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1 Introduction

This thesis is an attempt to show an astonishing relation between basic ob-
jects from different fields in mathematics. Most peculiarly it turns out that
their classification is ‘the same’: the ADFE classification. Altogether these
objects and the connections between them form a coherent web.

The connections are accomplished by direct mathematical constructions
leading to bijections between these classes of objects. These constructions
however do not always explain or give satisfactory intuition why these clas-
sifications are, or to say it better, why they should be related in this way.
Therefore the deeper reason remains mysterious and when discovered will
have to be of great depth. This gives a high motivation to look for new
concepts and it shows that simple and since long understood mathematics
can still raise very interesting questions, show paths for new research and
give a glance at the mystery of mathematics. In my opinion to be aware of
a certain truth without having its reason is fundamental to the practise of
mathematics.

In this thesis I will demonstrate the following correspondences, in this
order:

Platonic solids <> binary polyhedral groups
binary polyhedral groups < Kleinian singularities
Kleinian singularities < Dynkin diagrams
representations of bin. pol. groups <> affine Dynkin diagrams
representations of bin. pol. groups <> Kleinian singularities

Lie algebras of type A, D, E <> Kleinian singularities

The first connection was found in the end of the nineteenth century. It
was Felix Klein who studied the theory of the regular polyhedra and their
symmetries, in his book on the icosahedron, see [18]. He found the relation
between the possible finite subgroups of the special unitary group SUs(C)
and the platonic solids. For these groups he computed a fundamental set of
invariant polynomials which he found to be subject to one essential relation.
He used these results, which we will discuss in the first sections, for his theory
of equations of fifth degree.

The results of Klein on the invariant theory of the binary polyhedral
groups, I' C SU,(C), were a starting point for later developments. In the
1920’s du Val obtained a resolution of the Kleinian singularities C?/T'; the
quotient singularities associated with the binary polyhedral groups. He was
able to give a characterization that made them a particular class of singu-
larities: “Isolated singularities of surfaces which do not affect the conditions
of adjunction”. After this other characterizations of these singularities have

3



been found, for instance by Arnold. We will show that with the use of a
minimal resolution S — C?/T" with exceptional set E they can be classified
by the Dynkin diagrams A of type A,, D,, Es, E7 and Ej.

Let us summarize this in a picture:

(CQ
Y.

These Dynkin diagrams classify another special class of objects, the sim-
ple Lie algebras or Lie groups which have root systems with all roots the
same length.

In this field of Lie theory and algebraic group theory great progress had
been made; the classification of semisimple Lie algebras by Dynkin diagrams,
the theory of reflection groups and Weyl groups and their representations,
the study of conjugacy classes in algebraic groups. With this theory vari-
ous other surprising connections with binary polyhedral groups and Kleinian
singularities were found.

As stated above the Dynkin diagrams of type A, D and FE arise naturally
in the resolution of the quotient singularities of binary polyhedral groups.
Then in 1980 McKay found there is a direct connection between their affine
versions and the irreducible representations of these groups and soon after
this it was shown that also the geometry of the resolution of the quotient
singularity and the irreducible representations are directly related.

After his work on singularity theory and the work of Kostant, Steinberg,
and Springer on the adjoint quotients y : g — h/W, x : G — T/W and the
resolution of the nilpotent, unipotent variety, Brieskorn was able to proof the
conjecture, stated by Grothendieck, that the quotient singularities emerge as
the intersection of the nilpotent variety and a transversal slice to the orbit
of a subregular nilpotent element in the simple Lie algebra g of type A, D
or E, or analogously in the algebraic group G of this type with unipotent
instead of nilpotent.

In view of this theorem, which we will illustrate in the final section of
this thesis, it is interesting to see what Klein once said about his work and
its relation to the work of Lie:

Meine Verpflichtungen gegen Hrn.Lie gehen in die Jahre 1879-70 zuriick,
wo wir in engem Verkehre mit einander unsere Studienzeit in Berlin
und Paris abschlossen. Wir fassten damals gemeinsam den Gedanken,
iiberhaupt solche geometrische oder analytische Gebilde in Betracht zu
ziehen, welche durch Gruppen von Aenderungen in sich selbst trans-
formirt werden. Dieser Gedanke is fur unsere beiderseitigen spateren



Arbeiten, soweit dieselben auch auseinander zu liegen scheinen, bes-
timmt geblieben. Wahrend ich selbst in erster Linie Gruppen dis-
creter Operationen in Auge fasste und also insbesondere zur Unter-
suchung der reguldren Korper und ihrer Beziehung zur Gleichungsthe-
orie gefithrt wurde, hat Hrn.Lie von vorneherein die schwierigere The-
orie der continuirlichen Transformationsgruppen und somit die Differ-
entialgleichungen in Angriff genommen.

These two viewpoints turned out to have more connections then Klein
could foresee.

P. Slodowy has written various articles and gave lectures about this topic
the last twenty years, see [32], [33], [34], [35], [36]. There is a book of Lam-
otke, see [23], that exhibits the correspondences between the platonic solids,
their symmetries and the quotient singularities and resolutions. On the con-
nection of the ADF classification with quivers and the representation theory
of algebras, there is a recent survey article by Idun Reiten, see [30]. We do
not discuss this connection in this thesis.

There are many recent developments in the subject discussed here. Its
widespread presence and significance in mathematics and physics, i.e. string
theory, caused many to study it, both mathematicians and physicists. It is of
great interest to see if, and if so, in what way the theory can be generalized.
We will conclude this thesis by making some remarks about this. However
in this thesis my goal was to give a clear picture of the list of connections
stated above. On various occasions the large amount of theory that is covered
by these different topics has made it necessary to omit details and proofs,
many of which are standard. They can be found in the references. I have
nevertheless tried to illustrate the discussed theory with examples.






2 Platonic Solids and symmetry

The platonic solids are a class of objects that have been present in math-
ematics since ancient times. They were already described and classified by
the Greek mathematicians.

Euclid’s work culminates in the description and classification of the reg-
ular polyhedra. These results are contained in Book 13 of Euclid’s elements;
see [12]. Plato (427-347 B.C.) used the regular polyhedra to describe matter
in terms of a mathematical model. In his dialogue “Timaios”, he associates
the four solids tetrahedron, cube, octahedron and icosahedron to the basic
four elements of matter: fire, earth, air and water. The dodecahedron rep-
resented the universe. Roughly 2000 years later, in 1596, Kepler used the
platonic solids in his description of the solar system. He associated a platonic
solid to each of the six planets known at that time, in such a way that when
inscribed in each other this gave an explanation of the configuration of the
planets. For a modern account on the regular polyhedra see [7] or [44].

We recall briefly, that a polyhedron P is an intersection of finitely many
closed half-spaces H; in 3-dimensional Euclidean space E. Let P = N“, H;

e

=
o 5
e

Figure 1: Kepler’s proof of the configuration of orbits of the planets



be a bounded polyhedron. P is a convex compact subset of E. Let the V;
be the defining planes of the H;. Then a finite intersection of these planes
intersected with P gives us, if not empty, a polygon, a line segment, or a
point. These are called the faces, edges and vertices of P respectively. Such
a P obtained is called a regular polyhedron, or a platonic solid, if its faces
are congruent regular polygons, and if the number of these faces meeting in
a vertex is the same for all vertices.

For every g > 3 there exists a unique (up to size) regular convex polygon
with ¢ edges and ¢ vertices. It’s group of rotation symmetries is the cyclic
group of order ¢:

7./q7 — SO(2),

and its full group of symmetries (rotations and reflections), is the dihedral
group of order 2¢:
D, =Z/qZ x Z/2Z — O(2).

So we can define a regular polyhedron P by a pair of integers {¢, p}, the
Schlafli symbol, each face of P being a regular ¢g-gon and p of them meeting
in each vertex of P. A regular ¢-gon has interior angle o, = (1 — %), whence

2
21 > poy = m(p — zp)
This gives us:
1 1 1
-+ -+->1L (1)
p q 2

We see that the only possibilities for {q, p}, if we admit the degenerate cases
in which one of them is 2, are the following:

{g.p} | P flelw
{q,2} | dihedron 21 q | q
{2,p} | hosohedron plp| 2
{3,3} | tetrahedron 4 16 |4
{4,3} | cube 6 |12 8
{3,4} | octahedron 8 |12 6
{5,3} | dodecahedron | 12 | 30 | 20
{3,5} | icosahedron | 20 | 30 | 12

Table 1: Schlafli symbols. f faces, e edges and v vertices

The dihedron consists of 2 regular ¢-gons glued together at the edges.
The hosohedron can be considered the dual of this; a sphere divided into ¢
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tetrahedron cube octahedron dodecahedron icosahedron

Table 2: The five platonic solids

equal parts by great circles on the sphere intersecting in the north and south
pole .

The reason of the interest in these objects is their high degree of regularity
which is represented by the rich symmetry groups they possess. We will
therefore for each object in the list above determine its group of rotation
symmetries G.

Clearly the axis of a rotation symmetry should always intersect P in a
vertex ,the midpoint of a face, or in the midpoint of an edge. We will denote
the order of the respective symmetries with ni, ng, ng. This gives us the
following symmetry groups (G, with orders N:

P ny|ng | n3g | N G
dihedron 2 1 p| 2|2 D,
hosohedron qg | 2] 2|2 D,
tetrahedron 313|212\ T=A,
cube 314112 1(24|0=5,
octahedron 4 1312 1(24|0=5,
dodecahedron | 3 | 5 | 2 |60 | [ = Aj
icosahedron 51312 (60| 1=A;

Table 3: Symmetry groups of the regular polyhedra

Let us mention the well known duality; If we take a regular polyhe-
dron P we get a dual P’; it has its vertices in the midpoints of faces of P.
This gives the duality (dihedron,hosohedron), (cube,octahedron) , (dodeca-
hedron,icosahedron). The tetrahedron is self-dual. The symmetry groups of
dual solids are isomorphic.

We get the descriptions as permutation groups by looking at the action of
G on a well chosen subset of P, namely the set of 4 vertices of the tetrahedron,
the set of 4 body-diagonals of the cube, and the set of 5 so called “Dreibeine”



in the icosahedron, each consisting of 3 pairwise orthogonal axes through the
midpoints of opposite edges.

If we put the center of gravity of the above objects in the origin of E|
we see that the groups G are naturally embedded in SO3(R). In fact we will
see that up to the case of the cyclic group of order N they exhaust all the
possibilities of finite subgroups of SO3(R).

3 Finite subgroups of SU(C)

Let SUy(C) C SLy(C) be the special unitary group, the subgroup of unitary
transformations in GLy(C) with determinant 1. It has a group action on the
complex projective line P := P (C):

SU(C) xP— P

(¢ a)en)— g

for all points (z : 1). The point at infinity (1 : 0) = co goes to (ac™" : 1)
if ¢ # 0 and else to co. The element —I acts trivially so the action factors
through an action of PSU,(C).

Take a finite subgroup I' C SU,(C) and let G be its image in PSU,(C).
We want to classify the possible groups G. To do so assume that G is not
trivial and consider its action on P. Let F' C P be the set of points which
are fixed by some non-identity element of G. Each non-identity element has
exactly 2 fixed points, hence F' is a finite set and G' permutates it. Choose
representatives pi,...,pq € P of the distinct orbits of G in F. Let G; be the
corresponding stabilizer subgroups of these points in G;

Gi=G,, ={9€Glg-pi=pi}

and let n, n;, be the orders of the groups G, G;, respectively. We see now
that

2n=1) = Y (IG/=1) =) (G| -1)

pEP peF
a n d n
= Y GH-IFI=Y —n-Y —
peF i=1 ¢ i=1
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Rewriting this' gives us

2
+ =2+ -, 2
d - (2)

Clearly all n; > 2, so our equation implies that we must have d—i—% < 2+%,
which gives us d =1, 2 or 3.

d=1 Then 2 =n+ n%, so n =1, G consists of the identity element alone.

d =2 Then % = n1—1+ n—12, whence n = n; = ny and G = G; = G5 cyclic groups
of order n.

d = 3 Then the equation becomes

2 1 1 1
I+-=—+—+—. (3)
n nq N9 ng

so what we see is that Zf’zl ni > 1, so if we take 2 < n3 < ny < ny,

we see that ng = 2 and no ’g 3. Using this we find the following
possibilities for (n, ny, no, n3):

(2p7 p7 27 2)7 (127 37 37 2)’ (247 47 37 2)7 (607 57 37 2)' (4)
These are the so-called polar configurations of our subgroups of PSU,(C).

PP is isomorphic to the sphere S? C E: We identify C C P with the plain
in F through the equator and extend the stereographic projection by sending
the point at infinity to the north pole of the sphere. This isomorphism gives
us an isomorphism of groups:

PSU(C) = SO4(R)

so there is a bijection of the finite subgroups of these groups. We see that the
rotation-symmetry groups of the objects of the last paragraph give realiza-
tions of the possible polar configurations, except for the (trivial) cyclic case.
A realization of the cyclic group of order n as a rotation symmetry group, is
given by the pyramid with n sides. We can therefore conclude:

Theorem 3.1. If G is a finite subgroup in SO3(R), then it is isomorphic
to a cyclic group of order n, C,, the dihedral group of order 2n, D,, the
alternating group on 4 elements, Ay, the symmetric group of 4 elements, Sy,
or the alternating group on 5 elements, As.

I This equality is also known as the theorem of Luroth.
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Proof. The cyclic case is clear. The rest follows from comparing the results
in table 3 and the listed polar configurations in (4). O

We now use the double covering:
T SUQ((C) — SOg(R)

to get a classification of all possible finite subgroups of SUy(C). If G is a
finite subgroup of SO3(R) we see that |7 1(GQ)| = 2|G].

Proposition 3.2. Let I' C SU,(C) be a finite subgroup. Then T' = 7 1(G),
for some G C SO3(R) if and only if T is not cyclic of odd order.

Proof. T = 7=(@G) if and only if —I € T, which is true if and only if |T| is
even. In the case that |I'| is odd we see that ' & 7(T"), which makes I a
subgroup of SO3(R) of odd order, hence cyclic by the last theorem. O

The subgroups I' that are inverse images of subgroups in SO3(R) are
called binary. There is the binary cyclic group Cs, = C; of order 2n, the
binary dihedral groups D,, = D}, of order 4n, the binary tetrahedral group
T =T of order 24, the binary octahedral group O = T* of order 48, and
the binary icosahedral group Z = I* of order 120. And there is the cyclic
group Co, 1 of odd order.

We have a classification of the finite subgroups of SU,(C). Since every
finite subgroup of SL,(C) is conjugated to a subgroup in SUy(C) we also
have a classification of the finite subgroups of SLy(C).

Let us finally mention here that the three special orbits Gp; in PSU(C)are
corresponding to the three special sets of points in the regular polyhedra,
namely the set of vertices, the set of midpoints of edges, and the set of
midpoints of faces.

4 Invariant theory of binary polyhedral groups

Let us first collect some general remarks and results about the theory of
invariants. Take V a finite dimensional complex vector space, let (e;)?_; be a
basis of V and let f; € V* be the corresponding linear functions on V' defined
by fi(ej) = 0;j. Then the f; generate the symmetric algebra S = S(V*) of
V', which is isomorphic to the polynomial algebra on V, C[Zy,...,Z,]. S
is a graded algebra, its components being the homogeneous polynomials of

degree d;
S=@p S

d>0
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Let GL(V) denote the group of all invertible linear transformations of V.
Every subgroup G of GL(V) has an action on the algebra S, coming from
the contragradient action:

g.fw)=f(g'w) ,9€G, feS,veV.

This action preserves the grading.
We denote the subalgebra of G-invariant polynomial functions by S¢;

SG:={feSlgf=f VgeG}=EP(S9nSy.

d>0

Theorem 4.1. For a reductive linear algebraic group the algebra of invari-
ants SY is finitely generated over C. In particular for finite G the algebra
SY is finitely generated over C.

Proof. This result in the case of G finite was already proven by E. Noether.
For a proof of the more general statement see [38]. O

The invariant theory for finite subgroups of SU,(C) was solved by Klein
in his study concerning quintic equations, see [18]. We will follow mainly the
same approach to establish the results he obtained. Other sources are [2],
[23], [44] and Springer [38]. Springer uses some invariant theory of complex
reflection groups. Finally we mention here the article of Pinkham [28]. He
uses more advanced methods from algebraic geometry. We will first state the
results and then (partly) give a proof of them.

What Klein found was that the ring of invariants S, I a finite subgroup
of SUy(C), is generated by 3 fundamental invariants X, Y, Z, subject to one
essential relation R(X,Y, Z) = 0, which is weighted homogeneous;

ST = Q70,2 = CIX, Y, 21/ (R) = V.
We see that the map ® : C2 — C?,
¢<217 ZQ) = <X(Z11 Z2)a Y(Zla Z2)7 Z(Zla ZQ)))

factorizes over the quotient space C? /T'. The image of ® is the zero set of R,
V(R), so ® induces an isomorphism of varieties C*>/T" & V.

¢ 2 V(R CO

{ Tid
C/T = V(R)

13



r R(X,Y,7) (d; wy, ws, w3)
Cn X"+YZ (2n;2,n+1,n+1)
D, | X"+ XY2+ 22| 2n+2:2,n,n+1)
T | X*4VY3+22 (12;3,4,6)

O | X3Y+Y34 272 (18;4,6,9)

| XP4V3422 (30;6,10,15)

Table 4: Essential relations R for the fundamental invariants of G.

For later use we make the following note here. Let the multiplicative
group of the complex numbers C* act on [-dimensional complex space C
with integer weights wy, ..., w; € Z; for x = (1, ...,7;) € C', and t € C*,

tx =t(ry,...,x;) = [t 2y, ..., " xy).

Let us recall that each linear C*-action is of this type. If there is an-
other such action on p-dimensional space with weights di,...,d,, we say
that a C*-equivariant map f : C' — CP is weighted homogeneous of type
(dy, ..., dp;wr, ..., wy), with weights wy,...,w; and degrees di,...,d,. The
monomials ail,m,ilx’f - -xf’ that appear in a component f;, a weighted homo-
geneous polynomial of type (d;; wy, ..., w;), satisfy 25:1 iw; = d;.

We have listed the results for the fundamental invariants X, Y and Z,
conveniently chosen, in table 4 and we have added the weighted homogeneous
type of R.

Proposition 4.2. Let f : C* — C be weighted homogeneous of one of the
types in table 4 and R the corresponding polynomaial. Then there is a C*-
equivariant automorphism o of C* such that f o o = R.

Proof. For a proof of this statement see [32]. O

Now let us see how to obtain these results. To start with we have a finite
subgroup T of SU,(C), we take V = C* and we want to determine invariant
polynomials. We know that the action preserves the grading of C[Z;, Z,],
so we can restrict our inquiry to the analysis of the action on homogeneous
polynomials.

The cyclic and dihedral case are easy and can be dealt with directly. We
compute invariants for the generators of I'. They give us the invariants for

r.
¢ 0
-1

0 ¢
primitive N-th root of unity; it acts on C[Z;, Zy] by Z1 — (1 Z1, Zy v (Zs.

Let I" be cyclic of order N. A generator for I' will be < ) , with ¢ a

14



We get the invariants X = Z,Z,, Y = ZN and Z = ZJ, which span the
whole of S and satisfy the relation X" =Y Z.

Let I" now be binary dihedral of order 4N. Generators of ' are ( g Cgl )
and ( (Z) (Z) ) . The first has invariants listed above, the second has the invari-
ants 772 — 72, 7, Zy(Z% + Z2) and Z2Z2. We get invariants of ', X = Z272,
Y =73 + (—1)NZZN| Z = 7, Zo(Z3 — (—=1)NZ2N). They span the whole
of ST and satisfy the relation

77 — XY? = 4(= X))V,

So if we substitute —X for X, 2Y for Y, and 27 for Z, they satisfy the
relation R(X,Y, Z) = 0 listed above.

In the other cases this method is not a good choice. The generators of
I' get more complicated and the invariants of them have high degrees. It is
easier to calculate the semi-invariants of I.

Definition 4.3. f is a semi-invariant of I' if
dx € HOM(T',C*) such that ~.f =x(y)f Vyel.

Such characters x of I" factor through the abelianized group, AT.

We have an action of [' on P which factors through the action of G =
(') € SO3(R) and we take as before representatives py,..,pq of the distinct
orbits of the action of G on F, the set of points fixed by some non-identity
element in G. So we can define an action on the Abelian group of divisors
on P, D:

v.D(x) = D(y~'.2) , with D € D and x € P.

Every homogeneous polynomial f of degree d defines a divisor D; € D
of degree d. Namely for x € P we let D(x) be the order of vanishing of f
on the line in C? defined by z, and a divisor likewise defines a homogeneous
polynomial, uniquely up to a scalar factor.

If Dy is I'-invariant we see that f is I'-semi-invariant. The I-invariant
divisors clearly form a subgroup of D. An orbit ¥ C P defines a I'-invariant
divisor D;

D(z)=1ifzeX | D(x)=0 else.

Such D are called simple and are denoted by the same letter ¥. In our
case we have 2 (cyclic case) or 3 exceptional orbits 3; = I'p;. They define
exceptional divisors Y;, and the following semi-invariants f;, of degree |Gp;:

fz’(Zla Z2) = H (G2Z1 - Glzz)

(a1:a2)EG(p;)

15



With every divisor D we get a well-defined character xp, since we can
associate a semi-invariant f with D.

Proposition 4.4. Let T’ be a finite subgroup of SUs(C) with its canonical
action on polynomials in two variables. Let D be the abelian group of divisors
on P, with an action of I defined as above. Then the following holds:

1. Bvery positive invariant divisor D € D can uniquely (up to order) be
written as a finite sum:
k
D = Z 7‘1‘2@'
i=1

of different simple divisors ¥;, with r; € Zg.

2. There s a bijection between the group of positive I'-invariant divisors
and the ring of I'-semi-invariant homogeneous polynomials; Take D €
D positive and invariant. It defines a homogeneous semi-invariant f
by
f(Zla Zz) = H (02Z1 - a1Z2)D(a)-

a=(a1:a2)€P

Toke f a semi-invariant. It defines a diwisor D € D by
D([ay : as]) = ords((a1, az)).

3. If f is a [-semi-invariant homogeneous polynomial, then f is [[',T]-
wnvariant.

Proof. Take a positive non zero divisor D. D ## 0 in a finite number of points.
D is constant on orbits and there are only finitely many orbits, say ¥, ..., X%
on which D is strictly positive, of value r1, ..., ;. This proofs the first part of
the proposition. The second part follows from remarks made above. For the
third part, let f be I'-semi-invariant. The character x; factorizes through
Al =T/[T, T. O

In the icosahedral case AT is trivial and we get the 3 fundamental in-
variants directly from the three exceptional orbits, of order 12, 20, and 30
respectively. It can be shown that the the space of invariant homogeneous
polynomials of degree 60 is 2-dimensional. This gives us that these three
invariants span the whole of S* and by scaling them they satisfy the relation
in the list.

In the other 2 cases, the tetrahedral and the octahedral case, we get three
semi-invariants, coming from the exceptional orbits. Here AL is not trivial
so we need some explicit calculation of the characters to get the results listed
above. See the references for details.
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5 Kleinian singularities

5.1 Characterizations of Kleinian singularities

We have shown that the quotient variety C/T" is isomorphic to the affine orbit
variety V. We see that in all cases we have a unique isolated singularity
at 0. These particular singularities are called Kleinian singularities, but
they are also denoted by rational double points, quotient singularities or
simple singularities. They form a special class of singularities, having various
equivalent characterizations.

Proposition 5.1. The following characterizations of singular germ (V,0) of
a surface are equivalent:

1. Let the finite group G C SLo(C) act naturally on complex 2-dimensional
space. Then the orbit space C?/G is a complex space and (V,0) is iso-
morphic to the germ of the set (C*/G,0). Germs of this type are called
quotient singularities.

2. (V,0) is isomorphic to the germ (V',0) of the affine variety V' =
ClX,Y,Z]/ < R >, with R one of the polynomials from table 4.

3. Let p: W — V be a minimal resolution of the singularity (V,0). Then
the exceptional set p~1(0) is a finite union of projective lines, which
have intersection matriz the negative of a Cartan matriz of a Dynkin
diagram of type A, D or E.

4. The singularity (V,0) is normal, has embedding dimension < 3 and is
rational: Let p : V* — V be a minimal resolution of 0 € V. Then the
higher direct images of the structure sheaf are zero;

(R'p.Oy+)g =0, Vi >0,

Proof. 1 <= 2, follows from section 4. To proof the equivalence 1 <
3, we will give resolutions of the quotient singularities and show that they
are of the type stated here. Moreover they will turn out to be characteriz-
ing; the minimal resolution is unique. For the equivalence with 4 and other
characterizations of Kleinian singularities we refer to [8]. O

A point p on an analytic variety is called regular if a neighborhood of p
is isomorphic to a complex manifold. A non-regular point is called singular.
For a general account of singularities see [2]. Furthermore the survey article
of Brieskorn [5] is recommended. He takes the hyper-geometric differential
equation as a starting point. It is closely related to our discussion and has a
long and rich history in mathematics.
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5.2 Resolutions of Kleinian singularities

The goal of this section is to give a minimal resolution of the quotient singu-
larity, which as stated gives a characterization of the singularity. Let us first
give some definitions.

Definition 5.2. A modification of a variety V at a point v is a morphism
u:V-—v
with the following properties:

1. p is proper (In the case of a complex variety this means that the inverse
image of compact subsets are compact).

2. u restricted to u~(V\{v}) is an isomorphism to its image V\{v} and
p L (V\{v}) is dense in V.

The subvariety £ := u~'(v) is called the exceptional set.

Definition 5.3. And if (V,v) is a singularity it is called a resolution of the
singularity if in addition

3. every point of V is reqular.

For curve and surface singularities it is since long known that resolutions
exist. In characteristic zero there is a theorem by Hironaka that states ex-
istence of resolutions of singularities in the general case. For the theory of
surface singularities see Laufer [24]. The method used to obtain a resolu-
tion is the blow-up of singular points. The singular point is replaced by all
the lines through it. A resolution p is minimal if all other resolutions factor
through p. Minimal resolutions exist and are unique up to isomorphism.

We now give a construction for the minimal resolutions of the quotient sin-
gularities coming from the binary polyhedral groups. We will follow mainly
the approach of Lamotke, see [23].

As usual the cyclic case is the easiest one. Let I' C SU(C) be the cyclic
subgroup of order N in SU,(C),

F=<<g C91>>.

We will give a resolution of the corresponding quotient singularity C? /T". The
singularity is isomorphic to the hyperplane singularity (V,0) defined by the
relation XV =Y Z.
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We consider the line bundle () (This is O(—b)),
N(b) == {((21, 22), (w1 : wa)) € C* x Plzywh = zuw?},

and we give holomorphic charts U; and U, for 3(b), induced from the 2 charts
covering P
Ui == {(z,w) € 3(b)|w; # 0},
S(6) DUy — €, (2,w) = (21, 22) , wy £ 0
un
and w
B(0) D Us = €, (z,w) = (22, —2) , wn #0.
w2
We see that the U; are isomorphic to C* and the transition is given by
¢ : (u,v) — (+,u’v). The 2 and z, are called linear fiber coordinates and
3—;, z—; affine base coordinates.
We use this to form a manifold M by pasting more of these copies to-
gether. We take

N
M= ]JU;, with U; 2 C , and U; UU;py =: L; 2 (2) 2 T"P,
i=1
the U; having coordinates (u;, v;) such that u; is an affine base coordinate of
L;_; and a linear fiber coordinate of L; and v; is a linear fiber coordinate of

L; | and an affine base coordinate of L;.
The transition, pasting of the U;, is done by

¢i :U\{vi =0} — Uip1\{uiz1 =0}
(ui,vi) = (i,uzvf) = (Wit1, Vit1)
fori=1,.,N—1.

N-1
M = U L, LiN Ly = Uiy

i=1
We have the following result:

Proposition 5.4. The minimal resolution for C* /T, T' cyclic of order N, is
given by

p:M— V

(ui, i) = (2,9,2) = (wvg, vlo b ul "N ).
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The exceptional set of p, E, is the union of the zero sections of the line

bundles L;,
N-1

E= | E;, with E; == {u; = vi41 = 0}
i=1
Here E; and E;i, intersect transversely in one point and E; N E; = 0 for
li — 7| > 1. The self-intersection number of the components E; is —2.

Proof. We will only give a sketch. For details see [23]. O

The key ingredient of the proof is the following result about cyclic quo-
tients:

Let H be a finite cyclic subgroup in GL,(C). Up to linear coordinate
transformations we can assume that H is generated by diag((, (s), with ¢
a primitive i-th root of unity. Take p € Z such that rp is the least common
multiple of r» and s and let H* be the cyclic subgroup of order r generated

by diag(Gr, ¢F).
Lemma 5.5. The mapping f(z1,22) = (21,25) induces an isomorphism of
complex spaces
C*/H = C*/H".
Proof. The map f is induced by the following commutative diagram:

e L e
I ¥
c/H L c/B

The non-trivial part of the proof is the injectivity of oI f(lug,ue)) =
f([v1,vq]) then 7* o f(uy,us) = m* o f(v1,ve). This gives us uy = (v and
uh = (PWh, for some integer q. We get us = (,(%vs, and since (! is a primitive
p-th root of unity there is an integer [, such that ¢, = ("'. Take t = rl +q.
Then clearly u; = ('v; and uy = (lvg, whence [uy, us] = [v1, vo]. O

Using the lemma, we see that C?/T" = C*/I'*, with

* __ CN 0
F ‘<< 0 <N1<N)>'

Then we blow-up of the unique singular point 0 € C?/T'* by the canonical
map 3(2) — C* and extending the action of I'* to an action of ¥(2), making
the following diagram commutative:

(2 — @
\ \
$(2)/T* — C2/T*
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We look now for singularities in X(2)/T*. The local charts U; are I'*-
invariant and any singularity must be in the exceptional set which is given
by the zero section of ¥(2), {(z,w) € ¥(2)|z = 0}. This is a projective line.

The generator of I'* acts on X(2);

(21, 22), (w1 : w2)) = ((Cnvz1, Cv—1ln2za) (wr : (yo1w2)).

Now we look in the charts U;. On U; we can fix w; = 1 and we see that
we have the following induced actions:

on Uy : (21, ws) — ((nz1, (n-1w2)
on Uy : (29,w1) — (Cnv—1lnza, CyEy)-

We get that

U JT* 2 U,/ < ( %V CNO_l ) >,

but the last is isomorphic to U; /{Id} using our lemma twice. We get that

Uy /T 2 Uy/ < < QB_I C]€11 ) >

We have a cyclic quotient singularity of order one less in one of the charts,
whereas the other chart has no singular points.

So we can repeat this construction leading to cyclic quotient singularities
of smaller order and we get the construction of our manifold M, with all the
properties mentioned above.

Minimality of a resolution can be characterized by the fact that it doesn’t
have exceptional curves with self-intersection —1. Hence this follows from the
fact that the self intersection number for the components of F is —2. In fact
the Euler number of O(—2) is —2. This follows from the fact that it admits

a meromorphic section s without zeros and with 2 simple poles:
2 2
w w
s:P—3(2), [wr:ws] = (———, 52—, [wi : wa)).
Wy — Wy wy — Wy

Definition 5.6. Let p: M — V be a resolution of the singularity (V,0), with
exceptional set E a union of projective lines; E = |J,c,; Ei, E; = P, where
the intersections between the components, if not empty, are transversal.
Then the graph A of the resolution has a vertex for each component E;
and a edge between E; and E; if and only if E; NE; #0 fori,jel,i#j.

We have demonstrated that the quotient singularity for the cyclic group
of order N has the Dynkin graph of type Ay 1 as a resolution graph.
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oo o -0 o

Figure 2: Dynkin diagram Ay_;

Even in the easiest case possible, namely in the case of I' cyclic of order 2,
the real picture of the minimal resolution, see figure 3, gives a good feeling for
what is going on. This singularity is defined by the equation X2+Y?2—22 = 0.

Having dealt with the cyclic case we can proceed with the other. We have
a quotient singularity C? /T, T a non-cyclic binary polyhedral group.

We first blow-up the point 0 € C2,

p:X(l) — C?
(z,w) — 2z

and lift the action of I" to ¥(1), obtaining a commutative diagram

1) 4
\ A
(1) 5 er

The map p* is a modification of the singularity. We will find a resolution for
3(1)/T, thus resolving C?/T.

We look at the action of I' on (1), given by v(z,w) = (vy.2,7y.w). The
exceptional set £ = p~(0) is isomorphic to the projective line (hence iso-
morphic to the sphere) and contains all the points which are a fix-point of
some non-identity operation in I'.

Figure 3: Resolution of cyclic quotient singularity of order 2
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' | type of A A

Cn | An_ oo o -0 o
Dy | Dy .—F+I—0
T Es o—o I o—o
] E; o—o I e o o
7 Eq o—o I e o o o

Table 5: Resolution graphs for the quotient singularities.

It is easy to see that the action of I' on E factors through the action of
G on the sphere, where G is the image of I in SO3(R). (Note that +1I acts
trivially.) The projection %(1) — 3(2), (z,w) — (2% w) induces an action
of I'" on X(2) and we obtain an isomorphism X(2)/G = 3(1)/T. We have
obtained the following result:

Proposition 5.7. There is a modification
Y %(2)/G — C*JT.

The only singular points come from the exceptional orbits of [' on E.
We know there are 3 such orbits corresponding to stabilizer subgroups in G
which are cyclic subgroups of order p, ¢ and 2, the polar configurations of
G being (p,q,2). Hence X(2)/G is a smooth complex surface, except from 3
isolated cyclic quotient singularities of order p, ¢ and 2, which all three lie on
the exceptional set of ¢~1(0) = P. We know how to solve these singularities.
If we give a resolution for these three singularities we obtain a resolution of
the quotient singularity C?/I". To proof minimality the criterion of the self
intersection numbers is used.

The resolution graph has one special node from where three branches of
length p—1, ¢ —1 and r — 1 start. This gives the resolution graphs as listed
in table 5.

We have sketched the real picture for the resolution of C* /D, in figure 4.
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N
%

Figure 4: Minimal resolution for C? /D,

5.3 Semi-universal deformations

For later use we briefly discuss the notion of deformations. For details see
[17] and [27].

Definition 5.8. Let V be a variety. A deformation of V is a pair (p,1),
where p is a flat morphism of varieties, p : X — (U, u) from the total space
X to a pointed base space (U,u), and i : V — p~'(u) is an isomorphism.

Sl

Figure 5: A deformation of a variety

[}
cC

If we have a deformation (p,7), and a morphism of pointed varieties,
¢: (U, u') — (U,u), we get an induced deformation (by the base change ¢),
(¢ * (p), ¢ = (i)), with total space X xy U’ and base space U'.

Two deformations are isomorphic if they have the same pointed base
space and there is an isomorphism of the total spaces that is an isomorphism
of the special fiber.

The theory of deformations comes from the study of moduli spaces. In
our situation we will consider Kleinian singularities, singular germs (V,0)
and we want to find deformations of them. As in the case of resolutions we
would also like to have some ‘minimal’ deformation, if possible unique.
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Definition 5.9. A deformation (p,i) of a variety V', with total space X and
base space U, is called semi-universal if and only if both the following hold:

1. Up to isomorphism any deformation of V' can be induced from (p,i) by
some base change ¢ : (U',u') — (U, u).

2. The differential D¢ : T,,U" — T,U is uniquely determined.

In the present case it turns out to be too much to ask for the base change
to be uniquely determined in the special point. The condition of the differen-
tial map of the tangent space in the special point to be uniquely determined
guaranties that up to isomorphism the semi-universal deformation is unique.
See the references for details.

Let (V,0) now be the Kleinian singularity defined as C[X,Y, Z]/R, with
R from table 4. Then

OR OR aR)
'0Z, 07y 07

CllZ1, Z2, Z3)|/ (R

is finite dimensional so we can choose a basis for it, say b1, ..., , b,.

Define the spaces X = {(z,u) € C* x C"|R(z) + >_\_, u;b;(z) = 0} and
(U,u) := (C",0). Let the morphisms p : X — (U,u) and i : V < X be
the projection on the second coordinate, and the embedding of (V;0) into X
respectively. Then we have the following result.

Theorem 5.10. The pair (p,i) is a semi-universal deformation of the sin-
gularity (V,0).

Consider the case that we have a cyclic quotient singularity of order n.
Then we have the variety V defined by R = X" — Y? — Z2 = 0 hence the
quotient algebra

OR OR OR

(C[Xa Ya Z]/(R7 a—X’ 8—Ya 8—Z

) =CX,Y, Z]/(X" .Y, Z) = C[X]/(X"1).

A semi-universal deformation is then given by the second projection from X
to (U,u) = (C*',0), where

n
X = {<‘,’C7y1 2y Uy -eey un—l) € (C3+n_1 |-’En + Zuixn_i - y2 - 22 = O}
=2

n=2 X is a family of surfaces depending on one parameter u € C. The only
singular fiber is the fiber above 0. Let us sketch the possible fibers
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X H(u) &
U -1 0 1
n=4 The singularity is of type A3 and we obtain a 3-parameter family of
surfaces:

ot —y? — 22w 4 uea® 4 usa®

The singular fibers occur exactly for values of w1, us, us for which % +
w1 + upx? + usx® has multiple roots. This defines the discriminant
locus, which in this case is a so-called swallow-tail. The singularities of
type Ay Ay and Aj also occur as fibers of x. This phenomenon makes
it possible to define a partial ordering on the singularity types, which
corresponds with the partial ordering on diagrams. See for instance
[34] for details. For the present example we have sketched the singular
locus with the occurring singularity types in figure 6.

As

Ax A

Figure 6: The swallow-tail, parameterizing the singular fibers

6 The McKay correspondence

In the last section we have shown that to every finite I' C SUy(C) we can
associate a Dynkin diagram, namely the resolution graph of the quotient
singularity. Quite recently a direct group theoretical proof of this correspon-
dence has been found by McKay.

Let us consider the finite subgroups of SU,(C) and their representations.
We take such a subgroup I' and we let T = {po, ---, pr } be the set of equivalence
classes of irreducible finite dimensional complex representations of I', with
po the trivial representation.
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Now let p : I' = SU(C) be the canonical 2-dimensional representation
of I'. Then we can define for each group I' a matrix A(T"), by decomposing
the tensor products:

pi@p=> A)yp;.

We see that A is a (I + 1) x (I + 1)-matrix with all a;; € Z,.
It was McKay who made the following remarkable observation, see [25],
[26]:

Theorem 6.1. With each I we can associate a complex simple simply laced
Lie-algebra g of rank r such that

AT) =21 - C(§) ,

where g is the affine Kac-Moody Lie-algebra associated to g and C(g) its
Cartan matriz. The Dynkin diagram that is associated to I' in this way s
the extended Dynkin diagram of the diagram associated to T' by the resolution
of its quotient singularity.

Proof. This theorem can be proved (observed) by checking, since on both
sides of the correspondence the structure is well known. There is a unified
proof, not depending on this, by Steinberg, see [43]. O

Let us first collect some results to put this result in perspective. We take
a complex simple Lie algebra g of rank r, and in it we take a Cartan sub-
algebra h. We obtain a root-system in the dual h’ of h and in it we make a
choice for a positive root-system ®. We get a set of simple roots and put an
ordering on it;

A={a,..,a,} Ch
Then the Cartan-matrix of g is defined by:
2(042', Ozj)

(v, i)

(C(g))y = )
the symmetric non-degenerate bilinear form (, ) on h’ induced by the Killing
form of g.

With g we can associate the affine Kac-Moody Lie algebra mentioned
above, which we take modulo its central extension. For details see [16]. The
Cartan sub-algebra h of g has dimension r 4 1 and we can take an ordered
set of simple roots of h’ such that A = {ag, ..., a,}. This is a basis for h'
and we can extend ( , ) to a symmetric, but degenerate bilinear form on h'
by putting:

(g, ) = (=9, ;) , and (g, ) = (¥, ) ,
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where 1) is the unique highest root in &.

This bilinear form defines the Cartan matrix, of g, C(g), which contains
the Cartan matrix of g as a principal r X r minor. We have the affine Weyl
group W and to the Cartan matrix we can associate the extended Dynkin
diagram; to each simple root we associate a node and there is an edge between
two nodes if C(g);; = —1, this being the case when not equal to zero. The
theorem above states that the matrix A(T"), that is obtained for every finite
subgroup I' C SU,(C), minus twice the identity matrix is negative the Cartan
matrix of g. We have listed the extended Dynkin diagrams in table 6.

By the correspondence each node of the extended Dynkin diagram cor-
responds to a unique simple root in A and a representation in I'. There is a
bijection between the set of irreducible representations and the set of simple
roots, p; — a4, © = 0,...,7. The trivial representation corresponds to the
extra node of the extended Dynkin diagram.

Let us take a look at one other way of viewing the correspondence. With
each representation p;, we get a character y;, and we can form the character
table. Since the number of irreducible representations of a finite group I'
equals the number of conjugacy classes in it, we can choose representatives
xo = 1,21, ..., x, for the latter and we then form a (r + 1) x (r 4+ 1)-matrix,
the character table, by in the i-th row an j-th column evaluating x; in z;.
We now have the following result:

Proposition 6.2. The i-th column of the character table of ', v := (x;(x:));,
is an eigenvector of the Cartan matriz of g with eigenvalue 2 — x(x;).

Proof. Take x € T'. We have x(z)xi(z) = >_; A(I')ijx;(x). This gives us
(2 = x(@:))v =2v =3 ; ATk x (i) = (2 = A(D))v = Cv. O
So we can translate the theorem in terms of the diagrams; if we tensor a

representation p; with our fixed 2-dimensional representation p we see that
this decomposes into the representations p; neighboring p; in the diagram.

Corollary 6.3.

Pi®P= Y, p ()

kEN(J)
where N(j) is the set of nodes in the diagram that has an edge with the j-th

node.

We can decompose the vector o + 1 € H, which is orthogonal to every
other vector in h;

Oé()+’¢: Zd,a,

1=0
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C, 1 1 1 1 1 A4
01 1
*—o -

D, 1 2 1 2 1 D,
@1
I 2

L L L ]
T 1 2 3 2 1 FEs

Table 6: The McKay correspondence

In the diagrams we have added to each node the corresponding coefficient d;.
There is the following result relating these coefficients to the dimensions of

the irreducible representations:

Proof. Let d = {d;} and e = {dim(p;)} be vectors in R
show that they are equal. We will first show they are both eigenvectors of
eigenvalue 2 for the matrix A(I"). This is the case for e, since e = {x;(id)},

Proposition 6.4. Let the d; and p; be as above and let h be the Coxeter
number of the Lie algebra g. Then the following holds for all 7 =0, ...;r:

dim(~;) = d; . and h = Zdim(pi)

1=0
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which has eigenvalue 0 for C' = 21 — A(T"), by proposition 6.2. The vector d
is orthogonal to every vector in h’, hence W-invariant. This gives us

2d; = Y d; (6)

JEN(1)

so also d is eigenvector of eigenvalue 2. The space spanned by eigenvectors
of A(T") of eigenvalue 2, is one dimensional since they are eigenvectors of the
extended Cartan matrix, of eigenvalue 0; this » + 1 x r + 1-matrix contains
the non singular r x r-matrix C(g) as a principal minor. The fact that
do =1 =dim(py) = eg concludes the proof of the first statement.

Now the second follows from the well-known fact that A is the sum of the
coefficients of the highest roots plus one. O

If we consider the numbers d; = dim(p;) to be the image of a function f
of the nodes of the graph to the strictly positive integers Z-, the equality
in (6) is the condition of f to be an additive function of the graph. It can be
shown that the existence of such an additive function on a connected graph
with no loops is actually defining for it to be an extended Dynkin diagram
of type A, D, or E. See [30].

We would like to mention some results obtained by using the McKay
correspondence. A good example of the use of it is illustrated in the ar-
ticle of Kostant, see [22]. In this article he attacks the following question:
Let S = @;2, S"(C?) be the symmetric algebra over C* and let 7, be the
representation of SU,(C) on the n-th component. These representations are
irreducible for all n and set up a basis for the unitary dual of SU,(C). Given
a finite subgroup I' C SU,(C), we want to see how the restriction of m, to I’
decomposes.

Now Kostant shows that the root-structure of the Lie algebra that is
associated to I' contains all the information about the multiplicities of the
decomposition of the representations mentioned above. These multiplicities
come in a beautiful way from the orbit structure of the Coxeter element on
the roots of g.

The results obtained by Kostant in this paper were proven later in a
slightly different way, however with the use of the McKay correspondence,
by Springer, see [39].

The observation made by McKay and the ideas discussed above have been
a starting point for many others, either using the McKay correspondence to
get new results, as for instance Kostant in the article mentioned above, or
trying to give an explanation or generalization of it. One of these directions
is discussed in the next section.

30



7 Geometric McKay correspondence

We have seen that to each finite I' in SU,(C) we can associate a Dynkin
graph, the resolution graph of the quotient singularity. On the other hand
the McKay correspondence gives a correspondence between the affine version
of these graphs and the irreducible representations of I'. The question now
rises whether these representations and the resolution of the singularity are
more directly related.

This is indeed the case. Gonzalez-Springberg and Verdier have proven
a theorem which states such a connection, see [10]. There is another proof
of this by H. Knoérrer [19], which is more accessible. This connection is
sometimes referred to as the ‘geometric’ McKay correspondence, where the
McKay correspondence discussed in the last section is called ‘algebraic’.

In short the theorem states there is a bijection between the irreducible
representations of a binary polyhedral group and irreducible divisors of the
minimal resolution of the corresponding quotient singularity.

Let T be binary polyhedral, V := C2, § := V/T and ¢ : S — S the
minimal resolution with exceptional set D. Let p : ' — GL(F) be an
irreducible representation of I'. There is a natural action of I" on V, that
makes it possible to define the I'-equivariant vector bundle £ .=V x EF — V,
on which I' acts by 7.(z,v) = (v(z),7(v)).

Now the associated locally free sheaf on V' is equal to Oy ®¢ E. It has a
canonical I'-action. We denote it, by abuse of notation, with &£.

The group I' acts freely on V — {0} and & is a I’-vector bundle, hence
& defines a vector bundle £ on the quotient S — {0} = (V — {0})/I". Let
£ := ¢*(£') be the pull-back of thison S — D =5 —{0}. Leti: S—D — S
be the inclusion map. If s is an invariant global section of £, s € I'(V,&)F,
then s induces a global section on & and £. So s defines a section 7(s) of
the sheaf i,(£) on S. Denote the subsheaf of 4,(£) generated by the sections
7(s), s € T(V,E)', by 7(p). By ci(n(p)) is meant the first Chern class of
the sheaf 7(p). Let Irr(D) be the set of irreducible components of D and let
I be the set of non-trivial irreducible representations. By a;; we denote the
coefficient of p; in the decomposition of p ® p;, this p being the canonical
two-dimensional representation of T'.

Theorem 7.1. For each p € T the sheaf m(p) on S is locally free of deg(p).
There is a bijection v : T' — Irr(D) such that

0 fd#vy
c1(m(p)) 'd:{ 1 z’fd=¢gzg
and

W(ps) - (pj) = ayj for all i # j.
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So for each non trivial irreducible representation p;, a locally free sheaf
7(p;) on S is constructed, which by its first Chern class is represented by a
divisor. This divisor meets the exceptional set D transversally in one point,
hence in a unique component D; € D, which is taken to be the image of p;
under 7.

8 Brieskorn’s Theorem

8.1 Introduction

In this section we discuss a theorem by Brieskorn, which establishes a direct
connection between the binary polyhedral groups with their corresponding
singularities and the Lie algebras of the type of the Dynkin diagrams obtained
in the resolution of the singularities. We will see that the nilpotent variety
of such a Lie algebra intersected with a slice transversal to the subregular
nilpotent orbit is a singularity with the Dynkin diagram of this Lie algebra
as its resolution graph.

At many points there are generalizations possible, but we do not want
to explore in this direction. The goal here is to demonstrate the statement
above in the simplest case.

The results presented in this section have a history in the studies of the
connection between quotient singularities and Dynkin diagrams, presented
in section 5, and the work by Steinberg, Kostant and Springer on conjugacy
classes and the unipotent variety of an algebraic group. Brieskorn studied
further connections between the resolutions of singularities and structures
related to their Dynkin diagrams, such as the Weyl group and Coxeter trans-
formations. That led Grothendieck to conjecture the above mentioned con-
nection between the simple singularities and Lie algebras or groups of type
A, D, E.

We want to mention here the fundamental papers by Kostant [20], [21],
Steinberg [41], and Springer [37].

To start with we take a complex simple algebraic group G. We let GG act
on itself by the conjugation action:

GxGd@ — G
(g,h) +— ghg™'.

This action is called the adjoint action. We have the linearization of this
action, the adjoint representation of G' on the Lie algebra of G, g:

Gxg — g
(9,h) = ad(g)(h) .
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Let T be a maximal torus of G with character group X*(7T) = Z', so
rank(G) = rank(g) = r. Let N = Ng(T) be the normalizer of T in G,
leading us to the Weyl group of G, W = N/T. If we restrict the adjoint
representation to 7" we have the decomposition of g into a direct sum of
eigenspaces:

g = ga -
aeX*(T)
This defines the set of roots of 7" in g. By choosing a Borel subgroup of G,
containing 7', we make a choice for a set of positive roots and a correspond-
ing basis of simple roots, A := {ay,...,a, }, and we have the fundamental
dominant weights \;, i = 1,...,r, defined by

2(/\,, O[j)

= 62 )
(a, a)) ’

(', ) being the W-invariant scalar product on the r-dimensional Euclidean
space, spanned by the roots.

We recall that for each of these fundamental dominant weights we have an
irreducible highest weight representation of G, p,, with character x, € C[G],
which is constant on conjugacy classes of G.

We have a Jordan decompositions in G and g. In G it realizes a decom-
position of each x € (G in its semisimple and unipotent part:

T = T - T, T, Semisimple, x,, unipotent , such that x, and x, commute.

In the Lie algebra it decomposes each z € g in its semisimple and nilpotent
part:

T = Zs + x,, Ts semisimple, x, nilpotent, with [z, z,,| = 0.

These decompositions are unique and representations respect them.

8.2 The adjoint quotient

Let us consider the adjoint representation of G on the Lie algebra of G, g.
We want to study the orbit structure, i.e. look for a quotient map. This was
done extensively by Kostant in his papers mentioned above.

Let h be the Lie algebra of the maximal torus 7". On it we have a natural
action of YWW. We want to study the ring of G-invariant polynomials in g,
Clg]®. We have the following result.
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Theorem 8.1. The algebras Clg]® and C[h]"Y are isomorphic. There exist r
homogeneous G-invariant polynomials v; of degrees d; = m;+1, that generate
Clg]® freely as a C-algebra. The m; are the exponents of the Weyl group of
g.
Proof. Consider the mapping

Clg] — Clh],

realized by restricting polynomials to the subalgebra h. Its restriction to
the algebra of invariants C[g]® gives an isomorphism with C[h]". It is a
result due to Chevalley that the last is freely generated as a C-algebra by
r homogeneous polynomials p; of degrees d; = m; + 1, the m; being the
exponents of the Weyl group of g. For a complete proof see [4], paragraph
8, no. 3, Th. 1 and Cor. 1. O

The semisimple conjugacy classes in g, under the adjoint action of G,
are in natural correspondence with elements of hyy; s,t € h are conjugated
under G if and only if they are in the same WW-orbit. Furthermore the 7;’s
separate semisimple orbits: Let s,¢ € g be semisimple. Then

s and t conjugate under G <=
s and t conjugate under W <=
vi(s) =v(t) Vie{l,...,r}
The embedding of C[h]" into C[g], induces a morphism g — h/W, called
the adjoint quotient of g;
v:g—h/W.
It can be realized by generators ; of the algebra of invariants, thus taking a
concrete form and making h/W isomorphic to affine r-dimensional complex
space.
v:g — C
x = (nm(x), .7 ()
We now want to study the fibers of the adjoint quotient. These fibers
must be unions of G-orbits in g. Let us collect some results on the adjoint
quotient and its fibers.

Proposition 8.2. Let v : g — h/W be the adjoint quotient defined above.
Then we have the following:

1. v is a flat morphism; all fibers of v have dimension dim(g)—r.
2. Each fiber is a union of finitely many G-orbits in g.

3. The orbit dimensions have to be even.
Proof. For a proof see [21]. O
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8.3 Regular and subregular elements, and the nilpo-
tent variety

The elements for which the orbit dimension is maximal are called regular.

The orbit dimension is maximal if the dimension of the stabilizer subgroup,

Cg(x), is minimal, Cg(z) := {g € Glg.x = z} for x € g. The minimal

dimension of Cg(x) is equal to the rank of g, r. It can be shown that the Lie

algebra of Cg(x), cg(x), contains an r-dimensional commutative subalgebra.
This gives us that if O is an orbit that

dim(0) < dim(G) — r.

So if an orbit is not regular, it has to have dimension at least 2 less then
dim(G)—r, the dimension of the centralizer Cg(x) is r + 24, i = 1,2,...
Irregular elements for which the centralizer has maximal dimension, that is
dimension r + 2, are called subregular.

Proposition 8.3. Fach fiber contains a unique reqular orbit, which is dense
wn .

Proof. See [21]. O
Proposition 8.4. An element x € g is nilpotent <= ~(x) = v(0).

Proof. This is a special case of the theorem that for x € g, and f € C[g],
f(x) = f(xs). For a proof of this more general statement see [42]. O

This allows us to define the nilpotent variety,
Nil(g) := {z € gly(x) = 7(0)} = 7" (7(0)).
Proposition 8.5. There is a unique subreqular nilpotent G-orbit in g.

Proof. See [42], 3.10 Th. 1. O

8.4 Example: sl,

To illustrate the theory of the last sections we look at the case G = SL, ;.
Then the Lie algebra sl,;; is given by the r+1 X r + 1-matrices of trace zero.
The adjoint representation of GG is given by conjugation:

Gxg — g

(g,2) — gaxg™"

If we choose T the set of diagonal matrices in G, we get the corresponding
Cartan subalgebra h the diagonal matrices in g. It has dimension r. The
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Weyl group W is isomorphic to S, 1, the symmetric group on r+1 elements.
It acts on 7" and h by permuting the entries.
The adjoint quotient 7y can be realized by the map

y:isly — C
r = (n@),.., (),

such that
detOn-Id —z) = N+ (@) L+ . 4 7, (2)

is the characteristic polynomial of .

Let us take a look at the fibers of 7. Take ¢ = (1, ...,¢,) € C". It defines
a polynomial p(c) = X" 4+ ¢;A"™! + ... + ¢,, which in turn defines a partition
m(c) = (myq,..,my) of r + 1 by taking the multiplicities of the roots, i.e. the
eigenvalues, of p, say ti,...,tx. We take all partitions decreasing. Each m; is
the total size of the blocks with one eigenvalue, t¢;; there are partitions s; of
the m;, i = 1,...,k, s; = (si1, ..., 8i;). In the Jordan normal form of z, s;; is
the size of the j-th block for the i-th eigenvalue t;. Each z € x7!(c) is up
to conjugacy determined by such a sequence sy, ..., si of partitions of the m;.
Let us illustrate this by putting x into Jordan normal form:

M,
M
M
with each M; a m; x m;-matrix with all eigenvalues ¢; and Jordan form

Si t; 1

an s;; X s;j-matrix.
So clearly there are finitely many orbits in each fiber of v. We see that

e 7 is semisimple exactly when all the S;; are one-dimensional, the par-
titions s; are (1,1,...,1).

e 1 is regular exactly when s; = (m;)Vi =1,...,k

e 1 is subregular exactly when s; = (m;)Vi = 1, ...,k but one, say j, for
which s; = (m; — 1, 1).
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If we restrict to x nilpotent, so k = 1, we see that for x to be semisimple,
regular, subregular, it means that x is conjugate to

(01 \

0 1
0
o1
0 0
OK 0

respectively. It is clear that the regular and the subregular nilpotent orbits
are unique.

partition dim

(6) 30

partition  dim | |
(5) 20 (5,1) 28

| | | |
(4,1) 18 (4,2) 26
| | /\ /\
(3,2) 16 (4,1,1) (3,3) 24 24

| | \ / \/
(3,1,1) 14 (3,2,1) 22

| | / \ /\
(2,2,1) 12 (3,1,1,1) (2,2,2) 18 18
| | \/ \/
(2,1,1,1) 8 (2,2,1,1) 16
| | | |
(1,1,1,1,1) 0 (2,1,1,1,1) 10
| |

(1,1,1,1,1,1) 0

An interesting question is how the nilpotent variety decomposes into G-
orbits. We know there is one unique dense orbit, the regular orbit, and that
every other orbit has smaller dimension. The semisimple orbit, which is a
single point lies in the closure of every other orbit in Nil(g). We can define
the closure relation between arbitrary orbits in g. Let O and O’ be two
nilpotent orbits, defined by partitions 7 = (n4,...,ny) and 7’ = (n},...,n}).
We define the partial ordering on the set of orbits by

O < 0" < O is contained in O'.
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This is the partial order on partitions
O0<O0 <= <7 <= m+n+---+n,<nj+ny+---+n; Vi
We have illustrated this, for r=5 and r=6.

8.5 Brieskorn’s theorem

The subregular nilpotent orbit has a particular property. Let us first make
the following definition:

Definition 8.6. A transversal slice to the G-orbit of an element x € g in the
point x is a smooth locally closed subvariety S C g, such that x € S, dim(S)
= codim(Gz), and the map G X S — g is a submersion.

In our case we are interested in a slice transversal to the orbit of a sub-
regular nilpotent element z € g. This is a subspace S C g, such that z € S
and S is complementary to the affine tangent space at x of the orbit Gz.

Now we can state the main theorem we want to illustrate in this section,
conjectured by Grothendieck, and later on proved by Brieskorn:

Theorem 8.7. Let © be a subregular nilpotent element of a simple complex
Lie algebra g of type A = A,., D,, or E,, and let S be a transversal slice to
the G-orbit of x in the point x. Then

1. SN Nil(g) is a surface with a Kleinian singularity of type A.

2. The restriction 74 : S — h/W is a semi-universal deformation of the
singularity (S N Nil(g),x).

Proof. The possible outlines of a proof, for the first part, were given by
Brieskorn, see [6]. For a complete proof of this theorem see Slodowy [32]. It
gives a thorough account of this result, making generalizations where possi-
ble. For a proof of the second part of the proof the reader is referred to this
book. In what follows we will discuss the first part. O

8.6 Identification of the subregular singularity

There are two different strategies to get the identification of the singularities.
The first is by giving a resolution of the singularity. The second is by giving a
C*-action on S and on h/W, such that the restriction of v to S becomes C*-
equivariant, that is weighted homogeneous of the same type as the polynomial
R in table 4. Then the identification follows from proposition 4.2.

We will sketch the outlines of the second method, and conclude with some
remarks on the first. It is of great interest and historically the first viewpoint.

Let us recall the following result:
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Lemma 8.8. (Jacobson-Morozov) Let g be a reductive Lie algebra and let
x € g be milpotent. Then there exist y, h € g and an injective homomorphism
of Lie algebras,

p: S‘12 — 8,

with p((g é)) — 2, ,o(<(1) Y )) = h, and p(((l)

gives us the relations:

o O

)) = y. This

[h,z] =2z, [h,y] = =2y , and [z,y] = h.

Let us take z € g nilpotent. The tangent space to the orbit of x is given
by
T.(Gz) =z + [g, z].

We want to take a transversal slice S to the G-orbit of x in . This has to
be of the form

S :={s € g|s=x+e, ein the linear complement of [g, |}

To determine [g,x] and a linear complement we now use the Jacobson-
Morozov lemma to get y, h € g, such that A :=< z, h,y > is a sly,-subalgebra
of g. g becomes an A-module by the adjoint representation of g. We have
a complete description for such sly-modules. They are the direct sum of
irreducible n 4 1-dimensional sl;-modules V,,, 1, which with respect to h € A,
are the direct sum of one-dimensional subspaces V,,11(A\), A = —n,—n +
2,...,n—2,n. Here X is the eigenvalue of h acting on V,,,1.

So we get a string {n;} € Z%, such that g splits

k
g = @ Vm—f—l
=1

into irreducible submodules, as an A-module. And we see that

g, 2] = ad(z)(g) = EB ad(x)(Vas11)-

Since in an A-module V,,, 11, ad(z) maps V,,,+1(k) onto V,,,.+1(k + 2), for
k > —n, we see that in V;,, ;1 a complement to ad(z)(V},,+1) is spanned by the
vector of weight —n;, i.e. the space S; := Vj,.;1(—n;). We see that a linear
complement to [g, x] is given by @f:l S;. This is exactly the centralizer of
the element y € g. It has dimension equal to the dimension of the centralizer
of z; we see that for x regular nilpotent, k = r, and for x subregular nilpotent
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k=r+2. Wehave S =ux+ @le S; is a transversal slice to the G-orbit of
2 in the point z.

Now that we have a transversal slice to the orbit of nilpotent x € g we
introduce an action of C* on it. This action will have to stabilize S, so that
the restriction of v to S can be made equivariant with respect to this action.

Firstly we have the action of scalar multiplication on g, which we denote
by o;:

Cxg — g
(t,z) +— o(t)r =tz.

We have another action of C*, with the use of our Jacobson-Morozov
homomorphism constructed above. The subalgebra < h >C sl corresponds
to a multiplicative group C* in T" C G, so to action of h we can associate an
action of C*. Let us take vectors s; € S;. Now an element of s € S can be
written as s = x + S+, ¢;s;. The action mentioned above on such a vector
is as follows:

k k
(t.s) = () @+ Y csi) =tz + Y e
=1 i=1

Neither of the actions o; and oy stabilizes the subspace S. An easy
computation shows that these actions on S commute. This allows us to
consider a certain product of these actions, namely o(t) = o1(t?)oo(t™ 1),
acting on a vector s € S by

k k
o(t)(x + Z cisi) =+ Z thit2e;s,.
i=1 i=1

The action o does stabilize the subspace S, and with respect to the coordinate
system {s;} it is linear with weights n; + 2.

As we have stated above the adjoint quotient g — h/W = C" can be
realized by the 7;, these being G-invariant homogeneous of degree m; +1. So
we have

Yi(o (t)v) = ™y (v) Vi€ {1,..., 1],

by homogeneity and
vi(oa(t)v) =y (v) Vie{l,..,r},

by G-invariance.

We want to specify a C*-action on C" that makes the restriction of v =
(715 -, 7r) to S C*-equivariant, having the o-action on S. On a vector s =
x+ ¥ | cisi we have

(o (t)s) = 73(o1 ()0 (t™")s) = (01 (t7)s) = 79 %7;(x).
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‘ dl d2 d3 e to deQ drfl ‘ dT ‘ Wy wr—|—1 wr—|—2
A4 6 8 ... ... 2r—2 2r |2r+2| 2 r+1 r+1
D.|4 8 12 ... ... 4r—-8 2r |(dr—4| 4 2r—4 2r—2
FEg| 4 10 12 16 18 24 6 8 12
E,| 4 12 16 20 24 28 36 8 12 18
Eg | 4 16 24 28 36 40 48 60 12 20 30

Table 7: Weights and degrees for the adjoint quotient.

So we get the desired result if we let C* act on h/W = C" by the weights
d; := 2m;+2. Then y becomes weighted homogeneous of type (dy, ..., dy; 1 +
2, N 2).

As stated before in the case that x is a regular element, the number
of irreducible A-modules must be equal to the rank of g, & = r. If we
consider the restriction of v to S it becomes weighted homogeneous of type
(2my+2,..,2m,+2;n1+2,...,n,.+2). It is a well-known fact that in this case
the degrees and the weights are equal, hence 2m; = n;, for all z = 1, ..., r.
In fact this equality of weights and degrees can be used to compute the
exponents m;, from the weights n;.

Varadarajan [45] showed that this result together with the linear inde-
pendence of the differentials dv; in all regular elements of g, follows from a
more general formula by Harish-Chandra [11] on differential operators on g.

For subregular nilpotent x we have listed the weights wy, ..., w12 and the
degrees d, ...,d, in table 7. The computation of the values d; and w; shows
that the first » — 1 values of the weights and the degrees are equal; d; = w;
forv=1,...,7 — 1, so we have not listed the first » — 1 values of w;. We get
the d; from the exponents of g. They can be found in the tables in Bourbaki,
see [3], Planches. The n; are the highest weights of g as the particular sl-
module constructed above. The values «(h), for the simple roots « can be
taken from the valuated Dynkin diagram of the subregular nilpotent . Then
all the eigenvalues of ad(h) on g can be calculated. This gives the values n;.
See [9] for tables.

As an example we consider the subregular class in the simple Lie algebra
of type Asz. The valuated Dynkin diagram then has the form

2 0 2
@ L L

where the nodes correspond from left to right to the simple roots a4, as and
a3. The valuation is realized by the eigenvalue of ad(h) on the root space
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g.;- The set of positive roots, II, is given by:
II = {Ozl, Qlg, O3, (X1 + g, (9 + Qa, O + (0] + 043}.

On n* := @, . 8« ad(h) acts with eigenvalues 2, 0, 2, 2, 2, 4 respectively.
On A it has three times eigenvalue 0, and on n~ it acts with eigenvalues
—2,0, =2, =2, —2, —4. So g splits into five irreducible sly-modules, one of
highest weight 0, three of highest weight 2 and one of highest weight 4. This
gives the values 2, 4, 4, 4, 6. for the weights of the restriction 5.

We are almost ready to identify the surface singularity Nil(g) N S as a
Kleinian singularity. There is one more lemma we need.

Lemma 8.9. The restriction of the adjoint quotient to the transversal slice
S, X|s = h/W, has rank r — 1 in .

Proof. This is Lemma 8.3.1 in [32]. O

Using the lemma and the fact that w; = d; for ¢ = 1,...,r — 1, we may
suppose that the adjoint quotient x4 : S — h/W is of the form

S=M&B —E&®B
(a,0) = (0(a,b),p(b))

where dim(B)= r — 1, dim(M)= 3, dim(E)= 1, p is a polynomial iso-
morphism and ¢ the unique singular component weighted homogeneous of
type (d; Wy, Wyy1,W,42). Hence the singularity S N Nil(g) can be defined
as an hypersurface in M by a polynomial f, weighted homogeneous of type
(dy; Wy, Wey1, Wey2). Comparing these values to the values in table 4 and
using proposition 4.2 this f can be taken to have the following normal form:

A X, +YZ
D, X, 1+XY?+2?
Es XY+Y3+ 22
E;, X3 4+Y34+ 72
Eg X5+Y34 22
As we have seen these polynomials are defining for the Kleinian singular-
ities. This concludes the proof of the first part of the theorem.

Let us now illustrate Brieskorn’s theorem with an example. We take g of
type As, that is g = sl;. For the subregular nilpotent element x we take

0100

o o O
jen B el an)
o o=

0
0
0
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This element lies in the sly-triple {z, h,y} C g, with

-2 0 0 0 0 0 00
b — 0 -4 0 O Y= -2 0 00
0 0 -6 0 0 -6 0 O
0o 0 0 12 0 0 0O

An element in a transversal slice S to the orbit of x is of the form s = z+c,
with c in the centralizer of y. This leads to the following:

z 1 0 O
_ v x 1 0 5
S_{ w 3?} xT Yy \(v,w,x,y,z)EC}
z 0 0 -3z

The characteristic polynomial of an element s € §' is

p(v,w,z,y,2,\) = At +(=62% — 4v) A2 + (—8vz — 82° — w)\
+(=32* — zy + 12v2? — 3wx)

so the restriction of the adjoint quotient to S is the map

Y:8 —=C

(v,w,z,y,2) > (—62® — 4v, —8vx — 83

—w, =3z* — 2y + 12v2? — 3wx)
after substituting v = (—u; + 62?)/4 and w = 202> + 2uyz — uy we get
X (U1, U, T, Y, 2) = (ug, tg, =812 — yz — Juy2? + 3uyw)

which is in fact the semiuniversal deformation of a singularity of type As.
That is the second statement of Brieskorn’s theorem. The nilpotent variety
intersected with S is equal to x7*(0,0,0), the surface singularity defined by
Xt-YZ.

8.7 A resolution of the adjoint quotient

To conclude the discussion of Brieskorn’s theorem let us now quickly look at
the other strategy available to identify the singularity. It uses the resolution
of the unipotent variety by Springer. This gives a minimal resolution of the
singularity and by showing that this resolution has the properties it should
have, see proposition 3, the identification follows. For details see [32]. There
is a recent review of the theory of conjugacy classes in semisimple algebraic
groups by Humphreys [14].
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Let G, T, B, g, h be as before. Analogously to the adjoint quotient for the
Lie algebra there is an adjoint quotient for the algebraic group G. There is an
isomorphism C[G]% — C[T]"Y. The algebras of invariants C[G]% and C[T]",
are freely generated as C-algebras by the fundamental characters x; := x\,,
and their restrictions x; to T respectively.

The adjoint quotient for GG is then the mapping

x:G =T/W
z = (x1(2),..., xr(2)),

realized by the fundamental characters of G.

For all f € C[G]® we have f(x) = f(x,), so the unipotent variety U, is
the fiber above e, the semisimple part of a unipotent element.

Now let B be the projective variety of Borel groups, which we can identify
with the quotient G/B by G/B — B, gB +— gBg~!. Take the subvariety of
B x @G,

C:={(B,z) € Bx G|z € B}.

We have natural morphisms 7 : C — T, 7 : C — G, such that we get the
following commutative diagram:

cC - @G
{ {

Theorem 8.10. The diagram above is a resolution of the adjoint quotient.
In particular for each t € T the induced map

T () — x (@)
18 a resolution of singularities of the fiber of t.

A special case of this theorem, conjectured by Grothendieck, is Springer’s
resolution of the unipotent variety U:

m:Cp — U.
Here we take Cy the subvariety of B x G,
Cuv:={(B,z) e BxG|r e B,z € U}

We can identify Cyy with the associated bundle G x2 U, a smooth irreducible
variety of dimension dim(G)—rank(G), by the morphism 7 : G x? U — Cy,
g*u — (gB,gug™"). Now the morphism 7 factors through the second
projection p: B x U — U, so m = p o T is proper.

We have the following result on regular unipotent elements in G.
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Proposition 8.11. Let x € G be unipotent. Then the following are equiva-
lent:

e z is reqular, dim(Cg(z))=r.
e 1 is contained in a unique Borel subgroups of G.
e The adjoint quotient x : G — T /W is regular, i.e. smooth at x.
Proof. For a proof see [14]. O

So onto the regular points of U, 7 is one to one. The variety U is the
closure of the regular orbit, the smooth points of U. This concludes the proof
of the claim that 7 is a resolution of the singularities of U.

The way to proceed now is to proof that this resolution is of the desired
form. It can be shown that this is in fact the case, namely the exceptional set
of a subregular nilpotent element is a union of projective lines which intersect
transversally and have self-intersection number —2. They have the Dynkin
diagram corresponding to GG as a resolution graph.

9 Conclusion

Let us try to summarize the connections we have discussed. We have seen
three theories that fall into the ADFE classification pattern. We can make
the following table:

‘ H Theory ‘ Nodes ‘ Matrices ‘

I || Finite subgroup | Irreducible decomposition
SU,(C) representations coefficients a;;

IT || Lie algebra Simple roots Cartan matrix
of type ADE

IIT || Minimal Components FE; Intersection
resolution of the exceptional | coefficients
of C?/T set

Table 8 The ADFE correspondence.

First of all there is a structural correspondence between these theories.
They have a classification of the same type. We have shown that by compu-
tations within these theories, it is possible to relate the objects and matrices
listed above. See the characterization of Kleinian singularities in proposition
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5.1, the McKay correspondence in theorem 6.1, and the Geometric McKay
correspondence in theorem 7.1.

Secondly there are direct links between the theories, one of the most re-
markable the fact that the subregular singularity in the Lie algebra is exactly
the quotient singularity corresponding to this Lie algebra.

There is a generalization of the McKay correspondence to higher dimen-
sions. For a recent review see [29]. The picture we sketched in the introduc-
tion is then generalized to arbitrary dimension n:

(Cn
Ay
S — CT.

Here I is a finite subgroup of SL,(C), such that the Gorenstein singularity
C*/T" allows a crepant resolution. For n = 3 it is proven that there is a
McKay correspondence. The first indication for this came in fact from the
work of string theorists, who proved that the Euler number of S equals the
number of conjugacy classes in I'.

For recent articles on generalizations of the McKay correspondence and
related topics see for instance: www.maths.warwick.ac.uk/ miles/McKay/.

I want to finish here with a ‘second-hand’ citation of Proust, that I took
from [13], and which presents a very nice way to look at the theory discussed
in my thesis:

‘...sl les choses se répetent, c’est avec de grandes variations.’
Proust, La Prisonnierre
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