Representations of finite groups, spring 2016

Homework 5, due Monday February 29 before class.

1. (a) Describe all (complex) irreducible representations of the Klein group $G=C_{2} \times C_{2}$.
(b) Can you find the four non-trivial idempotents in the group algebra $\mathbb{C}[G]$ that add up to 1 ? What is the relation of these idempotents to the irreducible representations of G ?
For computations with idempotents and characters, it's often best to write groups, even abelian, in multiplicative form. For instance, G above has generators g, h and defining relations $g^{2}=h^{2}=1$, $g h=h g$.
2. Prove that a finite group G is abelian if every complex irreducible representation of G is one-dimensional. (Recall that in class we proved that for finite abelian G any complex irreducible representation of G is one-dimensional.)
3. Let V be the 2-dimensional complex representation of $\mathbb{Z} / 3$ where the generator g of $\mathbb{Z} / 3$ acts on the basis vectors by

$$
g\left(v_{1}\right)=v_{2}, \quad g\left(v_{2}\right)=-v_{1}-v_{2}
$$

Express V explicitly as a direct sum of irreducible representations. Compute χ_{V}.
4. Prove that the character χ_{V} is multiplicative,

$$
\chi_{V}(g h)=\chi_{V}(g) \chi_{V}(h), \quad \forall g, h \in G
$$

if and only if V is one-dimensional.
5. Verify orthogonality relations for characters of irreducible representations of cyclic groups $\mathbb{Z} / 2$ and $\mathbb{Z} / 3$.
6. Check orthogonality relations for characters of irreps of S_{3} using the character table derived in class.
7. Give an example of a representation V of the infinite cyclic group \mathbb{Z} such that $\chi_{V}(g)=\frac{1}{2}$, where g is a generator of \mathbb{Z}.

