Summary on the average size of p-Selmer groups

Jiahe Shen, ${ }^{(\boxtimes)}$ js6157@columbia.edu ${ }^{1}$
${ }^{1}$ Department of Mathematics, Columbia University

December 12, 2023

1 Introduction

Any elliptic curve E over the rational field \mathbb{Q} is isomorphic to a unique curve of the form $E_{A, B}: y^{2}=x^{3}+A x+B$, where $A, B \in \mathbb{Z}$ and for all primes $p, p^{6} \nmid B$ whenever $p^{4} \mid A$. Let $H_{A, B}$ denote the (naive) height of $E_{A, B}$, defined by $H\left(E_{A, B}\right)=\max \left\{4|A|^{3}, 27 B^{2}\right\}$. Let $\triangle\left(E_{A, B}\right)=-4 A^{3}-27 B^{2}$ be the discriminant, and

$$
C\left(E_{A, B}\right)=\prod_{p} p^{f_{p}(E)}
$$

denote the conductor. Here $f_{p}(E)=0,1,2$, depending on whether E has good, multiplicative, or additive reduction at p.

The document aims to prove the following statement:
Let $p \leq 5$ be a prime. When elliptic curves in any large family are ordered by height, the average size of the p-Selmer group is $p+1$.

Here, we need to recall the definition of "large family." For each prime l, let Σ_{l} be a closed subset of $\left\{(A, B) \in \mathbb{Z}_{l}^{2}: \triangle(A, B)=-4 A^{3}-27 B^{2} \neq 0\right\}$ with boundary of measure zero. To such a collection $\Sigma=\left(\Sigma_{l}\right)_{l}$, we associate the set F_{Σ} of elliptic curves over \mathbb{Q}, where $E_{A, B} \in F_{\Sigma}$ if and only if $(A, B) \in \Sigma_{l}$ for all l. We then say that F_{Σ} is a family of elliptic curves over \mathbb{Q} that is defined by congruence conditions. Furthermore, we can also impose "congruence conditions at infinity", where Σ_{∞} consists of all (A, B) with $\triangle(A, B)$ positive, negative, or either.

A family $F=F_{\Sigma}$ of elliptic curves defined by congruence conditions is said to be large if, for all sufficiently large primes l, the set Σ_{l} contains all $E_{A, B}$ with $(A, B) \in \mathbb{Z}_{l}^{2}$ such that $l^{2} \nmid \triangle(A, B)$. In particular, any family of elliptic curves $E_{A, B}$ defined by finitely many congruence conditions over A and B is large, and the set of all elliptic curves over \mathbb{Q} is large (no congruence conditions).

Finally, by the statement above, we can prove a majority (66.48\%) of all elliptic curves over \mathbb{Q}, when ordered by height, satisfies the BSD rank conjecture.

2 The case $p=2$

This section is divided into two parts. For the first part, we study the distribution of $G L_{2}(\mathbb{Z})$ equivalence classes of binary quartic forms $f(x, y)=a x^{4}+b x^{3} y+c x^{2} y^{2}+d x y^{3}+e y^{4}$ with respect to their fundamental invariants $I(f)=12 a e-3 b d+c^{2}$ and $J(f)=72 a c e+9 b c d-$ $27 a d^{2}-27 e b^{2}-2 c^{3}$; In particular, we prove the following theorem:
(1) Let $h^{(i)}(I, J)$ denote the number of $G L_{2}(\mathbb{Z})$-equivalence classes of irreducible binary quadratic forms having $4-2 i$ real roots in \mathbb{P}^{1} and invariants equal to I and J. Then:
(a) $\sum_{H(I, J)<X} h^{(0)}(I, J)=\frac{4}{135} \zeta(2) X^{5 / 6}+O\left(X^{3 / 4+\epsilon}\right)$
(b) $\sum_{H(I, J)<X} h^{(1)}(I, J)=\frac{32}{135} \zeta(2) X^{5 / 6}+O\left(X^{3 / 4+\epsilon}\right)$
(c) $\sum_{H(I, J)<X} h^{(2)}(I, J)=\frac{8}{135} \zeta(2) X^{5 / 6}+O\left(X^{3 / 4+\epsilon}\right)$

Here $H(f)=\max \left\{|I|^{3}, \frac{J^{2}}{4}\right\}$ is the height.
(2) A pair $(I, J) \times \mathbb{Z} \times \mathbb{Z}$ occurs as the invariants of an integral binary quartic form if and only if it satisfies one of the following congruence conditions:
(a) $I \equiv 0(\bmod 3)$ and $J \equiv 0(\bmod 27)$
(b) $I \equiv 1(\bmod 9)$ and $J \equiv \pm 2(\bmod 27)$
(c) $I \equiv 4(\bmod 9)$ and $J \equiv \pm 16(\bmod 27)$
(d) $I \equiv 7(\bmod 9)$ and $J \equiv \pm 7(\bmod 27)$

We say the pair (I, J) is eligible if it satisfies the above condition.
(3)Let $h^{(i)}(I, J)$ denote the number of $G L_{2}(\mathbb{Z})$-equivalence classes of irreducible binary quadratic forms having $4-2 i$ real roots in \mathbb{P}^{1} and invariants equal to I and J. Let $n_{0}=$ $4, n_{1}=2, n_{2}=2$. Then for $i=0,1,2$, we have

$$
\lim _{X \rightarrow \infty} \frac{\left.\sum_{H(I, J)<X} h^{(i)}\right)(I, J)}{\mid\left\{(I, J) \text { eligible } \mid(-1)^{i} \triangle(I, J)>0, H(I, J)<X\right\} \mid}=\frac{2 \zeta(2)}{n_{i}}
$$

Here $\triangle(f)=\frac{4 I(f)^{3}-J(f)^{2}}{27}$ is the discriminant.
The second part describes the precise connection between binary quartic forms and elements in the 2-Selmer groups of elliptic curves. This connection allows us, through the use of certain mass formulae for elliptic curves over \mathbb{Q}_{p}, to compute the average size of the 2-Selmer groups of elliptic curves (or of appropriate families of elliptic curves) via a count of binary quartic forms satisfying a certain weighted infinite set of congruence conditions. We then apply the uniformity results of the first part to count these binary quartic forms, thus completing the proof.

2.1 Part I: The number of classes of integral binary quartic forms having bounded invariants

Let $V_{\mathbb{R}}$ denote the vector space of binary quartic forms over the real numbers, $f(x, y)=$ $a x^{4}+b x^{3} y+c x^{2} y^{2}+d x y^{3}+e y^{4}$. We say $f \in V_{\mathbb{Z}}$, or f is integral if $a, b, c, d, e \in \mathbb{Z}$. The group $G L_{2}(\mathbb{R})$ acts on $V_{\mathbb{R}}$ naturally by

$$
\gamma \cdot f(x, y)=f((x, y) \cdot \gamma), \quad \gamma \in G L_{2}(\mathbb{R}), x, y \in \mathbb{R}, f \in V_{\mathbb{R}}
$$

For $i=0,1,2$, let $V_{\mathbb{Z}}^{(i)}$ denote the set of elements in $V_{\mathbb{Z}}$ having nonzero discriminant and i pairs of complex conjugate roots and $4-2 i$ real roots. For any $G L_{2}(\mathbb{Z})$-invariant set $S \subset V_{\mathbb{Z}}$, let $N(S ; X)$ denote the number of $G L_{2}(\mathbb{Z})$-equivalence classes of irreducible elements $f \in S$ satisfying $H(f)<X$. Then, the main theorem of this section is the following restatement:
(a) $N\left(V_{\mathbb{Z}}^{(0)} ; X\right)=\frac{4}{135} \zeta(2) X^{5 / 6}+O\left(X^{3 / 4+\epsilon}\right) ;$
(b) $N\left(V_{\mathbb{Z}}^{(1)} ; X\right)=\frac{32}{135} \zeta(2) X^{5 / 6}+O\left(X^{3 / 4+\epsilon}\right)$;
(c) $N\left(V_{\mathbb{Z}}^{(2)} ; X\right)=\frac{8}{135} \zeta(2) X^{5 / 6}+O\left(X^{3 / 4+\epsilon}\right)$.

For $i=0,1,2$, let $V_{\mathbb{R}}^{(i)}$ denote the set of points in $V_{\mathbb{R}}$ having nonzero discriminant and i pairs of complex roots and $4-2 i$ real roots. Then $V_{\mathbb{R}}^{(2)}$ is the set of definite forms in $V_{\mathbb{R}}^{(i)}$. Let $V_{\mathbb{R}}^{(2+)}$ and $V_{\mathbb{R}}^{(2-)}$ denote the subset of $V_{\mathbb{R}}^{(2)}$ consisting of the positive and negative definite forms. Let $V_{\mathbb{Z}}^{(i)}=V_{\mathbb{R}}^{(i)} \cap V_{\mathbb{Z}}$ for $i=0,1,2+, 2-$. Then we have the following facts:
(a)The set of binary quartic forms in $V_{\mathbb{R}}$ having fixed invariants I and J consists of just one $S L_{2}^{ \pm}(\mathbb{R})$-orbit if $4 I^{3}-J^{2}<0$; this orbit lies in $V_{\mathbb{R}}^{(1)}$.
(b)The set of binary quartic forms in $V_{\mathbb{R}}$ having fixed invariants I and J consists of three $S L_{2}^{ \pm}(\mathbb{R})$-orbit if $4 I^{3}-J^{2}>0$; In this case, there is one orbit from each of $V_{\mathbb{R}}^{(0)}, V_{\mathbb{R}}^{(2+)}$, and $V_{\mathbb{R}}^{(2-)}$.

Then we have the following lemma: Let f be an element in $V_{\mathbb{R}}^{(i)}$ having nonzero discriminant. Then the order of the stabilizer of f in $G L_{2}(\mathbb{R})$, denoted as $2 n_{i}$ (note that we have changed the meaning of symbol n_{i} here), is 8 if $i=0,2$, and 4 if $i=1$.

Let \mathcal{F} denote a fundamental domain for the action of $G L_{2}(\mathbb{Z})$ on $G L_{2}(\mathbb{R})$ by left multiplication. We also assume that $\mathcal{F} \subset G L_{2}(\mathbb{R})$ is semi-algebraic and connected and that it is contained in a standard Siegel set, i.e., $\mathcal{F} \subset N^{\prime} A^{\prime} K \Lambda$. (See the paper for the definition of the sets $K, A^{\prime}, N^{\prime}, \Lambda$.) In the same way as before in the proof of density of discriminates of quartic/quintic field, we may write

$$
N\left(V_{\mathbb{Z}}^{(i)} ; X\right)=\frac{\int_{h \in G_{0}} \#\left\{x \in \mathcal{F} h \cdot L \cap V_{\mathbb{Z}}^{\text {irr. }}: H(x)<X\right\} d h}{n_{i} \cdot \int_{h \in G_{0}} d h}
$$

Where $V_{\mathbb{Z}}^{\text {irr. }}$ denotes the set of irreducible elements in $V_{\mathbb{Z}}, L=L^{(i)}$ is the fundamental set for the action of $G L_{2}(\mathbb{R})$ over $V_{\mathbb{R}}^{(i)}$, dh denotes the Haar measure. And G_{0} is a compact, semialgebraic, left K-invariant set in $G L_{2}(\mathbb{R})$ that is the closure of a nonempty open set and in which every element has determinant greater than or equal to 1 .

Now, let us consider the integral elements in the multiset $\mathcal{R}_{X}\left(h \cdot L^{(i)}\right)=\left\{w \in \mathcal{F} h \cdot L^{(i)}\right.$: $|H(w)|<X\}$. Then, we could show that the number of integral binary quartic forms in $\mathcal{R}_{X}\left(h \cdot L^{(i)}\right)$ that are reducible over \mathbb{Q} with $a \neq 0$ is $O\left(X^{2 / 3+\epsilon}\right)$, and the number of $G L_{2}(\mathbb{Z})$ orbits of integral binary quartic forms $f \in V_{\mathbb{Z}}$ such that $\triangle(f) \neq 0$ and $H(f)<X$ whose stabilizer in $G L_{2}(\mathbb{Q})$ has size greater than 2 is $O\left(X^{3 / 4+\epsilon}\right)$. To sum up, we have

$$
N\left(V_{\mathbb{Z}}^{(i)} ; X\right)=\operatorname{Vol}\left(\mathcal{R}_{X}(L) / n_{i}+O\left(X^{3 / 4+\epsilon}\right)\right.
$$

Finally, by calculus computation, we could show

$$
\operatorname{Vol}\left(\mathcal{R}_{X}\left(L^{(i)}\right)\right)= \begin{cases}\frac{16}{16} \zeta(2) X^{5 / 6} & i=0,2+, 2- \\ \frac{64}{135} \zeta(2) X^{5 / 6} & i=1\end{cases}
$$

Which ends our proof.
Finally, at the end of this subsection, we prove a stronger version of the conclusion that involves congruence conditions. First, suppose S is a subset of $V_{\mathbb{Z}}$ defined by congruence conditions modulo finitely many prime powers. Then we have

$$
N\left(S \cap V_{\mathbb{Z}}^{(i)} ; X\right)=N\left(S \cap V_{\mathbb{Z}}^{(i)} ; X\right) \prod_{p} \mu_{p}(S)+O\left(X^{3 / 4+\epsilon}\right)
$$

where $\mu_{p}(S)$ denotes the p-adic density of S in $V_{\mathbb{Z}}$ and where the implied constant depends only on S and ϵ. Here $N(S ; X)$ denote the number of irreducible $G L_{2}(\mathbb{Z})$-orbits in S having height less than X.

There is a generalized version of the above theorem. Let p_{1}, \ldots, p_{k} be distinct prime numbers. For $j=1, \ldots, k$, let $\phi_{p_{j}}: V_{\mathbb{Z}} \rightarrow \mathbb{R}$ be a $G L_{2}(\mathbb{Z})$-invariant function on $V_{\mathbb{Z}}$ such that $\phi_{p_{j}}(f)$ depends only on the congruence class of f modulo some power of p_{j}. Let $N_{\phi}\left(V_{\mathbb{Z}}^{(i)} ; X\right)$ denote the number of the irreducible $G L_{2}(\mathbb{Z})$-orbits in $V_{\mathbb{Z}}^{(i)}$ having invariants bounded by X, where each orbit $G L_{2}(\mathbb{Z}) \cdot f$ is counted with weight $\phi(f)=\prod_{j=1}^{k} \phi_{p_{j}}(f)$. Then we have

$$
N_{\phi}\left(V_{\mathbb{Z}}^{(i)} ; X\right)=N\left(V_{\mathbb{Z}}^{(i)} ; X\right) \prod_{j=1}^{k} \int_{f \in V_{Z_{p_{j}}}} \tilde{\phi}_{p_{j}}(f) d f+O\left(X^{3 / 4+\epsilon}\right)
$$

where $\tilde{\phi}_{p_{j}}$ is the natural extension of $\phi_{p_{j}}$ to $V_{\mathbb{Z}_{p_{j}}}, d f$ denotes the additive measure on $V_{\mathbb{Z}_{p_{j}}}$ normalized so that $\int_{f \in V_{Z_{p_{j}}}} d f=1$, and where the implied constant in the error term depends only on the local weight functions $\phi_{p_{j}}$ and ϵ.

2.2 Part II: The average size of the 2-Selmer groups of elliptic curves

Recall that every elliptic form over \mathbb{Q} can be written in the form

$$
E=E_{A, B}: y^{2}=x^{3}+A x+B
$$

where $A, B \in \mathbb{Z}$ and $p^{4} \nmid A$ if $p^{6} \mid B$. Let $I(E)=-3 A$ and $J(E)=-27 B$, and also denote the curve $E=E_{A, B}$ by $E^{I, J}$. The height of this curve is defined by

$$
H\left(E_{A, B}\right)=\max \left\{4|A|^{3}, 27 B^{2}\right\}=\frac{4}{27} \max \left\{I(E)^{3}, J(E)^{2} / 4\right\}
$$

A slightly different height $H^{\prime}(E)$ is defined by

$$
H^{\prime}(E)=H(I(E), J(E))=\max \left\{|I(E)|^{3},|J(E)|^{2} / 4\right\}
$$

We say that a binary quartic form over a field K is K-soluble if the equation $z^{2}=f(x, y)$ has a nonzero solution with $x, y, z \in K$. Next, a binary quartic form $f \in V_{\mathbb{Q}}$ is called locally
soluble if it is \mathbb{R}-soluble and \mathbb{Q}_{p} for all primes p. Then we have the following theorem, which turns the 2-Selmer group into a form that is more convenient for us to handle:

Let $E=E^{I, J}$ be an elliptic curve over \mathbb{Q}. Then the elements of the 2-Selmer group of E are in one-to-one correspondence with $P G L_{2}(\mathbb{Q})$-equivalence classes of locally soluble integral binary quartic form having invariants equal to $2^{4} I$ and $2^{6} J$.

Furthermore, the set of integral binary quartic forms that have rational linear functions and invariants equal to $2^{4} I$ and $2^{6} J$ lie in one $P G L_{2}(\mathbb{Q})$-equivalence class and this class corresponds to the identity element in the 2-Selmer group of E.

Therefore, to compute the number of $P G L_{2}(\mathbb{Q})$-equivalence classes of locally soluble integral binary quartic forms with bounded height and no rational linear factor, we need to count each $P G L_{2}(\mathbb{Z})$-orbit, $P G L_{2}(\mathbb{Z}) \cdot f$, weighted by $1 / n(f)$, where $n(f)$ is equal to the number of $P G L_{2}(\mathbb{Z})$-orbits inside the number of $P G L_{2}(\mathbb{Q})$-equivalence class of f in $V_{\mathbb{Z}}$. Since only negligible many cases make a difference, there is no loss for us to change the weight from $1 / n(f)$ to $1 / m(f)$, where

Here $B(f)$ denotes a set of representatives for the action of $P G L_{2}(\mathbb{Z})$ on the $P G L_{2}(\mathbb{Q})$ equivalence class of f in $V_{\mathbb{Z}}$, and $\operatorname{Aut}_{\mathbb{Q}}(f)\left(\operatorname{resp}^{\left(A u t_{\mathbb{Z}}\right.}(f)\right)$ denotes the stabilizer of f in $P G L_{2}(\mathbb{Q})$ (resp. $P G L_{2}(\mathbb{Z})$).

And there is also the local version:

$$
m_{p}(f)=\sum_{f^{\prime} \in B_{p}(f)} \frac{\# \operatorname{Aut}_{\mathbb{Q}_{p}}\left(f^{\prime}\right)}{\# \operatorname{Aut}_{\mathbb{Z}_{p}}\left(f^{\prime}\right)}=\sum_{f^{\prime} \in B_{p}(f)} \frac{\# \operatorname{Aut}_{\mathbb{Q}_{p}}(f)}{\# \operatorname{Aut}_{\mathbb{Z}_{p}}\left(f^{\prime}\right)}
$$

with the following proposition: Suppose $f \in V_{\mathbb{Z}}$ has nonzero discriminant. Then $m(f)=$ $\prod_{p} m_{p}(f)$.

Now, let F be a large family of elliptic curves. By the theorem at the end of the last subsection, we have

$$
\sum_{E \in F, H^{\prime}(E)<X}\left(\# S_{2}(E)-1\right)=N\left(V_{\mathbb{Z}} \cap S_{\infty}(F) ; 2^{12} X\right) \prod_{p} \int_{S_{p}(F)} \frac{1}{m_{p}(f)} d f+o\left(X^{5 / 6}\right)
$$

Where $N\left(V_{\mathbb{Z}} \cap S_{\infty}(F) ; 2^{12} X\right)$ is equal to $\frac{2^{10}}{27} \operatorname{Vol}\left(P G L_{2}(\mathbb{Z}) \backslash P G L_{2}(\mathbb{R})\right) M_{\infty}(V, F ; X)$, and $\int_{S_{p}(F)} \frac{1}{m_{p}(f)} d f$ is equal to $\left|2^{2^{10}}\right|_{p} \operatorname{Vol}\left(P G L_{2}\left(\mathbb{Z}_{p}\right)\right) M_{p}(V ; F)+o\left(X^{5 / 6}\right)$. (Here, M_{p} and M_{∞} denote the "local mass"; see the paper.) This implies that $\sum_{E \in F, H^{\prime}(E)<X}\left(\# S_{2}(E)-1\right)=$ $\operatorname{Vol}\left(P G L_{2}(\mathbb{Z}) \backslash P G L_{2}(\mathbb{R})\right) M_{\infty}(V, F ; X) \times \prod_{p} \operatorname{Vol}\left(P G L_{2}\left(\mathbb{Z}_{p}\right)\right) M_{p}(V ; F)+o\left(X^{5 / 6}\right)$. On the other hand, we have

$$
\sum_{E \in F, H^{\prime}(E)<X} 1=M_{\infty}(F ; X) \prod_{p} M_{p}(F)+o\left(X^{5 / 6}\right)
$$

Which indicates that

$$
\lim _{X \rightarrow \infty} \frac{\Sigma_{E \in F, H^{\prime}(E)<X}\left(\# S_{2}(E)-1\right)}{\Sigma_{E \in F, H^{\prime}(E)<X} 1}=\operatorname{Vol}\left(P G L_{2}(\mathbb{Z}) \backslash P G L_{2}(\mathbb{R})\right) \frac{M_{\infty}(V, F ; X)}{M_{\infty}(F ; X)} \prod_{p}\left(\operatorname{Vol}\left(P G L_{2}\left(\mathbb{Z}_{p}\right)\right) \frac{M_{p}(V, F)}{M_{p}(F)}\right)
$$

Notice that $\frac{M_{\infty}(V, F ; X)}{M_{\infty}(F ; X)}=\frac{1}{2}$, and $\frac{M_{p}(V, F)}{M_{p}(F)}=1$ except for $p=2$, where the fraction equals 2 . Therefore,

$$
\begin{gathered}
\lim _{X \rightarrow \infty} \frac{\sum_{E \in F, H^{\prime}(E)<X}\left(\# S_{2}(E)-1\right)}{\Sigma_{E \in F, H^{\prime}(E)<X} 1}=\operatorname{Vol}\left(P G L_{2}(\mathbb{Z}) \backslash P G L_{2}(\mathbb{R})\right) \prod_{p} \operatorname{Vol}\left(P G L_{2}\left(\mathbb{Z}_{p}\right)\right) \\
=2 \zeta(2) \prod_{p}\left(1-p^{-2}\right)=2
\end{gathered}
$$

Which ends our proof.

3 The case $p=3$

The techniques for the case $p=3$ are similar to the case $p=2$. Due to the time limit, I only list some crucial steps here.

The proof could also be divided into two parts. For the first part, we study the distribution of $S L_{3}(\mathbb{Z})$-equivalence classes of strongly irreducible integral ternary cubic forms $f=f(x, y, z)$ with respect to their fundamental invariants $I(f)$ and $J(f)$, which comes from the Hessian matrix

$$
\mathcal{H}(f(x, y, z))=\left|\begin{array}{lll}
f_{x x} & f_{x y} & f_{x z} \\
f_{y x} & f_{y y} & f_{y z} \\
f_{z x} & f_{z y} & f_{z z}
\end{array}\right|
$$

with the relation $\mathcal{H}(\mathcal{H}(f))=12288 I(f)^{2} \cdot f+512 J(f) \cdot \mathcal{H}(f)$. Here $I(f)$ has degree 4 , and $J(f)$ has degree 6 . (We say an integral ternary cubic form f is strongly irreducible if f is irreducible, and the common zero set of f and its Hessian $\mathcal{H}(f)$ in \mathcal{P}^{2} contains no rational points.) In particular, we prove the following theorem:
(1)Let $h(I, J)$ denote the number of $S L_{3}(\mathbb{Z})$-equivalence classes of strongly irreducible integral ternary cubic forms having invariants equal to I and J. Then:
(a) $\sum_{\Delta(I, J)>0, H(I, J)<X} h(I, J)=\frac{32}{45} \zeta(2) \zeta(3) X^{5 / 6}+o\left(X^{5 / 6}\right)$
(b) $\sum_{\Delta(I, J)<0, H(I, J)<X} h(I, J)=\frac{128}{45} \zeta(2) \zeta(3) X^{5 / 6}+o\left(X^{5 / 6}\right)$

Here $H(f)=\max \left\{|I|^{3}, \frac{J^{2}}{4}\right\}$ is the height, and $\triangle(f)=\left(4 I(f)^{3}-J(f)^{2}\right) / 27$ is the discriminant.
(2) A pair (I, J) occurs as the pair of invariants of an integral ternary cubic form if and only if $(I, J) \in \frac{1}{16} \mathbb{Z} \times \frac{1}{32} \mathbb{Z}$, and the pair $(16 I, 32 J)$ satisfies congruence conditions modulo 64 (see the paper.)
(3)Let $h(I, J)$ denote the number of $S L_{3}(\mathbb{Z})$-equivalence classes of strongly irreducible integral ternary cubic forms having invariants equal to I and J. Then

$$
\lim _{X \rightarrow \infty} \frac{\sum_{\Delta(I, J)>0, H(I, J)<X} h(I, J)}{\sum_{\Delta(I, J)>0, H(I, J)<X} 1}=\frac{\sum_{\Delta(I, J)<0, H(I, J)<X} h(I, J)}{\sum_{\Delta(I, J)<0, H(I, J)<X} 1}=3 \zeta(2) \zeta(3)
$$

In the second part, we describe the precise correspondence between ternary cubic forms and elements of the 3-Selmer groups of elliptic curves. In particular, let E / \mathbb{Q} be an elliptic curve. Then, the elements in the 3 -Selmer group of E are in bijective correspondence with $P G L_{3}(\mathbb{Q})$-orbits on the set of locally soluble ternary cubic forms in $V_{\mathbb{Z}}$ having invariants equal to $I(E)$ and $J(E)$. Furthermore, the set of all ternary cubic forms in $V_{\mathbb{Z}}$ having invariants equal to $I(E)$ and $J(E)$ that are not strongly irreducible lie in a single $P G L_{3}(\mathbb{Q})$-orbit and this orbit corresponds to the identity element in the 3 -Selmer group of E. We then apply this correspondence, together with the counting results of the first part and the local mass formulae, which ends our proof:

$$
\begin{gathered}
\lim _{X \rightarrow \infty} \frac{\Sigma_{E \in F, H^{\prime}(E)<X}\left(\# S_{3}(E)-1\right)}{\Sigma_{E \in F, H^{\prime}(E)<X} 1}=\operatorname{Vol}\left(P G L_{3}(\mathbb{Z}) \backslash P G L_{3}(\mathbb{R})\right) \prod_{p} \operatorname{Vol}\left(P G L_{3}\left(\mathbb{Z}_{p}\right)\right) \\
=3 \zeta(2) \zeta(3) \prod_{p}\left(\left(1-p^{-2}\right)\left(1-p^{-3}\right)\right)=3
\end{gathered}
$$

4 The case $p=5$

The techniques for the case $p=5$ are similar to the case $p=2$. Due to the time limit, I only list some crucial steps here.

The proof could also be divided into two parts. For the first part, consider the space $V_{\mathbb{R}}=\mathbb{R}^{5} \otimes \wedge^{2} \mathbb{R}^{5}$ consisting of quintuples (A, B, C, D, E) of skew-symmetric 5×5 real matrices. For any ring R, we also define V_{R} such that the entries are elements in R. The ring $G L_{5}(R) \times$ $G L_{5}(R)$ acts on V_{R} as

$$
\left(g_{1}, g_{2}\right) \cdot(A, B, C, D, E)=\left(g_{1} A g_{1}^{t}, g_{1} B g_{1}^{t}, g_{1} C g_{1}^{t}, g_{1} D g_{1}^{t}, g_{1} E g_{1}^{t}\right) \cdot g_{2}^{t}
$$

Define the determinant of $\left(g_{1}, g_{2}\right)$ as $\operatorname{det}\left(g_{1}, g_{2}\right)=\operatorname{det}\left(g_{1}^{2} g_{2}\right)$. Now let us consider the group

$$
G_{R}=\left\{\left(g_{1}, g_{2}\right) \in G L_{5}(R) \times G L_{5}(R): \operatorname{det}\left(g_{1}, g_{2}\right)=1 \mid \operatorname{det}\left(g_{1}, g_{2}\right)=1\right\} /\left\{\left(\lambda I_{5}, \lambda^{-2} I_{5}\right)\right\}
$$

It is clear that the action of $G L_{5}(R) \times G L_{5}(R)$ over v_{R} descends to an action of G_{R}.
The ring of invariants for the action of $G_{\mathbb{C}}$ over $v_{\mathbb{C}}$ is freely generated by two elements I and J having degree 20 and 30 , respectively. Define the discriminant of an element $v \in V_{\mathbb{R}}$ as $\triangle(v)=\triangle(I, J)=\left(4 I^{3}-J^{2}\right) / 27$, which has degree 60; Define the height as $H(v)=H(I, J)=$ $\max \left\{|I|^{3}, \frac{J^{2}}{4}\right\}$.

Define $V_{\mathbb{Z}}^{+}$and $V_{\mathbb{Z}}^{-}$having positive and negative discriminant. For any $G_{\mathbb{Z}}$ invariant set $S \subset V_{\mathbb{Z}}$, let $N(S ; X)$ denote the number of $G_{\mathbb{Z}}$-orbits on strongly irreducible elements in S having height less than X. Then we have the following theorem:

There exists a nonzero rational constant \mathcal{J} such that

$$
N\left(V_{\mathbb{Z}}^{ \pm} ; X\right)=|\mathcal{J}| \cdot \operatorname{Vol}\left(G_{\mathbb{Z}} / G_{\mathbb{R}}\right) \cdot N^{ \pm}(X)+o\left(X^{5 / 6}\right)
$$

Here $N^{ \pm}(X)$ is the number of pairs $(I, J) \in \mathbb{Z} \times \mathbb{Z}$ having height less than X and positive/negative discriminant. In fact, we have $N^{+}(X)=\frac{8}{5} X^{5 / 6}+O\left(X^{1 / 2}\right)$ and $N^{-}(X)=$ $\frac{32}{5} X^{5 / 6}+O\left(X^{1 / 2}\right)$.

In the second part, we describe the precise correspondence between ternary cubic forms and elements of the 5 -Selmer groups of elliptic curves. In particular, let E / \mathbb{Q} be an elliptic curve. Then, the elements in the 5 -Selmer group of E are in bijective correspondence with $G_{\mathbb{Q}}$-orbits on the set of locally soluble ternary cubic forms in $V_{\mathbb{Z}}$ having invariants equal to $I(E)$ and $J(E)$. Furthermore, the elements in $V_{\mathbb{Z}}$ having invariants equal to $I(E)$ and $J(E)$ that are not strongly irreducible lie in a single $P G L_{3}(\mathbb{Q})$-orbit and this orbit corresponds to the identity element in the 5 -Selmer group of E. We then apply this correspondence, together with the counting results of the first part and the local mass formulae:

$$
\lim _{X \rightarrow \infty} \frac{\Sigma_{E \in F, H^{\prime}(E)<X}\left(\# S_{5}(E)-1\right)}{\Sigma_{E \in F, H^{\prime}(E)<X} 1}=\operatorname{Vol}\left(G_{\mathbb{Z}} \backslash G_{\mathbb{R}}\right) \prod_{p} \operatorname{Vol}\left(G_{\mathbb{Z}_{p}}\right)
$$

This equals the Tamagawa number $\tau(G)=5$ and ends our proof.

5 Applications in the BSD rank conjecture

In this section, we will prove that a majority (66.48%) of all elliptic curves over \mathbb{Q}, when ordered by height, satisfies the BSD conjecture, as stated before in Section 1. As a corollary, a majority of all elliptic curves over \mathbb{Q} have finite Tate-Shafarevich group.

First, we list two criteria that could determine that a given elliptic curve satisfies the BSD rank conjecture:
(1)Let p be an odd prime. Let E be an elliptic curve over \mathbb{Q} with conductor N such that:
(a) E has good or multiplicative reduction at p;
(b) $E[p]$ is an irreducible $\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})$-module;
(c)there is at least one prime $l \neq p$ such that $l \| N$ and $E[p]$ is ramified at l;
(d)The p-Selmer group $S_{p}(E)$ of E is trivial.

Then, the algebraic and analytic ranks of E are both equal to 0 .
(2)Let $p \geq 5$ be a prime. Let E be an elliptic curve with conductor N such that
(a) E has good or multiplicative reduction at p;
(b) $E[p]$ is an irreducible $\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})$-module;
(c)For all primes $l \| N$ such that $l \equiv \pm 1(\bmod p), E[p]$ is ramified at l;
(d)If N is not squarefree, then there exists at least two prime factors $l \| N$ with $l \neq p$ and where $E[p]$ is ramified;
(e)If f has multiplicative reduction at p then $E[p]$ is not finite at p, and if E has split multiplication reduction at p then p-adic Mazur-Tate-Teitelbaum \mathfrak{L}-invariant $\mathfrak{L}(E)$ of E satisfies $\operatorname{ord}_{p}(\mathfrak{L}(E))=1 ;$
(f)the p-Selmer group $S_{p}(E)$ has order p.

Then, the algebraic and analytic ranks of E are both equal to 1 .
It is worth mentioning that, when ordered by height, 100% of the elliptic curves over \mathbb{Q} satisfies (b)(c) of Theorem 5 and (b)(d) of Theorem 9.

For any prime $p \geq 5$, let $S_{0}(p)$ be the set of elliptic curve $E_{A, B}: y^{2}=x^{3}+A x+B$ over \mathbb{Q} such that:

- $E_{A, B}$ has good ordinary or multiplicative reduction at p;

Let $S_{1}^{\prime}(p)$ be the subset of curves $E_{A, B} \in S_{0}(p)$ also satisfying:

- If $E_{A, B}$ has multiplicative reduction at p, then $p \nmid$, then $p \nmid \operatorname{ord}_{p}(\triangle(A, B))$,
- If $E_{A, B}$ has split multiplicative reduction at p, then $\operatorname{ord}_{p}\left(\mathfrak{L}\left(E_{A, B}\right)\right)=1$;
and Let $S_{1}(p)$ be the subset of curves $E_{A, B} \in S_{1}^{\prime}(p)$ also satisfying:
$\bullet p \nmid \operatorname{ord}_{l}(\triangle(A, B))$ for all primes $l \equiv \pm 1(\bmod p)$ such that $\operatorname{ord}_{l}(\triangle(A, B))>0$.
$S_{0}(p) \supset S_{1}^{\prime}(p) \supset S_{1}(p)$ are all large families. We could compute the densities of $S_{0}(5), S_{1}^{\prime}(5), S_{1}(5)$ as

$$
\mu\left(S_{0}(5)\right)=\frac{4 \cdot 5^{10}}{5\left(5^{10}-1\right)}>0.8, \mu\left(S_{1}^{\prime}(5)\right)=0.7918054 \ldots, \mu\left(S_{1}(5)\right)>0.7917957
$$

In particular, we have $\mu\left(S_{1}^{\prime}(5)\right)-\mu\left(S_{1}(5)\right)<0.00001$.
Now let us state a theorem by Dokchitser-Dokchitser: Let E be an elliptic curve and let p be a prime. Let $s_{p}(E)$ and $t_{p}(E)$ denote the rank of the p-Selmer group of E and the rank of $E(\mathbb{Q})[p]$, respectively. Then $s_{p}(E)-t_{p}(E)$ is even if and only if the root number of E is ± 1. Also, another theorem says that: Let F be any large family of elliptic curves over \mathbb{Q} defined by congruence conditions modulo powers of primes p such that $p \equiv 1(\bmod 4)$. Then, there exists a finite union F^{\prime} of large subfamilies of F such that when ordered by height, all elliptic curves in F and F^{\prime} are equidistributed, and F^{\prime} contains a density of greater than 55.01% of the elliptic curves in F.

Now, we could begin to prove the theorem that when ordered by height, at least 66.48% of elliptic curves over \mathbb{Q} have algebraic and analytic rank 0 and 1 . By the theorem above, we can find a finite union F^{\prime} of large subfamilies in $S_{1}(5)$ of density $\kappa \mu\left(S_{1}^{\prime}(5)\right)$ with $\kappa \geq 0.5501$ such that for all $E \in F^{\prime}$, the root number of E and its -1-twist have opposite signs. Let $F=F^{\prime} \cap S_{1}(5)$. We could show that at least $7 / 8$ of the curves in F have an algebraic and analytic rank equal to 0 or 1 , which consists of a proportion

$$
\frac{7}{8} \mu(F) \geq \frac{7}{8}\left(\kappa \mu\left(S_{1}^{\prime}(5)\right)-0.00001\right)
$$

Next, we consider the set $F^{\prime \prime}$ of curves in $S_{1}(5)$ which the above arguments have not been applied. We could show that this part at least consists of a proportion

$$
\frac{19}{24}\left(\mu\left(S_{1}(5)\right)-\mu(F)\right) \geq \frac{19}{24}\left((1-\kappa) \mu\left(S_{1}^{\prime}(5)\right)-0.00001\right)
$$

of elliptic curves having algebraic and analytic rank 0 or 1 . Finally, for the set of elliptic curves in $S_{0}(5)$ on which the above arguments have not been applied, which has density at least $0.8-0.79179=0.00820 \ldots$, we could find an additional set of curves of density at least $3 / 8 \times \kappa \times 0.00820=0.00169 \ldots$ that have algebraic and analytic rank 0 . To sum up all the three cases we list above, a proportion of at least

$$
\left(\frac{7}{8} \kappa+\frac{19}{24}(1-\kappa)\right) \times \mu\left(S_{1}^{\prime}(5)\right)-\left(\frac{7}{8}+\frac{19}{24}\right) \times 0.00001+0.00169 \ldots
$$

of elliptic curves have algebraic and analytic rank 0 or 1 . Since $\kappa \geq 0.5501$, this proportion is at least 0.6648..., and therefore we are done.

See the illustration below. We neglect the difference between $S_{1}^{\prime}(5)$ and $S_{1}(5)$ since $\mu\left(S_{1}^{\prime}(5)\right)-\mu\left(S_{1}(5)\right)<0.00001$ is quite small amount.

T	$3 / 8$		3/8: Theorem21 and Corollary 22
\uparrow			1/8: Theonem
in			7/8 and 19/24: Theorem 25
$\stackrel{\square}{\infty}$	$7 / 8$	19/24	
$1 \stackrel{\bar{n}}{1}$			
\downarrow			
$\longleftarrow k \longrightarrow 1 \longleftarrow 1-k \rightarrow 1$			

