elements in VZ having nonzero discriminant and i

pairs of complex conjugate roots and 4− 2i real roots. For any GL2(Z)-invariant set S ⊂ VZ,
let N(S;X) denote the number of GL2(Z)-equivalence classes of irreducible elements f ∈ S
satisfying H(f) < X. Then, the main theorem of this section is the following restatement:

(a)N(V
(0)
Z ;X) = 4

135
ζ(2)X5/6 +O(X3/4+ϵ);

(b)N(V
(1)
Z ;X) = 32

135
ζ(2)X5/6 +O(X3/4+ϵ);

(c)N(V
(2)
Z ;X) = 8

135
ζ(2)X5/6 +O(X3/4+ϵ).

For i = 0, 1, 2, let V
(i)
R denote the set of points in VR having nonzero discriminant and i

pairs of complex roots and 4 − 2i real roots. Then V
(2)
R is the set of definite forms in V

(i)
R .

Let V
(2+)
R and V

(2−)
R denote the subset of V

(2)
R consisting of the positive and negative definite

forms. Let V
(i)
Z = V

(i)
R ∩ VZ for i = 0, 1, 2+, 2−. Then we have the following facts:

(a)The set of binary quartic forms in VR having fixed invariants I and J consists of just

one SL±
2 (R)-orbit if 4I3 − J2 < 0; this orbit lies in V

(1)
R .

(b)The set of binary quartic forms in VR having fixed invariants I and J consists of three

SL±
2 (R)-orbit if 4I3 − J2 > 0; In this case, there is one orbit from each of V

(0)
R , V

(2+)
R , and

V
(2−)
R .

Then we have the following lemma: Let f be an element in V
(i)
R having nonzero discrim-

inant. Then the order of the stabilizer of f in GL2(R), denoted as 2ni (note that we have
changed the meaning of symbol ni here), is 8 if i = 0, 2, and 4 if i = 1.

Let F denote a fundamental domain for the action of GL2(Z) on GL2(R) by left multi-
plication. We also assume that F ⊂ GL2(R) is semi-algebraic and connected and that it is
contained in a standard Siegel set, i.e., F ⊂ N ′A′KΛ. (See the paper for the definition of
the sets K,A′, N ′,Λ.) In the same way as before in the proof of density of discriminates of
quartic/quintic field, we may write

N(V
(i)
Z ;X) =

∫
h∈G0

#{x ∈ Fh · L ∩ V irr.
Z : H(x) < X}dh

ni ·
∫
h∈G0

dh

Where V irr.
Z denotes the set of irreducible elements in VZ, L = L(i) is the fundamental

set for the action of GL2(R) over V (i)
R , dh denotes the Haar measure. And G0 is a compact,

semialgebraic, left K-invariant set in GL2(R) that is the closure of a nonempty open set and
in which every element has determinant greater than or equal to 1.

Now, let us consider the integral elements in the multiset RX(h · L(i)) = {w ∈ Fh · L(i) :
|H(w)| < X}. Then, we could show that the number of integral binary quartic forms in
RX(h · L(i)) that are reducible over Q with a ̸= 0 is O(X2/3+ϵ), and the number of GL2(Z)-
orbits of integral binary quartic forms f ∈ VZ such that △(f) ̸= 0 and H(f) < X whose
stabilizer in GL2(Q) has size greater than 2 is O(X3/4+ϵ). To sum up, we have

N(V
(i)
Z ;X) = Vol(RX(L)/ni +O(X3/4+ϵ)

Finally, by calculus computation, we could show
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Vol(RX(L
(i))) =

{
16
135

ζ(2)X5/6 i = 0, 2+, 2−
64
135

ζ(2)X5/6 i = 1

Which ends our proof.
Finally, at the end of this subsection, we prove a stronger version of the conclusion that

involves congruence conditions. First, suppose S is a subset of VZ defined by congruence
conditions modulo finitely many prime powers. Then we have

N(S ∩ V
(i)
Z ;X) = N(S ∩ V

(i)
Z ;X)

∏
p

µp(S) +O(X3/4+ϵ)

where µp(S) denotes the p-adic density of S in VZ and where the implied constant depends
only on S and ϵ. Here N(S;X) denote the number of irreducible GL2(Z)-orbits in S having
height less than X.

There is a generalized version of the above theorem. Let p1, ..., pk be distinct prime num-
bers. For j = 1, ..., k, let ϕpj : VZ → R be a GL2(Z)-invariant function on VZ such that ϕpj(f)

depends only on the congruence class of f modulo some power of pj. Let Nϕ(V
(i)
Z ;X) denote

the number of the irreducible GL2(Z)-orbits in V
(i)
Z having invariants bounded by X, where

each orbit GL2(Z) · f is counted with weight ϕ(f) =
∏k

j=1 ϕpj(f). Then we have

Nϕ(V
(i)
Z ;X) = N(V

(i)
Z ;X)

k∏
j=1

∫
f∈VZpj

ϕ̃pj(f)df +O(X3/4+ϵ)

where ϕ̃pj is the natural extension of ϕpj to VZpj
, df denotes the additive measure on VZpj

normalized so that
∫
f∈VZpj

df = 1, and where the implied constant in the error term depends

only on the local weight functions ϕpj and ϵ.

2.2 Part II: The average size of the 2-Selmer groups of elliptic
curves

Recall that every elliptic form over Q can be written in the form

E = EA,B : y2 = x3 + Ax+B

where A,B ∈ Z and p4 ∤ A if p6 | B. Let I(E) = −3A and J(E) = −27B, and also denote
the curve E = EA,B by EI,J . The height of this curve is defined by

H(EA,B) = max{4|A|3, 27B2} =
4

27
max{I(E)3, J(E)2/4}

A slightly different height H ′(E) is defined by

H ′(E) = H(I(E), J(E)) = max{|I(E)|3, |J(E)|2/4}

We say that a binary quartic form over a field K is K-soluble if the equation z2 = f(x, y)
has a nonzero solution with x, y, z ∈ K. Next, a binary quartic form f ∈ VQ is called locally
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soluble if it is R-soluble and Qp for all primes p. Then we have the following theorem, which
turns the 2-Selmer group into a form that is more convenient for us to handle:

Let E = EI,J be an elliptic curve over Q. Then the elements of the 2-Selmer group of E
are in one-to-one correspondence with PGL2(Q)-equivalence classes of locally soluble integral
binary quartic form having invariants equal to 24I and 26J .

Furthermore, the set of integral binary quartic forms that have rational linear functions and
invariants equal to 24I and 26J lie in one PGL2(Q)-equivalence class and this class corresponds
to the identity element in the 2-Selmer group of E.

Therefore, to compute the number of PGL2(Q)-equivalence classes of locally soluble inte-
gral binary quartic forms with bounded height and no rational linear factor, we need to count
each PGL2(Z)-orbit, PGL2(Z) · f , weighted by 1/n(f), where n(f) is equal to the number
of PGL2(Z)-orbits inside the number of PGL2(Q)-equivalence class of f in VZ. Since only
negligible many cases make a difference, there is no loss for us to change the weight from
1/n(f) to 1/m(f), where

m(f) =
∑

f ′∈B(f)

#AutQ(f
′)

#AutZ(f ′)
=

∑
f ′∈B(f)

#AutQ(f)

#AutZ(f ′)

Here B(f) denotes a set of representatives for the action of PGL2(Z) on the PGL2(Q)-
equivalence class of f in VZ, and AutQ(f) (resp.AutZ(f)) denotes the stabilizer of f in PGL2(Q)
(resp.PGL2(Z)).

And there is also the local version:

mp(f) =
∑

f ′∈Bp(f)

#AutQp(f
′)

#AutZp(f
′)

=
∑

f ′∈Bp(f)

#AutQp(f)

#AutZp(f
′)

with the following proposition: Suppose f ∈ VZ has nonzero discriminant. Then m(f) =∏
pmp(f).
Now, let F be a large family of elliptic curves. By the theorem at the end of the last

subsection, we have

∑
E∈F,H′(E)<X

(#S2(E)− 1) = N(VZ ∩ S∞(F ); 212X)
∏
p

∫
Sp(F )

1

mp(f)
df + o(X5/6)

Where N(VZ ∩ S∞(F ); 212X) is equal to 210

27
Vol(PGL2(Z)\PGL2(R))M∞(V, F ;X), and∫

Sp(F )
1

mp(f)
df is equal to

∣∣210
27

∣∣
p
Vol(PGL2(Zp))Mp(V ;F ) + o(X5/6).(Here, Mp and M∞ de-

note the ”local mass”; see the paper.) This implies that
∑

E∈F,H′(E)<X(#S2(E) − 1) =

Vol(PGL2(Z)\PGL2(R))M∞(V, F ;X)×
∏

pVol(PGL2(Zp))Mp(V ;F )+o(X5/6). On the other
hand, we have ∑

E∈F,H′(E)<X

1 = M∞(F ;X)
∏
p

Mp(F ) + o(X5/6)

Which indicates that
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lim
X→∞

ΣE∈F,H′(E)<X(#S2(E)− 1)

ΣE∈F,H′(E)<X1
= Vol(PGL2(Z)\PGL2(R))

M∞(V, F ;X)

M∞(F ;X)

∏
p

(Vol(PGL2(Zp))
Mp(V, F )

Mp(F )
)

Notice that M∞(V,F ;X)
M∞(F ;X)

= 1
2
, and Mp(V,F )

Mp(F )
= 1 except for p = 2, where the fraction equals 2.

Therefore,

lim
X→∞

ΣE∈F,H′(E)<X(#S2(E)− 1)

ΣE∈F,H′(E)<X1
= Vol(PGL2(Z)\PGL2(R))

∏
p

Vol(PGL2(Zp))

= 2ζ(2)
∏
p

(1− p−2) = 2

Which ends our proof.
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3 The case p = 3

The techniques for the case p = 3 are similar to the case p = 2. Due to the time limit, I only
list some crucial steps here.

The proof could also be divided into two parts. For the first part, we study the distribution
of SL3(Z)-equivalence classes of strongly irreducible integral ternary cubic forms f = f(x, y, z)
with respect to their fundamental invariants I(f) and J(f), which comes from the Hessian
matrix

H(f(x, y, z)) =

∣∣∣∣∣∣
fxx fxy fxz
fyx fyy fyz
fzx fzy fzz

∣∣∣∣∣∣
with the relation H(H(f)) = 12288I(f)2 · f + 512J(f) · H(f). Here I(f) has degree 4,

and J(f) has degree 6. (We say an integral ternary cubic form f is strongly irreducible if f
is irreducible, and the common zero set of f and its Hessian H(f) in P2 contains no rational
points.) In particular, we prove the following theorem:

1○Let h(I, J) denote the number of SL3(Z)-equivalence classes of strongly irreducible
integral ternary cubic forms having invariants equal to I and J . Then:

(a)
∑

△(I,J)>0,H(I,J)<X h(I, J) = 32
45
ζ(2)ζ(3)X5/6 + o(X5/6)

(b)
∑

△(I,J)<0,H(I,J)<X h(I, J) = 128
45
ζ(2)ζ(3)X5/6 + o(X5/6)

Here H(f) = max{|I|3, J2

4
} is the height, and △(f) = (4I(f)3 − J(f)2)/27 is the discrimi-

nant.
2○A pair (I, J) occurs as the pair of invariants of an integral ternary cubic form if and

only if (I, J) ∈ 1
16
Z× 1

32
Z, and the pair (16I, 32J) satisfies congruence conditions modulo 64

(see the paper.)
3○Let h(I, J) denote the number of SL3(Z)-equivalence classes of strongly irreducible

integral ternary cubic forms having invariants equal to I and J . Then

lim
X→∞

∑
△(I,J)>0,H(I,J)<X h(I, J)∑

△(I,J)>0,H(I,J)<X 1
=

∑
△(I,J)<0,H(I,J)<X h(I, J)∑

△(I,J)<0,H(I,J)<X 1
= 3ζ(2)ζ(3)

In the second part, we describe the precise correspondence between ternary cubic forms
and elements of the 3-Selmer groups of elliptic curves. In particular, let E/Q be an elliptic
curve. Then, the elements in the 3-Selmer group of E are in bijective correspondence with
PGL3(Q)-orbits on the set of locally soluble ternary cubic forms in VZ having invariants equal
to I(E) and J(E). Furthermore, the set of all ternary cubic forms in VZ having invariants
equal to I(E) and J(E) that are not strongly irreducible lie in a single PGL3(Q)-orbit and
this orbit corresponds to the identity element in the 3-Selmer group of E. We then apply
this correspondence, together with the counting results of the first part and the local mass
formulae, which ends our proof:

lim
X→∞

ΣE∈F,H′(E)<X(#S3(E)− 1)

ΣE∈F,H′(E)<X1
= Vol(PGL3(Z)\PGL3(R))

∏
p

Vol(PGL3(Zp))

= 3ζ(2)ζ(3)
∏
p

((1− p−2)(1− p−3)) = 3
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4 The case p = 5

The techniques for the case p = 5 are similar to the case p = 2. Due to the time limit, I only
list some crucial steps here.

The proof could also be divided into two parts. For the first part, consider the space
VR = R5⊗∧2R5 consisting of quintuples (A,B,C,D,E) of skew-symmetric 5×5 real matrices.
For any ring R, we also define VR such that the entries are elements in R. The ring GL5(R)×
GL5(R) acts on VR as

(g1, g2) · (A,B,C,D,E) = (g1Ag
t
1, g1Bgt1, g1Cgt1, g1Dgt1, g1Egt1) · gt2

Define the determinant of (g1, g2) as det(g1, g2) = det(g21g2). Now let us consider the group

GR = {(g1, g2) ∈ GL5(R)×GL5(R) : det(g1, g2) = 1 | det(g1, g2) = 1}/{(λI5, λ−2I5)}

It is clear that the action of GL5(R)×GL5(R) over vR descends to an action of GR.
The ring of invariants for the action of GC over vC is freely generated by two elements I

and J having degree 20 and 30, respectively. Define the discriminant of an element v ∈ VR as
△(v) = △(I, J) = (4I3−J2)/27, which has degree 60; Define the height as H(v) = H(I, J) =
max{|I|3, J2

4
}.

Define V +
Z and V −

Z having positive and negative discriminant. For any GZ invariant set
S ⊂ VZ, let N(S;X) denote the number of GZ-orbits on strongly irreducible elements in S
having height less than X. Then we have the following theorem:

There exists a nonzero rational constant J such that

N(V ±
Z ;X) = |J | · Vol(GZ/GR) ·N±(X) + o(X5/6)

Here N±(X) is the number of pairs (I, J) ∈ Z × Z having height less than X and pos-
itive/negative discriminant. In fact, we have N+(X) = 8

5
X5/6 + O(X1/2) and N−(X) =

32
5
X5/6 +O(X1/2).

In the second part, we describe the precise correspondence between ternary cubic forms
and elements of the 5-Selmer groups of elliptic curves. In particular, let E/Q be an elliptic
curve. Then, the elements in the 5-Selmer group of E are in bijective correspondence with
GQ-orbits on the set of locally soluble ternary cubic forms in VZ having invariants equal to
I(E) and J(E). Furthermore, the elements in VZ having invariants equal to I(E) and J(E)
that are not strongly irreducible lie in a single PGL3(Q)-orbit and this orbit corresponds to
the identity element in the 5-Selmer group of E. We then apply this correspondence, together
with the counting results of the first part and the local mass formulae:

lim
X→∞

ΣE∈F,H′(E)<X(#S5(E)− 1)

ΣE∈F,H′(E)<X1
= Vol(GZ\GR)

∏
p

Vol(GZp)

This equals the Tamagawa number τ(G) = 5 and ends our proof.
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5 Applications in the BSD rank conjecture

In this section, we will prove that a majority (66.48%) of all elliptic curves over Q, when
ordered by height, satisfies the BSD conjecture, as stated before in Section 1. As a corollary,
a majority of all elliptic curves over Q have finite Tate-Shafarevich group.

First, we list two criteria that could determine that a given elliptic curve satisfies the BSD
rank conjecture:

1○Let p be an odd prime. Let E be an elliptic curve over Q with conductor N such that:
(a)E has good or multiplicative reduction at p;
(b)E[p] is an irreducible Gal(Q̄/Q)-module;
(c)there is at least one prime l ̸= p such that l || N and E[p] is ramified at l;
(d)The p-Selmer group Sp(E) of E is trivial.
Then, the algebraic and analytic ranks of E are both equal to 0.

2○Let p ≥ 5 be a prime. Let E be an elliptic curve with conductor N such that
(a)E has good or multiplicative reduction at p;
(b)E[p] is an irreducible Gal(Q̄/Q)-module;
(c)For all primes l || N such that l ≡ ±1(mod p), E[p] is ramified at l;
(d)If N is not squarefree, then there exists at least two prime factors l || N with l ̸= p and

where E[p] is ramified;
(e)If f has multiplicative reduction at p then E[p] is not finite at p, and if E has split mul-

tiplication reduction at p then p-adic Mazur-Tate-Teitelbaum L-invariant L(E) of E satisfies
ordp(L(E)) = 1;

(f)the p-Selmer group Sp(E) has order p.
Then, the algebraic and analytic ranks of E are both equal to 1.

It is worth mentioning that, when ordered by height, 100% of the elliptic curves over Q
satisfies (b)(c) of Theorem 5 and (b)(d) of Theorem 9.

For any prime p ≥ 5, let S0(p) be the set of elliptic curve EA,B : y2 = x3 +Ax+B over Q
such that:

•EA,B has good ordinary or multiplicative reduction at p;

Let S ′
1(p) be the subset of curves EA,B ∈ S0(p) also satisfying:

•If EA,B has multiplicative reduction at p, then p ∤, then p ∤ ordp(△(A,B)),
•If EA,B has split multiplicative reduction at p, then ordp(L(EA,B)) = 1;

and Let S1(p) be the subset of curves EA,B ∈ S ′
1(p) also satisfying:

•p ∤ ordl(△(A,B)) for all primes l ≡ ±1 (mod p) such that ordl(△(A,B)) > 0.

S0(p) ⊃ S ′
1(p) ⊃ S1(p) are all large families. We could compute the densities of S0(5), S

′
1(5), S1(5)

as
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µ(S0(5)) =
4 · 510

5(510 − 1)
> 0.8, µ(S ′

1(5)) = 0.7918054..., µ(S1(5)) > 0.7917957

In particular, we have µ(S ′
1(5))− µ(S1(5)) < 0.00001.

Now let us state a theorem by Dokchitser–Dokchitser: Let E be an elliptic curve and let p
be a prime. Let sp(E) and tp(E) denote the rank of the p-Selmer group of E and the rank of
E(Q)[p], respectively. Then sp(E)− tp(E) is even if and only if the root number of E is ±1.
Also, another theorem says that: Let F be any large family of elliptic curves over Q defined
by congruence conditions modulo powers of primes p such that p ≡ 1 (mod 4). Then, there
exists a finite union F ′ of large subfamilies of F such that when ordered by height, all elliptic
curves in F and F ′ are equidistributed, and F ′ contains a density of greater than 55.01% of
the elliptic curves in F .

Now, we could begin to prove the theorem that when ordered by height, at least 66.48%
of elliptic curves over Q have algebraic and analytic rank 0 and 1. By the theorem above, we
can find a finite union F ′ of large subfamilies in S1(5) of density κµ(S ′

1(5)) with κ ≥ 0.5501
such that for all E ∈ F ′, the root number of E and its −1-twist have opposite signs. Let
F = F ′ ∩ S1(5). We could show that at least 7/8 of the curves in F have an algebraic and
analytic rank equal to 0 or 1, which consists of a proportion

7

8
µ(F ) ≥ 7

8
(κµ(S ′

1(5))− 0.00001)

Next, we consider the set F ′′ of curves in S1(5) which the above arguments have not been
applied. We could show that this part at least consists of a proportion

19

24
(µ(S1(5))− µ(F )) ≥ 19

24
((1− κ)µ(S ′

1(5))− 0.00001)

of elliptic curves having algebraic and analytic rank 0 or 1. Finally, for the set of elliptic
curves in S0(5) on which the above arguments have not been applied, which has density at
least 0.8 − 0.79179 = 0.00820..., we could find an additional set of curves of density at least
3/8 × κ × 0.00820 = 0.00169... that have algebraic and analytic rank 0. To sum up all the
three cases we list above, a proportion of at least

(
7

8
κ+

19

24
(1− κ))× µ(S ′

1(5))− (
7

8
+

19

24
)× 0.00001 + 0.00169...

of elliptic curves have algebraic and analytic rank 0 or 1. Since κ ≥ 0.5501, this proportion
is at least 0.6648..., and therefore we are done.

See the illustration below. We neglect the difference between S ′
1(5) and S1(5) since

µ(S ′
1(5))− µ(S1(5)) < 0.00001 is quite small amount.
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