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1 Introduction

Any elliptic curve E over the rational field QQ is isomorphic to a unique curve of the form
Eap :y?> = a® + Ax + B, where A, B € Z and for all primes p, p® { B whenever p* | A.
Let Hu p denote the (naive) height of E4 g, defined by H(E4 p) = max{4|AJ*?,27B?}. Let
N(Eap) = —4A3 — 27B? be the discriminant, and

C(EA,B) _ prp(E)
p

denote the conductor. Here f,(E) =0, 1,2, depending on whether E has good, multiplica-
tive, or additive reduction at p.
The document aims to prove the following statement:

Let p <5 be a prime. When elliptic curves in any large family are ordered by height, the
average size of the p-Selmer group is p + 1.

Here, we need to recall the definition of ”large family.” For each prime [, let 3; be a closed
subset of {(A, B) € Z? : A(A, B) = —4A3 — 27B?% # 0} with boundary of measure zero. To
such a collection X = (¥;);, we associate the set Fy, of elliptic curves over Q, where E4 g € Fy,
if and only if (A, B) € ¥, for all [. We then say that Fy is a family of elliptic curves over
Q that is defined by congruence conditions. Furthermore, we can also impose ”congruence
conditions at infinity”, where ¥, consists of all (A4, B) with A(A, B) positive, negative, or
either.

A family F' = FY, of elliptic curves defined by congruence conditions is said to be large
if, for all sufficiently large primes [, the set X, contains all E4 p with (A, B) € Z7 such
that 2t A(A, B). In particular, any family of elliptic curves E4 p defined by finitely many
congruence conditions over A and B is large, and the set of all elliptic curves over Q is large
(no congruence conditions).

Finally, by the statement above, we can prove a majority (66.48%) of all elliptic curves
over Q, when ordered by height, satisfies the BSD rank conjecture.



2 The case p=2

This section is divided into two parts. For the first part, we study the distribution of G Ly(Z)-
equivalence classes of binary quartic forms f(z,y) = az? + bx3y + cx®y? + day® + ey* with
respect to their fundamental invariants I(f) = 12ae — 3bd + ¢* and J(f) = 72ace + 9bed —
27ad? — 27eb? — 2¢%; In particular, we prove the following theorem:

(DLet A% (I,J) denote the number of G Ly(Z)-equivalence classes of irreducible binary
quadratic forms having 4 — 24 real roots in P! and invariants equal to I and J. Then:

()2 p1,5y<x MO T) = 135¢(2) X0 + O(XP/1+)

(0) sr,pyex BV T) = 325C(2)X5/6 +O(X/)

()2 b(1,0)<x (2)([ J) = 35C(2) X0 + O(X%/te)

Here H(f) = max{|I[?, Z- } is the height.

@)A pair (I,J) x Z x Z occurs as the invariants of an integral binary quartic form if and
only if it satisfies one of the following congruence conditions:

(a)] = 0(mod 3) and J = 0(mod 27)

(b)I = 1(mod 9) and J = £2(mod 27)

(¢)] = 4(mod 9) and J = £16(mod 27)

(d)I = 7(mod 9) and J = £7(mod 27)

We say the pair (1, J) is eligible if it satisfies the above condition.

@Let h(I,J) denote the number of G Ly(Z)-equivalence classes of irreducible binary
quadratic forms having 4 — 2i real roots in P! and invariants equal to I and J. Let ng =
4,n1 =2,n9 = 2. Then for : = 0,1, 2, we have

. ZH (I,J)<X R (I, J) _2¢(2)
X% [{(1, Dyeligible | (—1)iA(L,J) > 0, H(I,J) < X} ni

Here A(f) = % is the discriminant.

The second part describes the precise connection between binary quartic forms and ele-
ments in the 2-Selmer groups of elliptic curves. This connection allows us, through the use of
certain mass formulae for elliptic curves over QQ,,, to compute the average size of the 2-Selmer
groups of elliptic curves (or of appropriate families of elliptic curves) via a count of binary
quartic forms satisfying a certain weighted infinite set of congruence conditions. We then ap-
ply the uniformity results of the first part to count these binary quartic forms, thus completing
the proof.

2.1 Part I: The number of classes of integral binary quartic forms
having bounded invariants
Let Vg denote the vector space of binary quartic forms over the real numbers, f(z,y) =

axt + bady + cay? + dxy® + ey*. We say f € Vg, or f is integral if a,b, ¢, d, e € Z. The group
GLs(R) acts on Vg naturally by



7f($7y):f((x7y)7>7 ’YEGLQ(R),JJ,QER,]CEVR

Fori=0,1,2, let Vz(i) denote the set of elements in V7 having nonzero discriminant and 4
pairs of complex conjugate roots and 4 — 2i real roots. For any G Ly(Z)-invariant set S C V7,
let N(S;X) denote the number of G Ly(Z)-equivalence classes of irreducible elements f € S
satisfying H(f) < X. Then, the main theorem of this section is the following restatement:

(N (V"5 X) = 5502 X0 + O/,

(DN (V5" X) = $2¢(2) X7 4 O(X¥/4+e);

(N (V2 X) = 502X/ + O(X4).

For i = 0,1, 2, let Vﬂéi) denote the set of points in Vg having nonzero discriminant and
pairs of complex roots and 4 — 2¢ real roots. Then Vﬂg) is the set of definite forms in Vﬂéi).
Let VRQJF) and VRQ*) denote the subset of Vﬂém consisting of the positive and negative definite
forms. Let VZ(i) = Vﬂéi) N Vg for i =0,1,2+,2—. Then we have the following facts:

(a)The set of binary quartic forms in Vg having fixed invariants I and .J consists of just
one SLE(R)-orbit if 47 — J? < 0; this orbit lies in Vi),

(b)The set of binary quartic forms in Vg having fixed invariants I and J consists of three
SL%E(R)—orbit if 413 — J? > 0; In this case, there is one orbit from each of Vﬂéo), Vﬂégﬂ, and
Ve |

Then we have the following lemma: Let f be an element in Vﬂél) having nonzero discrim-
inant. Then the order of the stabilizer of f in GLs(R), denoted as 2n; (note that we have
changed the meaning of symbol n; here), is 8 if i = 0,2, and 4 if 1 = 1.

Let F denote a fundamental domain for the action of GLs(Z) on GLs(R) by left multi-
plication. We also assume that F C GLs(R) is semi-algebraic and connected and that it is
contained in a standard Siegel set, i.e., F C N'A’KA. (See the paper for the definition of
the sets K, A’, N’,A.) In the same way as before in the proof of density of discriminates of
quartic/quintic field, we may write

NV x) Jrcon #{z € Fh- LOVE™ : H(z) < X }dh
v i Jpe, dh

Where VJ™ denotes the set of irreducible elements in Vz, L = L is the fundamental
set for the action of GLy(R) over Vﬂéi), dh denotes the Haar measure. And Gy is a compact,
semialgebraic, left K-invariant set in G Ly(R) that is the closure of a nonempty open set and
in which every element has determinant greater than or equal to 1.

Now, let us consider the integral elements in the multiset Rx(h - L) = {w € Fh - L® :
|H(w)] < X}. Then, we could show that the number of integral binary quartic forms in
Rx(h - LW) that are reducible over Q with a # 0 is O(X?/3%¢), and the number of G Ly(Z)-
orbits of integral binary quartic forms f € V7 such that A(f) # 0 and H(f) < X whose
stabilizer in G Ly(Q) has size greater than 2 is O(X?*4*+¢). To sum up, we have

NV, X) = Vol(Rx (L) /n; + O(X?/4+<)

Finally, by calculus computation, we could show



. 2)X5/6  §=0,2+,2—
Vol(Rx (L™)) = {135 2) =0

SLCR)X =1

Which ends our proof.

Finally, at the end of this subsection, we prove a stronger version of the conclusion that
involves congruence conditions. First, suppose S is a subset of V; defined by congruence
conditions modulo finitely many prime powers. Then we have

NS NV X) = NS X H 1p(S) + O(X3/4+e)

where 11,,(5) denotes the p-adic density of S in V7 and where the implied constant depends
only on S and e. Here N(S; X) denote the number of irreducible G Ly(Z)-orbits in S having
height less than X.

There is a generalized version of the above theorem. Let pq, ..., pr be distinct prime num-
bers. For j =1,....k, let ¢,, : Vz — R be a GLy(Z)-invariant function on Vz such that ¢,,(f)

depends only on the congruence class of f modulo some power of p;. Let Nd,(VZ(i); X) denote

the number of the irreducible G Ly(Z)-orbits in VZ@ having invariants bounded by X, where
each orbit GLy(Z) - f is counted with weight ¢(f) = H§:1 ¢p,(f). Then we have

k

N5 X) = N OTL o + o)

where épj is the natural extension of ¢, to Vij, df denotes the additive measure on Vzpj
normalized so that [ revs df =1, and where the implied constant in the error term depends
Pj

only on the local weight functions ¢, and €.

2.2 Part II: The average size of the 2-Selmer groups of elliptic
curves

Recall that every elliptic form over Q can be written in the form

E:EA7B:y2:$3+AI'+B

where A, B € Z and p* Y Aif p° | B. Let I(E) = —3A and J(F) = —27B, and also denote
the curve E = E4 5 by E7. The height of this curve is defined by

4
H(E4p) = max{4]|A]?,27B*} = 5 max{I(E)*, J(E)*/4}
A slightly different height H'(FE) is defined by

H'(E) = H(I(E), J(E)) = max{|[I(E)|*, |/ (E)[*/4}

We say that a binary quartic form over a field K is K-soluble if the equation 22 = f(z,y)
has a nonzero solution with z,y, z € K. Next, a binary quartic form f € Vj is called locally

4



soluble if it is R-soluble and Q, for all primes p. Then we have the following theorem, which
turns the 2-Selmer group into a form that is more convenient for us to handle:

Let E = B! be an elliptic curve over Q. Then the elements of the 2-Selmer group of £
are in one-to-one correspondence with PG Lo(Q)-equivalence classes of locally soluble integral
binary quartic form having invariants equal to 2*I and 2°.J.

Furthermore, the set of integral binary quartic forms that have rational linear functions and
invariants equal to 241 and 2°J lie in one PG Ly(Q)-equivalence class and this class corresponds
to the identity element in the 2-Selmer group of E.

Therefore, to compute the number of PG Ly(Q)-equivalence classes of locally soluble inte-
gral binary quartic forms with bounded height and no rational linear factor, we need to count
each PGLy(Z)-orbit, PGLy(Z) - f, weighted by 1/n(f), where n(f) is equal to the number
of PGLy(Z)-orbits inside the number of PG Ly(Q)-equivalence class of f in V7. Since only
negligible many cases make a difference, there is no loss for us to change the weight from
1/n(f) to 1/m(f), where

HEBU # utyz, f 0
Here B(f) denotes a set of representatives for the action of PGLy(Z) on the PG Ly (Q)-
equivalence class of f in V7, and Autg(f) (resp.Autz(f)) denotes the stabilizer of f in PG Ly (Q)

(resp.PGLo(Z)).
And there is also the local version:

#Athp #Athp )
Z # utg, f ) Z

f'eBp(

with the following proposition: Suppose f € Vz has nonzero discriminant. Then m(f) =

[T, m5(f)
Now, let F' be a large family of elliptic curves. By the theorem at the end of the last
subsection, we have

A+ o(X°/%)

> (#S(E) - 1) = N(V N Sx(F); 2°X) H /

m
EcF.H' (E)<X (F) M

Where N(Vz N Sa(F);22X) is equal to 27 Vol(PGLay(Z)\PGLy(R)) M (V, F; X), and
fs,,(F o df is equal to |2 7} Vol(PG Ly(Z,))M,(V; F) + o(X°/%).(Here, M, and M., de-
note the ”local mass”; see the paper.) This implies that > pcp g x(#52(E) — 1) =
Vol(PGL2(Z)\PGLz(R))MOO(V, F; X) x [, Vol(PGLy(Z,)) M,(V; F) +0(X5/%). On the other
hand, we have

Y 1= Mo(F;X) [ My(F) + o(X*)

EceF H (E)<X P

Which indicates that



. Zperm(p)<x(#S2(F) — 1) M, V F; X) M,(V, F)
lim ’ = Vol(PG Ly (Z)\PGL (Vol(PGLyo( B
X—00 Yperm(E)<x1 ( 2(Z)\ (R )) 1;[ 2(Zy)) M,(F) )

Notice that % = %, and Aﬁi‘&f;) = 1 except for p = 2, where the fraction equals 2.
Therefore,
) / Sa(E) —1
lim ZEera@<x(#5(E) — 1) Vol(PGLy(Z)\PGLy(R)) [ [ Vol(PGLs(Z,))
X—00 YEerH (E)<x1

P

—o@) [Ja-p2 =2

p

Which ends our proof.



3 The case p=3

The techniques for the case p = 3 are similar to the case p = 2. Due to the time limit, I only
list some crucial steps here.

The proof could also be divided into two parts. For the first part, we study the distribution
of SL3(Z)-equivalence classes of strongly irreducible integral ternary cubic forms f = f(z,y, 2)
with respect to their fundamental invariants I(f) and J(f), which comes from the Hessian
matrix

fw:v f:):y fwz
H(f(z,y,2)) = fyz fuy fy-
fzx fzy fzz

with the relation H(H(f)) = 122881(f)* - f + 512J(f) - H(f). Here I(f) has degree 4,
and J(f) has degree 6. (We say an integral ternary cubic form f is strongly irreducible if f
is irreducible, and the common zero set of f and its Hessian H(f) in P? contains no rational
points.) In particular, we prove the following theorem:

(DLet h(I,J) denote the number of SLj(Z)-equivalence classes of strongly irreducible
integral ternary cubic forms having invariants equal to I and J. Then:

(@) aan=0nmn<x M, J) = 2C(2)¢(3) X0 + o(XP/6)

(B2 A y<o.mrn<x ML, J) = LEC(2)C(3) X0 + o(X5/6)

Here H(f) = max{|I|?, Jf} is the height, and A(f) = (41(f)* — J(f)?)/27 is the discrimi-
nant.

@A pair (I,J) occurs as the pair of invariants of an integral ternary cubic form if and
only if (I,J) € 17 x 357, and the pair (161,32.J) satisfies congruence conditions modulo 64
(see the paper.)

BLet h(I,J) denote the number of SL3(Z)-equivalence classes of strongly irreducible
integral ternary cubic forms having invariants equal to [ and J. Then

W, J h(l,J
. ZA(LJ)>07H(LJ)<X ( ): ZA(I,J)<O,H(I,J)<X ( )=3C(2)C(3)

X—ro0 ZA(I,J)>0,H(I,J)<X 1 ZA(I,J)<O,H(],J)<X 1

In the second part, we describe the precise correspondence between ternary cubic forms
and elements of the 3-Selmer groups of elliptic curves. In particular, let F/Q be an elliptic
curve. Then, the elements in the 3-Selmer group of E are in bijective correspondence with
PG L3(Q)-orbits on the set of locally soluble ternary cubic forms in V7 having invariants equal
to I(E) and J(FE). Furthermore, the set of all ternary cubic forms in V; having invariants
equal to I(E) and J(E) that are not strongly irreducible lie in a single PG L3(Q)-orbit and
this orbit corresponds to the identity element in the 3-Selmer group of E. We then apply
this correspondence, together with the counting results of the first part and the local mass
formulae, which ends our proof:

lim ZEeF,H'(E)<X(#SB(E) B 1)
X—00 YEerH (E)<x1

—3¢(2)¢3) [J(1—p ) —p ) =3

p

= Vol(PGLs(Z)\PGLs(R)) | | Vol(PGLs(Z,))

p



4 The case p=5

The techniques for the case p = 5 are similar to the case p = 2. Due to the time limit, I only
list some crucial steps here.

The proof could also be divided into two parts. For the first part, consider the space
Ve = R5® AR5 consisting of quintuples (A, B, C, D, E) of skew-symmetric 5 x 5 real matrices.
For any ring R, we also define Vj such that the entries are elements in R. The ring GL5(R) X
GLs(R) acts on Vg as

(91.92) - (A, B,C, D, E) = (91491, 91 By, :C91, 1 D, 91 Egh) - g5
Define the determinant of (g;, g2) as det(gy, go) = det(gigs). Now let us consider the group

GR = {(91792) - GL5(R) X GL5(R) . det(gl,gg) =1 | det(gl,gg) = 1}/{()\]5, /\_215)}

It is clear that the action of GLs(R) x GL;(R) over vgi descends to an action of Gg.

The ring of invariants for the action of G¢ over vc is freely generated by two elements [/
and J having degree 20 and 30, respectively. Define the discriminant of an element v € Vi as
Aw) = A(I,J) = (4I* — J?) /27, which has degree 60; Define the height as H(v) = H(I,J) =
max{|I]%, £ }.

Define V,” and V, having positive and negative discriminant. For any Gz invariant set
S C Vg, let N(S;X) denote the number of Gz-orbits on strongly irreducible elements in S
having height less than X. Then we have the following theorem:

There exists a nonzero rational constant 7 such that

N(V55X) =T | Vol(Gz/Gr) - N*(X) + o(X*/°)

Here N*(X) is the number of pairs (I,.J) € Z x Z having height less than X and pos-
itive/negative discriminant. In fact, we have N*(X) = £X°6 4 O(X'/?) and N~ (X) =
B X536+ O(X12).

In the second part, we describe the precise correspondence between ternary cubic forms
and elements of the 5-Selmer groups of elliptic curves. In particular, let F/Q be an elliptic
curve. Then, the elements in the 5-Selmer group of E are in bijective correspondence with
Gg-orbits on the set of locally soluble ternary cubic forms in V7 having invariants equal to
I(F) and J(FE). Furthermore, the elements in Vz having invariants equal to [(E) and J(FE)
that are not strongly irreducible lie in a single PG L3(Q)-orbit and this orbit corresponds to
the identity element in the 5-Selmer group of E. We then apply this correspondence, together
with the counting results of the first part and the local mass formulae:

lim EEeF,H’(E)<X (#55(E) _ 1)
X—00 YperH (E)<x 1

= VOl(Gz\GR) H VOI(GZP)

p

This equals the Tamagawa number 7(G) = 5 and ends our proof.
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Applications in the BSD rank conjecture

In this section, we will prove that a majority (66.48%) of all elliptic curves over QQ, when
ordered by height, satisfies the BSD conjecture, as stated before in Section 1. As a corollary,
a majority of all elliptic curves over Q have finite Tate-Shafarevich group.

First, we list two criteria that could determine that a given elliptic curve satisfies the BSD

rank conjecture:

(DLet p be an odd prime. Let E be an elliptic curve over Q with conductor N such that:
(a) E has good or multiplicative reduction at p;

(b)E[p] is an irreducible Gal(Q/Q)-module;

(c)there is at least one prime [ # p such that [ || N and E[p| is ramified at [;

(d)The p-Selmer group S,(E) of E is trivial.

Then, the algebraic and analytic ranks of E are both equal to 0.

2)Let p > 5 be a prime. Let E be an elliptic curve with conductor N such that

(a) E has good or multiplicative reduction at p;

(b)E[p] is an irreducible Gal(Q/Q)-module;

(c)For all primes [ || N such that [ = £1(mod p), E[p] is ramified at [;

(d)If N is not squarefree, then there exists at least two prime factors [ || N with [ # p and

where Elp| is ramified;

(e)If f has multiplicative reduction at p then Elp| is not finite at p, and if E has split mul-

tiplication reduction at p then p-adic Mazur-Tate-Teitelbaum £-invariant £(FE) of E satisfies
ord,(£(F)) =1,

(f)the p-Selmer group S,(E) has order p.
Then, the algebraic and analytic ranks of E are both equal to 1.

It is worth mentioning that, when ordered by height, 100% of the elliptic curves over Q

satisfies (b)(c) of Theorem 5 and (b)(d) of Theorem 9.

For any prime p > 5, let Sy(p) be the set of elliptic curve Eq p : y* = 2® + Az + B over Q

such that:

as

o[J4 p has good ordinary or multiplicative reduction at p;
Let Si(p) be the subset of curves E4 g € Sy(p) also satisfying:

olf F4 p has multiplicative reduction at p, then p{, then p { ord,(A(A, B)),
olf £4 p has split multiplicative reduction at p, then ord,(£(E4p)) = 1;

and Let Si(p) be the subset of curves E4 p € S1(p) also satisfying:
op { ord;(A(A, B)) for all primes [ = 1 (mod p) such that ord;(A(A, B)) > 0.

So(p) D S1(p) D Si(p) are all large families. We could compute the densities of Sy(5), S7(5), S1(5)
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1(So(5)) = 560 1)

In particular, we have p(S7(5)) — ©(S1(5)) < 0.00001.

Now let us state a theorem by Dokchitser—Dokchitser: Let E be an elliptic curve and let p
be a prime. Let s,(E) and t,(F) denote the rank of the p-Selmer group of £ and the rank of
E(Q)[p], respectively. Then s,(E) —t,(E) is even if and only if the root number of E is £1.
Also, another theorem says that: Let F' be any large family of elliptic curves over Q defined
by congruence conditions modulo powers of primes p such that p = 1 (mod 4). Then, there
exists a finite union F” of large subfamilies of F' such that when ordered by height, all elliptic
curves in F' and F” are equidistributed, and F” contains a density of greater than 55.01% of
the elliptic curves in F.

> 0.8, 1(S}(5)) = 0.7918054..., 11(S1(5)) > 0.7917957

Now, we could begin to prove the theorem that when ordered by height, at least 66.48%
of elliptic curves over Q have algebraic and analytic rank 0 and 1. By the theorem above, we
can find a finite union F’ of large subfamilies in S;(5) of density xku(S7(5)) with £ > 0.5501
such that for all £ € F’, the root number of F and its —1-twist have opposite signs. Let
F = F'n Si(5). We could show that at least 7/8 of the curves in F' have an algebraic and
analytic rank equal to 0 or 1, which consists of a proportion

gﬂ(p) > g(w(s;(z))) — 0.00001)

Next, we consider the set F” of curves in S;(5) which the above arguments have not been
applied. We could show that this part at least consists of a proportion

S (51(5)) — u(F)) = 22(1 m)u(S1(3)) — 0.00001)

of elliptic curves having algebraic and analytic rank 0 or 1. Finally, for the set of elliptic
curves in Sy(5) on which the above arguments have not been applied, which has density at
least 0.8 — 0.79179 = 0.00820..., we could find an additional set of curves of density at least
3/8 x k x 0.00820 = 0.00169... that have algebraic and analytic rank 0. To sum up all the
three cases we list above, a proportion of at least

(Lt L= ) x (Si(6)) ~ (2 + 2)

of elliptic curves have algebraic and analytic rank 0 or 1. Since x > 0.5501, this proportion
is at least 0.6648..., and therefore we are done.

See the illustration below. We neglect the difference between S7(5) and S1(5) since
wu(S1(5)) — pu(S1(5)) < 0.00001 is quite small amount.

x 0.00001 + 0.00169...
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