Topology $10 / 25$
Let $I=[0,1]$
Main Question: Does there exist a
Surjective continuous function $I \longrightarrow I^{2}$?
"space - filling curve"

As sets: \exists bijection
Eng. consider $[0,1) \longrightarrow[0,1)^{2}$ by splitting eren/odd digits

$$
0.31415926 \rightarrow 0.3452
$$

(not continuous)
Answer: Yes \longrightarrow Peano curve $f: I \longrightarrow I^{2}$

Construction
Plan: Construct f as a limit of $f_{0}, f_{1}, f_{2}, \ldots: I \rightarrow I^{2}$
f_{0} :

$f_{1}:$

triangular path \downarrow

4 triangles paths
apply basic operation to each triangelor path

$\longrightarrow 4^{n}$ triangular paths

End result: : $f=\lim _{n \rightarrow \infty} f_{n}$
To show : . The limit exits.

- f is continuous
- f is subjective

Completeness (X, d) metric spare
Del $\left\{x_{n}\right\}$ in X is called a Canehy sequemele if $\forall \varepsilon>0$,

$$
\exists N \text { st. } d\left(x_{n}, x_{m}\right)<\varepsilon \quad \forall n, m \geqslant N
$$

Def X is complete if every Cauchy sequence has a limit point in X
Ex I^{2} is complete \longrightarrow compact \longrightarrow closed subspace of \mathbb{R}^{2}

The X - topological space
(y, d) - metric space, bounded, complete
Then $C(X, Y):=\{$ continuous functives $X \longrightarrow Y\}$
is a complete metric space under the metric

$$
p(f, g):=\sup _{x \in X} d(f(x), g(x))
$$

Pref: Let $\left\{g_{n}: X \rightarrow Y\right\}$ be a Canchy seqnere in $C(X, Y)$.

$$
\forall \varepsilon>0, \exists N \text { st. } \rho\left(g_{n}, g_{m}\right)<\varepsilon \quad \forall n, m \geqslant N
$$

Now $\forall x \in X, \quad d\left(g_{n}(x), g_{m}(x)\right) \leqslant p\left(g_{n}, g_{m}\right)<\varepsilon$
$\Rightarrow\left\{g_{r}(x)\right\}$ is a Cauchy sequence in y
Since y complete, \exists limit, denoted $g(x)$
\Rightarrow function $g: X \longrightarrow Y$
Claim: $\left\{y_{n}\right\}$ converges to g under p
Pl: $\quad \forall \varepsilon>0$,
$\left\{g_{n}\right\}$ Cauchy $\Rightarrow \exists N$ st. $\forall n, m \geqslant N, \quad x \in X$

$$
\begin{array}{r}
g_{m}(x) \rightarrow g(x) \Rightarrow \quad \exists \text { st. } \forall m \geqslant M \\
d\left(g_{m}(x), g(x)\right)<\varepsilon / 3 \\
\Rightarrow d\left(g_{n}(x), g(x)\right)<2 \varepsilon / 3 \quad \forall n \geqslant N, \quad x \in X
\end{array}
$$

In fact: Claim $\Leftrightarrow\left\{g_{n}\right\}$ converges uniformly to g

By Uniform Limit Theorem, g is continuous, i.e. $g \in C(x, y)$
Back to Pean
Claim 1: $\left\{f_{n}\right\}$ is Cauchy in $C\left(1,1^{2}\right) \xrightarrow{\text { Than }} \begin{gathered}f \text { exits and } \\ \text { continuous }\end{gathered}$
Idea: Consider $f_{n} \longrightarrow f_{n \rightarrow 1}$

$\forall t \in I, f_{n+1}(t)$ and $f_{n}(t)$ lie in the same square of side length $\frac{1}{2^{n}}$
\Rightarrow under square metric $d\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right)=\max \left\{\left(x_{1}-x_{2}\left|,\left|y_{1}-y_{2}\right|\right\}\right.\right.$,

$$
\begin{aligned}
& d\left(f_{n+1}(t), f_{n}(t)\right) \leqslant \frac{1}{2^{n}} \quad \forall t \\
& \Rightarrow \rho\left(f_{n+1}, f_{n}\right) \leq \frac{1}{2^{n}} \\
& \forall m, \rho\left(f_{n+m}, f_{n}\right) \leq \frac{1}{2^{n}}+\frac{1}{2^{n+1}}+\cdots+\frac{1}{2^{n+1-1}} \leq \frac{2}{2^{n}}
\end{aligned}
$$

Claim 2: f is surjective.
Idea: $f_{n}(I)$ touches every grid v side length $\frac{1}{2^{n}}$.

$$
\forall x \in I^{2}, \quad \varepsilon>0
$$

$B(x, \varepsilon)$ intersects $f_{n}(I)$ for n sufficiently large

$$
\begin{aligned}
\Rightarrow x \in \overline{f(I)} & =f(I) \\
& \uparrow \\
& I \text { compact } \\
& f \text { continuous }
\end{aligned}
$$

Theorem 44.1. Let $I=[0,1]$. There exists a continuous map $f: I \rightarrow I^{2}$ whose image fills up the entire square I^{2}.

The existence of this path violates one's naive geometric intuition in much the same way as does the existence of the continuous nowhere-differentiable function (which we shall come to later).

Proof. Step 1. We shall construct the map f as the limit of a sequence of continuous functions f_{n}. First we describe a particular operation on paths, which will be used to generate the sequence f_{n}.

Begin with an arbitrary closed interval $[a, b]$ in the real line and an arbitrary square in the plane with sides parallel to the coordinate axes, and consider the triangular path g pictured in Figure 44.1. It is a continuous map of $[a, b]$ into the square. The operation we wish to describe replaces the path g by the path g^{\prime} pictured in Figure 44.2. It is made up of four triangular paths, each half the size of g. Note that g and g^{\prime} have the same initial point and the same final point. You can write the equations for g and g^{\prime} if you like.

Figure 44.1

Figure 44.2

This same operation can also be applied to any triangular path connecting two adjacent corners of the square. For instance, when applied to the path h pictured in Figure 44.3, it gives the path h^{\prime}.

Step 2. Now we define a sequence of functions $f_{n}: I \rightarrow I^{2}$. The first function, which we label f_{0} for convenience, is the triangular path pictured in Figure 44.1, letting $a=0$ and $b=1$. The next function f_{1} is the function obtained by applying the operation described in Step 1 to the function f_{0}; it is pictured in Figure 44.2. The next function f_{2} is the function obtained by applying this same operation to each of the four

Figure 44.3
triangular paths that make up f_{1}. It is pictured in Figure 44.4. The next function f_{3} is obtained by applying the operation to each of the 16 triangular paths that make up f_{2}; it is pictured in Figure 44.5 . And so on. At the general step, f_{n} is a path made up of 4^{n} triangular paths of the type considered in Step 1, each lying in a square of edge length $1 / 2^{n}$. The function f_{n+1} is obtained by applying the operation of Step 1 to these triangular paths, replacing each one by four smaller triangular paths.

Figure 44.4

Figure 44.5

