Introduction to knot theory. Practice quiz.

Mark the squares that are followed by correct statements.

 \square Any knot in \mathbb{S}^3 bounds an unorientable surface.

 $\hfill\square$ Any two-component link with the linking number 0 is a split link.

 $\hfill\square$ The only knot which has the trivial Alexander polynomial is the unknot.

 $\label{eq:constraint} \begin{array}{ll} \square & \mbox{There exists a knot with the Alexander polynomial} \\ t-2+t^{-1}. \end{array}$

 $\hfill\square$ The Alexander polynomial of the connected sum of two knots is the product of their Alexander polynomials.

 \Box If a knot has Alexander polynomial $t^2 - 2t + 3 - 2t^{-1} + t^{-2}$, then its genus is at least 2.

 \Box If K = K # K, then K is the trivial knot.

 \Box A knot can have the Seifert matrix of size 4×4 with all entries being 0.

 \Box Any oriented link in \mathbb{S}^3 bounds a connected orientable surface.

 \square For any Seifert surface F, the first homology group $H_1(\mathbb{S}^3 \setminus F, \mathbb{Z})$ is a free abelian group.

 \Box Any link diagram D can be turned into the diagram of an unlink by reversing several crossings, if necessary.

 \square The 0-th homology group $H_0(F,\mathbb{Z})$ of any surface F is isomorphic to \mathbb{Z} .