Representations of finite groups, spring 2016 Homework 4, due Wednesday February 17 before class.

1. Which of the following rings are semisimple (one of the many equivalent conditions that a ring be semisimple is that every module is completely reducible)? Give brief justifications.

 $\mathbb{H}, \mathbb{C}[x], \mathbb{R}[x]/(x^3), \mathbb{H} \times \mathbb{R}, \mathbb{C}[x]/(x^2) \times \mathbb{R}, \mathbb{Z}/4, \mathbb{Z}/15.$

2. In this exercise you prove that complete reducibility property is inherited by submodules. Suppose module V is completely reducible and W is a submodule. Assume K is a submodule of W and let K'be a complement of K in V. Show that $K' \cap W$ is a complement of K in W.

3. (a) Determine all isomorphism classes of semisimple \mathbb{C} -algebras of dimension 9 over \mathbb{C} .

(b) Using classification of division algebras over \mathbb{R} stated in class (there are only three: \mathbb{R} , \mathbb{C} , \mathbb{H}), list all possible semisimple \mathbb{R} -algebras of dimension 4 (over \mathbb{R}).

4. (20 points) (a) Show that any idempotent e in the direct product ring $R_1 \times R_2$ has the form (e_1, e_2) , where e_i is an idempotent in R_i . Generalize to product of finitely many rings. Use this to classify idempotents in a direct product of fields $F_1 \times \cdots \times F_n$.

(b) The idempotents we found in $\mathbb{C}[C_n]$ are

$$e_k = \frac{1}{n} \sum_{m=0}^{n-1} (\zeta g)^m, \quad \zeta = e^{\frac{2\pi i k}{m}},$$

where g is a generator of the cyclic group C_n . Express ge_k as a multiple of e_k . Then show that these idempotents are mutually orthogonal:

 $e_k e_\ell = e_k$ if $k = \ell$, otherwise 0,

and that they add up to one, $\sum_{k=0}^{n-1} e_k = 1$.

(c) We proved in class that the group algebra $\mathbb{C}[C_n]$ is a product of \mathbb{C} 's. Determine how many idempotents does $\mathbb{C}[C_n]$ have and explain how to obtain them from e_0, \ldots, e_{n-1} .