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TureoREM 2-68. A locally metrizable Hausdorff space is metrizable if
and only if it is paracompact.

2-13 Complete metric spaces. The Baire-Moore theorem. We conclude
this chapter with several special topics, of which this section is the first.
Our considerations here are limited to metric spaces. The results find
frequent application in analysis.

Let M be a metric space with metric d. Precisely as is done in the theory
of real numbers, a sequence {x,} of points in M is called a Cauchy sequence
provided that for any positive number ¢, there is an integer N, sufficiently
large that d(Tm, ©») < € whenever m and n exceed N. In the real numbers,
this Cauchy condition is necessary and sufficient for the convergence of the
sequence {Zn}.

A metric space M is complete if every Cauchy sequence of points in M
has a limit point in M. Thus the real numbers are complete (in the usual
metric), but the rational numbers are not. (Indeed, the reals are often
defined as a completion of the rationals in the sense of Theorem 2-72
below.) It should be noted immediately that completeness vs not a topo-
logical invariant; it depends upon the chosen metric in the space M. For
instance, let |* — y| be the usual metric for the reals E', and define the
new (but equivalent) metric

x Y
1+ 14+ y|

p(x, y) =

Each sequence |x,) that satisfied the Cauchy condition in terms of the old
metric still does, but the sequence of numbers {n} forms a Cauchy sequence
in terms of the new metric and, of course, does not converge. A space that
is homeomorphic to a complete metric space is called topologically com-
plete by some authors.

Our first few theorems relate the property of completeness to matters
already familiar.

TureoreM 2-69. Every compact metric space is complete.

Proof: By Theorem 1-23, every infinite subset of a compact space has
a limit point. [ ]

TureoreM 2-70. Every closed subspace of a complete metric space is

complete.

Proof: Let X be a closed subset of a complete metric space M. Then
every Cauchy sequence of points in X has a limit point in M but, since X
is closed, the limit point must be in X. [ ]

TrHEOREM 2-71. If M and N are complete metric spaces, then the
product M X N is complete in the product metric.
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A metric space M is said to be isometrically zmbedded In a metric space
if there is a distance-preserving homeomorphism of M into N. .In this
language, we can state a generalization of the process of completing the
rationals by means of Cauchy sequences.

THEOREM 2-72. Any metric space M can be isometrically imbeddeq
in a complete metric space N in such a way that M is dense in N,

Proof: Consider the collection of all Cauchy sequences {x,} in M.
Two such sequences {z,} and {y,} will be said to be equivalent if
lim e d(zn, y») = 0. (It is easy to see that this is a true equivalence
relation.) The equivalence classes of Cauchy sequences in M so obtained

form the points of the space N, and we denote such a class by [{z.}]. A
metric for N may be defined as

P([{zn} ] [{ya}D = lim d(zn, yn),
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We sho.w that N is complete. To do so, let {[{Zm.n}]m} be a Cauchy
sequence in N, and choose a representative {Zm.n} for each “point” of the
sequence. We obtain an array of sequences

21,1, T1,2, T1,3, - -
L2,1) X2,2, T2,3y - - .

3,1, 23,2, 3,3, - - -

For the kth sequence there is, by definition, an integer m; such that
d(zk,ng Tk,i) < 1/k whenever ¢ > n;. We can then define a Cauchy
sequence {Y»}x in M where each y, = 24 ,,. From the definition of p we
see that

p([{zx,n} 1, [{yn} k) <

Y =

Therefore
lim p([{z.n}], [{yn}eD) = O,

and the two sequences are equivalent in N.

But since {[{y»}x]} is a Cauchy sequence in N, it follows that, given ¢,
there is an integer K such that p([{ys}«], [{¥n}i]) < € whenever k and [
exceed K. But this implies that d(2k,n,, Z1,n;) < € Whenever k,1 > K.
Thus the sequence {zk,»,} is a Cauchy sequence in M. That the sequences
{Zk,n}x Of constants converge to this diagonal sequence is immediate.
Therefore the sequence [{Zk,n,}]x in N has a limit point in N, and so does
the equivalent sequence {[{Zmn}]ln}. This proves that N is complete and
moreover that every point of N is the limit of a Cauchy sequence (in N)
of constant sequences (in M). It follows that (M) is dense in N. [ ]

Most of the results of this section find their primary use in analysis.
However, the next result, together with Theorem 2-79, provides the basis
for an important imbedding property in topology (see Theorem 3-62).

TaEOREM 2-73. If M and N are metric spaces, and if N is bounded
and complete, then the function space N* of all continuous mappings
of M into N is complete in the metric p(f, g) = sup, d(f(z), g(z)), where
d is the metric in N.

Proof: Let {f,} be a sequence of continuous mappings of M into N that
have the property that, given € > 0, there is an integer K such that
P(fn, fm) < € whenever m,n > K. For a fixed point z in M, the sequence
of points {f,(z)} then forms a Cauchy sequence in N since d(f,(x), fm(z)) =
P(fn, fm). Because N is assumed to be complete, there is a point f(z) in N
such that lim,_,, fa(z) = f(z). Therefore we have a function f of M into
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N defined by .
f(z) = lim fu(2)
n-—»o0
for all x in M.
To complete the proo

we use the customary (€ —

f, we must show that f is continuous. T do
K)-argument. That is, given e > 0, th

is an integer K such that p(fn, ) < ¢/3 whenever n > K.
a value of n, there is a positive numbel-‘ such that d(fa(z), f,(y)
whenever d;(z, y) < 0 (dy is the metric in M). Hence we have

d(f@), [(y)) S d@), (@) + d(fn(x), fa@)) + d(fa(y), f(y))
< p(f, fa) + d(fa(@), Fa @) + P(fn, f) < e

S()’
€re
) < € /3

whenever d,(z, y) < 8. This proves that f is continuous. [_]

The requirement that N be bounded in Theorem 2-73 is needed only
to show that p(f, g) exists. Our argument above actually proves the
following.

COROLLARY 2-74. If N in Theorem 2-73 is complete (but not neces-
sarily bounded), then the space of bounded continuous mappings of
M into N is complete.

We remark that every metric space with metric d has a metric d’ that is
bounded and that does not alter Cauchy sequences. One such metric may be
obtained by replacing the original values d(z, y) by values d’'(z, y), defined
by d'(x,y) = d(z,¥) if d(x,y) < 1 and by d'(z,y) = 1 if d(z,y) = 1.
We leave it to the reader to verify that d’ is a metric.

A metric space M with metric d is said to be totally bounded if, given
any positive number 7, M is the union of finitely many sets of d-diameter
less than r.

THEOREM 2-75. A metric space is compact if and only if it is complete
and totally bounded.

Proof: From Theorem 2-69 we know that a compact metric space 18
complete. And such a space must also be totally bounded or else the
covering by open spherical neighborhoods of some radius r would not
have a finite subcovering. Hence the condition is necessary.

To prove sufficiency, we take advantage of Exercise 2-21 and prove that
a complete and totally bounded metric space M is countably compact:
To do so, let {z,} be any sequence of points of M. Now M is a union of &
finite number of sets X;,;, ..., X, ,, of diameter < 1. At least one of
these sets, say X1,1, contains an infinite number of points z,. Let Tx be
the first point of {z,} in X ;. Again, M is a union of a finite number of
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sets X2,1, . . ., X2 ,u, of diameter < 4, and one of these, say X 1, has the
property that X, ; N X5 ; contains infinitely many points of the sequence
{xn}. Choose xx, as the first point of {xn}, with ks > k, and lying in
X1,1 N X2,1. Ingeneral, we consider M as a finite union of sets of diameter
< 1/7 and choose a new point wy, ki > ki_y > - > ky > ky, of
the sequence {z,} lying in Nj—; X; ;. Since for any k > k;, the points
x; and ax; lie together in a set of diameter < 1/4, the subsequence {zk,;}
which we have extracted is a Cauchy sequence. Since M is assumed to be
complete, this subsequence converges to a point of M and hence the
sequence {Z,} has a limit point. []

Some new (to us) terminology is often seen in analysis. A subset of a
space S is called a Gj-set if it is the countable intersection of open sets, and
is called an F,-set if it is the countable union of closed sets. It is obvious
that a subset is a Gs-set if and only if its complement is an F,-set. As a
point of interest, the genesis of these terms is as follows. The @ in Gj
stands for the German word Gebiet (open set), and the é§ means Durch-
schnitt (intersection). The F in F, comes from the French word fermé
(closed), and the o stands for sum, which many authors use in place of

UNION.

THEOREM 2-76 (Alexandroff). Every Gs-set in a complete metric space
is homeomorphic to a complete space (or is topologically complete).

Proof: Let @ be a Gs-set in the complete metric space M. We show that a
new (but equivalent) metric can be placed upon @ so that @ is complete in
terms of the new metric. By definition, @ = N;—; U;, where each U;
is open in M. As in Section 2-3, we consider the distance d(z, M — U;)
for each point z in U; and define a function f;: U; — E’ by

1
fi(x) = dz, M — Uy) :

Now let ¢;(, y) be the real function defined on U; X U; by

@) — fiy)|
0i(®, ¥) = 7 + [fi(x) — fi(y)]

The function ¢; will in general not be a metric for U;, because it is possible
to have ¢;(z, y) = 0 without having + = y. However, we do have

ei(z, y) + ¢i(y,2) = @iz, 2),
for all z, y, z in U;. Since

Ifi@) — fi)| + |fiy) — fi@)| 2 [filx) — fi(z)],



