Representations of finite groups, spring 2016

Homework 2, due Wednesday February 3 before class.

Everywhere below, F denotes a field.

1. Prove:
(a) The composition $\beta \alpha$ of R-module homomorphisms $\alpha: M \longrightarrow N$ and $\beta: N \longrightarrow K$ is an R-module homomorphism.
(b) If M is a submodule of N and N a submodule of K, then M is a submodule of K.
2. (a) Find all idempotents in the following rings:
$F, \mathbb{Z} / 15, \mathbb{Z} / 4 \times \mathbb{Z} / 4$.
(b) Prove that 0 and 1 are the only idempotents in the ring $F[x] /\left(x^{n}\right)$.
(c) Prove that 0 and 1 are the only idempotents in the group algebra $F\left[C_{\infty}\right]$ of the infinite cyclic group (recall that this group algebra is isomorphic to the algebra of Laurent polynomials in one variable $F\left[x, x^{-1}\right]$).
3. Given an R-module M, explain how to realize any submodule $N \subset M$ as the kernel of some homomorphism from M into an R module.
4. Suppose there is a chain of R-modules $K \subset N \subset M$. Explain how to define a surjective module homomorphism $M / K \longrightarrow M / N$. Can you describe the kernel of this homomorphism?
5. The center of a ring R consists of elements that commute with every element of R :

$$
Z(R):=\{a \in R \mid a b=b a \quad \forall b \in R\} .
$$

We proved in class that $Z(R)$ is a commutative unital ring.
a) Show that the center of the ring $\operatorname{Mat}_{n}(F)$ of $n \times n$ matrices with coefficients in a field F consists of multiples of the identity matrix. (Hint: write down the condition that a matrix commutes with all elementary matrices $e_{i j}$.)
b) Show that $Z\left(R_{1} \times R_{2}\right)=Z\left(R_{1}\right) \times Z\left(R_{2}\right)$ for any rings R_{1}, R_{2}. Here \times denotes the direct product of rings.
6. Give an example of a \mathbb{Z}-module which has exactly three proper submodules.
7. (a) Simplify the following element of the group algebra $\mathbb{C}[\mathbb{Z} / 3]$ of the cyclic group $C_{3} \cong\left\{1, g, g^{2}\right\}$:

$$
\left(2-3 g+g^{2}\right)\left(1+2 g+g^{3}+g^{4}\right)
$$

(b) Simplify the following element of the group ring $\mathbb{Z}\left[S_{3}\right]$ of the symmetric group S_{3} :

$$
(1+2(13)-(132))((12)+(123)+3(23)) .
$$

Optional problems: Do not write solutions to these problems, these are for you to think through as additional exercises.

1. Let I, J be left ideals in a ring R. Which of the following sets are left ideals in R ?

$$
I \cap J, \quad I+J, \quad I J, \quad R \backslash I, \quad R I, \quad I R, \quad I \backslash J .
$$

$I J$ denotes the set of finite sums of products $i j$, over $i \in I, j \in J$.
2. Find all ideals in the ring $F[x] /\left(x^{n}\right)$, where F is a field.
3. Give an example of a left ideal in the matrix ring $R=\operatorname{Mat}(n, F)$ that is not a right ideal. Can you show that the only two-sided ideal of R is the zero ideal?

