Introduction to knot theory, Spring 2012

Read "Catalan numbers", by Tom Davis.

Homework 4, due Monday, February 20

1. (20 points) Show that the value of the Jones polynomial J(K) at A = 1 depends only on the number of components of K. Determine this value as the function of the number of components. What can you say about the value of J(K) at A = -1?

2. (20 points) Draw all crossingless matchings with 8 endpoints. How many of them are there? Draw the mountain range (Dyck path) corresponding to each crossingless matching.

3. (20 points) Show that the *n*-the Catalan number is the number of root binary trees with n internal nodes (see Section 1.6 of "Catalan numbers" for details and examples).

4. (20 points) (a) Compute the multiplication table for TL_3 in the monomial basis $\{1, u_1, u_2, u_1u_2, u_2u_1\}$.

(b) Show that the Temperley-Lieb algebra TL_n is commutative if and only if $n \leq 2$.

5. (20 points) Write down all elements in the monomial basis of TL_4 . There must be a natural bijection between these elements and crossingless matchings from problem 2.

Extra credit: Choose a problem from "Catalan addendum" by R. Stanley that was not discussed in class (most of them weren't). Either solve it yourself or look up the proof. Write up a solution of the problem. If "Catalan addendum" appears too complex, you can instead solve problem in section 7.2 of "Catalan numbers" - show that there are exactly c_n ways to tile the staircase with n steps by n rectangles.