Topology

Homework #7. Due Wednesday, November 8, before the lecture.

Exercise 4 on page 92.

1. (a) Show that a continuous map $f: X \longrightarrow Y$ is open if, for some basis B of X, the set f(U) is open in Y for any $U \in B$.

(b) Give an example of a continuous surjective map from [0, 1] to itself which is not open.

2. Prove that a continuous open bijective map $f: X \longrightarrow Y$ is a homeomorphism.

3. Which of the following maps are open? (briefly justify your answer)

- Inclusion of the open unit disk into \mathbb{R}^2 .
- Inclusion of the closed unit square into \mathbb{R}^2 .
- The map that takes \mathbb{R} to the point 5 of \mathbb{R} .
- The map from \mathbb{R}^2 to \mathbb{R} which takes (x, y) to x + y.

4. Consider the equivalence relation ~ on [0, 1] which partitions [0, 1] into three equivalence classes: $\{0\}, (0, 1), \text{ and } \{1\}$. Explicitly describe the quotient topology on $[0, 1]^*$. Is this topology T_1 ?

5. Which of the following spaces are contractible? (briefly justify your answer)

- \mathbb{R}^n
- The space of irrational numbers with the topology induced from $\mathbb R$
- $\{(x, y) \in \mathbb{R}^2 | 0 < x \le 1\}$
- $\{(x, y) \in \mathbb{R}^2 | 2 < x y < 3\}$
- $\mathbb{R} \setminus \{0\}$

6. Prove that the product $X \times Y$ of two contractible spaces is contractible.