Representations of finite groups, spring 2016 Homework 6, due Wednesday March 2 before class.

Reading: Chapter 4 of Steinberg. Optional reading: Section 18.3 of Dummit and Foote.

1. (20 points, this is exercise 4.12 in Steinberg). Find all irreducible representation of the quaternionic group Q_8 and write down the character table of Q_8 .

(a) Start by recalling generators i, j, k of Q_8 and defining relations. Check that the map ρ in (Steinberg, exercise 4.12) gives a representation of Q_8 and compute its character χ_{ρ} . Check irreducibility of this representation by verifying $(\chi_{\rho}, \chi_{\rho}) = 1$.

(b) Find the commutator subgroup $[Q_8, Q_8]$ and the quotient $Q_8/[Q_8, Q_8]$ by the commutator. Classify one-dimensional representations of Q_8 .

(c) Determine conjugacy classes in Q_8 .

(d) Write down the character table of Q_8 and the unitary matrix associated to the character table. Check orthogonality relations of the 2nd kind for several pairs of columns (this is a quick way to scan for possible errors).

(e) Compare this character table with the character table for the dihedral group D_8 obtained in class.

(*Optional:*) Find a natural construction of the homomorphism ρ from the realization of Q_8 as a subgroup of \mathbb{H}^* , where \mathbb{H} is the ring of quaternions.

2. (10 points) (a) Representation W of the symmetric group S_3 has character

$$\chi_W(1) = 7, \qquad \chi_W((12)) = -1, \qquad \chi_W((123)) = 4$$

Find multiplicities of irreducible representations of S_3 in W and its dimension.

(b) Does there exist a representation of S_3 with the character

$$\chi_V(1) = 2, \qquad \chi_V((12)) = 2, \qquad \chi_V((123)) = -1?$$

3.(10 points) (a) Character χ_V of a complex representation of a finite group G has inner product $(\chi_V, \chi_V) = 2$. What can you say about decomposition of V into irreducibles? Same question if $(\chi_V, \chi_V) = 3$.

(b) Suppose that (complex) representation V of a finite group G has $(\chi_V, \chi_W) = 0$ for any irreducible representation W of G. What can you say about V?