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THEOREM 2-68. A locally metrizable Hausdorff space is metrizableif 
and only if it is paracompact. 

2-13 Complete metric spaces. The Baire-Moore theorem. We conclude 
this chapter with several special topies, of which this section is the first. 
Our considerations here are limited to metric spaces. The results find 
frequent application in analysis. 

Let M be a metric space with metric d. Precisely as is done in the theory 
of real numbers, a sequence (n of points in M is called a Cauchy sequence 
provided that for any positive number e, there is an integer Ne sufficiently 
large that d(tm, *n) < e whenever m and n exceed N. In the real numbers, 
this Cauchy condition is necessary and sufficient for the convergence of the 

sequence Tn). 
A metrie space M is complete if every Cauchy sequence of points in M 

has a limit point in M. Thus the real numbers are complete (in the usua 
metric), but the rational numbers are not. (Indeed, the reals are often 
defined as a completion of the rationals in the sense of Theorem 2-72 
below.) It should be noted immediately that completeness is not a topo 
logical invariant; it depends upon the chosen metric in the space M. For 

instance, let Jz- l be the usual metrie for the reals E', and define the 
new (but equivalent) metric 

pla, y) 

Each sequence j that satisfied the Cauchy condition in terms of the old 
metrie still does, but the sequence of numbers (n) forms a Cauchy sequence 
in terms of the new metrie and, of course, does not converge. A space that 

neomorphic to a complete metrie space is called topologically com-
plete by some authors. 

Our first few theorems relate the property of completeness to matters 

already familiar. 

THEOREM 2-69. Every compact metric space is complete. 

Proof: By Theorem 1-23, every infinite subset of a compact space has 

a limit point. 

TaEOREM 2-70. Every closed subspace of a complete metric space is 

complete. 
Proof: Let X be a closed subset of a complete metric space M. Then 

every Cauchy sequence of points in X has a limit point in M but, since X 

is closed, the limit point must be in X. 

THEOREM 2-71. If M and N are complete metrie spaces, then the 
produet Mx N is complete in the product metric. 
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Proof: Let di and d2 be the metrics in M and N, respectivelv 

(F1, V1) and (r2, V2), r; in M, yi in N, are two points in Mv n if 

product metric is given by 
the 

d[(1, 1), (r2, U2)] = [di(*1, z2) +t di(y1, V2)]/2 

Now let {(tn, y»)} be a Cauchy sequence in M X N (in terms f 

product metric). It is easily seen that this implies that {zn} and u 
Cauchy sequences in M and N respectively and hence converge to point 
a and y. The point (x, y) in M X Nis then the limit point of the nce 

(n Vn) }. The details are left as an exercise. 
A metric space M is said to be isometrically imbedded in a metric sDace 7 

if there is a distance-preserving homeomorphism of M into N. In this 

language, we ean state a generalization of the process of completing the 

rationals by means of Cauchy sequences. 

the 
are 

THEOREM 2-72. Any metric space M can be isometrically imbedded 
in a complete metrie space N in such a way that M is dense in N. 

Proof: Consider the collection of all Cauchy sequences lz,} in M. 
Two such sequences {z,} and y»} will be said to be equivalent if 

limn d(tn, n)= 0. (It is easy to see that this is a true equivalence 
relation.) The equivalence classes of Cauchy sequences in M so obtained 
form the points of the space N, and we denote such a class by [{zn}]. A 
metric for N may be defined as 

PI}1.[{v»}) = lim d(cn, Vn), 
n-00 

where {rn} and {yn} are any representatives of [{zn}] and [{yn}] respec-tively. To prove that this definition of p is independent of the choice of these representations, let [za} and {z^} represent [{zn}], and let {yn) and 
yn represent [\vn}]. Then 

lim d(zr, vn) S lim d(tn, zh) + d(zh, vh) + d(yh, v»n)] = lim d(th, vn) n->o 

no 

and 

lim d(zh, Ya) S lim (d(Ta, z») + d(Ta, Vn) + d(yn, Vh)]= lim d(T», Vn). n-

A verification that p is indeed a metric is left as an exercise. Next, define the mapping h that carries a point z in M onto the equiva lence class of all Cauchy sequences in M that converge to . This class is not empty, for if we set n =r for all n, then {c} is such a sequence. It is easily seen that h 1s an isometry of M into N, as required. That hn(I is dense in N will follow from the arguments below. 
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We show that N is complete. To do so, let {[{zm,n}]n} be a Cauchy 

sequence in N, and choose a representative {tm,n} for each "point" of the 
sequence. We obtain an array of sequences 

1,1, T1,2, 1,3,. 

2,1, T2,2, T2,3, 

T3,1, 3,2, T3,3, 

For the kth sequence there is, by definition, an integer n such that 
dTk,nks Tk,i) K 1/k whenever i> ng. We can then define a Cauchy 

sequence 13nik in M where each yn = *k,ng. From the definition of p we 

see that 

Pl1køn)e) < 
Therefore 

lim p([.n) [{u.}el) = 0, 

and the two sequences are equivalent in N. 
But since {[lvn}al} is a Cauchy sequence in N, it follows that, given e, 

there is an integer K such that p([{yn}e], [{vn}z]) <e whenever k and17 
exceed K. But this implies that d(ck,ng, 1,n) e whenever k, l > K. 
Thus the sequence 1zkn,is a Cauchy sequence in M. That the sequences 

Thngk of constants converge to this diagonal sequence is immediate. 
Therefore the sequence [{#k,nz}]: in N has a limit point in N, and so does 
the equivalent sequence {[{mnlIm. This proves that N is complete and 
moreover that every point of N is the limit of a Cauchy sequence (in N) 
of constant sequences (in M). It follows that h{M) is dense in N. 

Most of the results of this section find their primary use in analysis. 
However, the next result, together with Theorem 2-79, provides the basis 
for an important imbedding property in topology (see Theorem 3-62). 

THEOREM 2-73. If M and N are metric spaces, and if N is bounded 
and complete, then the function space N of all continuous' mappings 

of M into Nis complete in the metric p(f, g)= sup- d(f(«), g(«)), where 
d is the metric in N. 

Proof: Let (fa} be a sequence of continuous mappings of M into N that 
have the property that, given e >0, there is an integer K such that 

Pn fm) <e whenever m, n > K. Por a fixed point r in M, the sequence 
of points is,(e)} then forms a Cauchy sequence in N since d(fa(a), fm(z)) S 
PIn Im). Because N is assumed to be complete, there is a point f(z) in N 
such that lim,-n f,(t) = fr). Therefore we have a function f of M into 
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N defined by 
S(r) = lim f,(c) 

n+00 

for all x in M. 

To complete the proof, we must show that f is continuous m 
S0, we use the customary (e-K)-argument. That is, given e >0, there 

is an integer K such that p(/n, $) < ¬/3 whenever n > 

a value of n, there is a positive number such that d(/,(T), fi(u)) 
whenever di (x, y) < ô (d1 is the metric in M). Hence we have 

> K. For 

e/3 

d(f(), f(u)) s d(f(«), fr()) + d(Sa(T), Jn(y)) + d(Sa(y), f() 

S P,S)+ d(fn(*), fn(y)) + p(fn, f) < e 

whenever di (7, y)< 6. This proves that f is eontinuous. 

The requirement that N be bounded in Theorem 2-73 is needed onlr 

to show that p(f, g) exists. 

following 
Our argument above actually proves the 

CoROLLARY 2-74. If N in Theorem 2-73 is complete (but not neces-
sarily bounded), then the space of bounded continuous mappings of 

M into N is complete. 

We remark that every metric space with metric d has a metric d' that is 
bounded and that does not aller Cauchy sequences. One such metric may be 

obtained by replacing the original values d(", ) by values d'(a, v), defined 
by d'(x, y)= d(z, y) if d(z, y) <1 and by d'(z, y) = 1 if d(7, y) 1. 

We leave it to the reader to verify that d' is a metric. 
A metric space M with metric d is said to be totally bounded if, given 

any positive number r, M is the union of finitely many sets of d-diameter 
less than r. 

THEOREM 2-75. A metrie space is compact if and only if it is complete 
and totally bounded. 

Proof: From Theorem 2-69 we know that a compact metric space 1s 
complete. And such a space must also be totally bounded or else the 
covering by open spherieal neighborhoods of some radius r would no 

have a finite subcovering. Hence the condition is necessary. 
To prove sufficiency, we take advantage of Exercise 2-21 and prove that 

a complete and totally bounded metric space M is countably compact. 
To do so, let }zas be any sequence of points of M. Now M is a union o 

finite number of sets X1,1,. .., X1,n of diameter < 1. At least one 

these sets, say X1.1, Contains an infinite number of points Ta. Let zk 
the first point of {r in X1,1. Again, M is a union of a finite numberO 
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sets Xa,1 .* ,X2,n, of diameter < }, and one of these, say Xa,1, has the 
property that X1,1n X2,1 contains infinitely many points of the sequence 

za. Choose ak, as the first point of f,}, with ka > k, and lying in 
X1,10 X2.1. In general, we consider M as a finite union of sets of diameter 
< 1/i and choose a new point zky k; > k;-1 > 

the sequence lz} lying in n- X.1. Since for any k;>ks, the points 
and a lie together in a set of diameter< 1/i, the subsequence {zk,} 
which we have extracted is a Cauchy sequence. Since M is assumed to be 

complete, this subsequence converges to a point of M and hence the 
sequence {Tn} has a limit point. 

Some new (to us) terminology is often seen in analysis. A subset of a 

space Sis called a Gg-set if it is the countable intersection of open sets, and 
is called an Fa-set if it is the countable union of closed sets. It is obvious 
that a subset is a Ga-set if and only if its complement is an F-set. As a 
point of interest, the genesis of these terms is as follows. The G in Gs 
stands for the German word Gebiet (open set), and the 3 means Durch 
schnitt (intersection). The P in F, comes from the French word fermé 
(closed), and the a stands for sum, which many authors use in place of 
union. 

>k2 > k1, of 

TaroREM 2-76 (Alexandroff). Every G-set in a complete metric space 
is homeomorphic to a complete space (or is topologically complete). 

Proof: LetQ be a G-set in the complete metric space M. We show that a 
new (but equivalent) metrie can be placed upon Q so that Q is complete in 
terms of the new metric. By definition, Q= ni-1 Ui, where each U 
is open in M. As in Section 2-3, we consider the distance d(r, M - U:) 

for each point x in U; and define a function fi: U;>E' by 

flz)a, M -U) . 

Now let p:(a, y) be the real function defined on U; x U; by 

f:(r)f{ Palz, V)I+|5.c)=S:9)) 
The function p; will in general not be a metric for Ui, because it is possible 
to have p:(a, y) = 0 without having * = y. However, we do have 

eilz, y) + prly, 2) 2 P:(t, 2), 

for all , y, z in Ui. Since 

:Cr) - 1:(y)|+ IS:(V) - s()| 2 f:(e) - f:(e) 


