Topology $11 / 10$
Last time : Lifting

- Given covering ${\underset{b}{E} \text {, paths and path homotopies can be }}_{B}$ lifted uniquely
- If E is path-comn, then giver $b_{0} \in B$, the lifting correspondence $\phi: \pi_{1}\left(B, b_{0}\right) \longrightarrow p^{-1}\left(b_{0}\right)$ is surjective.
- If E is simply corrected, it is bijective.

$$
\Rightarrow \quad \pi,\left(s^{\prime}\right)=\mathbb{Z}
$$

Today: Applications of this result to "classical" topology

Retractions (Recall)
Def X topological space, $A \subseteq X$ subspace A retraction of X onto A is a continuous map

$$
r: X \longrightarrow A \text { sit. }\left.r\right|_{A}=I d_{A}
$$

If such r exists, we say A is a retract of X.

$$
\text { Ex Fix any } x_{0} \in X, \quad A=\left\{x_{0}\right\}
$$

\Rightarrow constant map $r: X \longrightarrow\left\{x_{0}\right\}$ is a retraction.

Ex $r: X \times Y \longrightarrow\left\{x_{0}\right\} \times Y$ is a retraction

$$
(x, y) \quad \longrightarrow \quad\left(x_{0}, y\right)
$$

Ex

$$
\leadsto
$$

$$
x \text {-axis }
$$

x-axis $\cup y$-axis

Recall Let $A \subseteq X$ be a retract.
(1) If X is corrected / path-connected / compact, then same is true for A.
(2) If X is Hausdreff, then A is closed in X.

Focus today:
Tho (No-retraction)
S^{\prime} is not a retract of B^{2}.

B^{2}

s^{\prime}
(Harder to prove: need to show no retraction exists Intuition: can't "punch a hole" in the middle of B^{2}

Strategy: look at induced maps on fundamental groups
Lemma If $A \subset X$ is a retract, and let $J=A \rightarrow X$ denote the inclusion, then $J_{*}: \Pi_{1}(A) \longrightarrow \pi_{1}(x)$ is infective.

Pf Let $r: X \longrightarrow A$ be a retraction. Then roj: $A \longrightarrow X \longrightarrow A$ is the identity on A.
$\Rightarrow r_{*} \circ j_{*}: \pi_{1}(A) \underset{\jmath}{\longrightarrow} \pi_{1}(X) \rightarrow \pi_{1}(A)$ is the identity on $\pi_{1}(A)$ J_{*} injective r_{*} surjective

Prot of No-retruction The If $S^{\prime} c B^{2}$ is a retract,
by Lemma: $J_{*}: \pi_{1}\left(S^{\prime}\right) \longrightarrow \pi_{1}\left(B^{e}\right)$ is infective.
But this is impossible: $\pi_{1}\left(s^{\prime}\right)=\mathbb{Z}$
$\pi_{1}\left(B^{2}\right)$ is trivial.
Exercise $S^{\prime} \times S^{\prime}$ is not a retract of $S^{\prime} \times B^{2}$

Null homotopies
Lemmas Let $h: S^{\prime} \longrightarrow X$ be continuous. Then the following are equivalent :
(1) h is nullhomotopic
(2) h extends to a map $k: B^{2} \longrightarrow X$.
(3) $\quad h_{*}=\pi_{1}\left(s^{\prime}\right) \longrightarrow \pi_{\cdot}(x)$ is trivial.

Proof $(1) \Rightarrow(2)$ Let $H: S^{\prime} \times I \rightarrow X$ be a nullhomotopy.

Now, $\quad B^{2}=S^{\prime} \times I / S^{\prime} \times\{ \}$,
and $\left.H\right|_{S^{\prime} \times\{1\}}$ is constant
$\Rightarrow H$ factors through the quotient, inclining $k: B^{2} \longrightarrow X$
(2) \Rightarrow (3) Consider $\quad h=k \cdot j$:

$$
\begin{aligned}
\Rightarrow h_{*}=k_{*} 0 \jmath * \\
\pi_{1}\left(s^{\prime}\right)=\mathbb{Z} \xrightarrow{h_{*}} \pi_{1}(X) \\
\pi_{*}\left(B^{2}\right)=1
\end{aligned}
$$

Since $\pi_{1}\left(B^{2}\right)$ is trivial, $\hat{\jmath}_{*}$ is trivial, then so is h_{*} /I
(s) \Rightarrow (1) Fix base points $b_{0} \in S^{\prime}, \quad X_{0}=h\left(b_{0}\right) \in X$.

Let $f: I \longrightarrow S^{\prime}$ represent $\mid \in \pi_{1}\left(S^{\prime}, b_{0}\right)$
Since h_{*} is trivial, $h_{*}[f]$ is the identity of $\pi_{1}\left(X, x_{0}\right)$

\Rightarrow I null homotopy $F: I_{X} I \longrightarrow X$ between h of and the constant map to x_{0}

$$
F(0, t)=F(1, t)=F(s, 1)=x_{0} \quad \forall \text { s.t }
$$

\Rightarrow Under the quotient $S^{\prime} \times I=I \times I /(0, t) \sim(1, t)$,
F induces a null homotopy $S^{\prime} \times I \longrightarrow X$ between h and. the constant map.

Corollary (1) The identity map $S^{\prime} \longrightarrow S^{\prime}$ is not null homotopic.
(2) The inclusion $S^{\prime} \longrightarrow \mathbb{R}^{2} \backslash\{0\}$ is not null homotopic.

Print of (2): S is a retract of $\mathbb{R}^{2} \backslash\{0\}$:

$$
\Rightarrow \quad \pi_{1}\left(s^{\prime}\right) \longrightarrow \pi_{1}\left(\mathbb{R}^{2} \backslash\{0\}\right) \text { is }
$$

injective, and thus nontrivial.

Fixed points
A point $x \in X$ is a fixed point of $f: x \rightarrow x$ if $f(x)=x$
Warm-up Every continuous $f=[0,1] \longrightarrow[0,1]$ has a fixed point. (Consider $f(x)-x$ and apply IVT)

Browner Fixel-point The
Every continuous $f=B^{2} \longrightarrow B^{2}$ has a fixed point.
Prof Suppose otherwise that $f(x) \neq x \quad \forall x \in B^{2}$.
Define $v: B^{2} \longrightarrow \mathbb{R}^{2} \backslash\{0\} \rightarrow$ nowhere-vanishong

$$
v(x)=f(x)-x
$$ vector field.

Observation: $\forall x \in S^{\prime}$, $V(x)$ can't point clivectly outward
i.e. $V(x)=f(x)-x=a x$ for some $a \in \mathbb{R}>0$
(otherwise $f(x)=(1+a) \times \notin B^{2}$)
[Denote $w=\left.v\right|_{s^{\prime}} s^{\prime} \longrightarrow \mathbb{R}^{2} \backslash\{0\}$
Since v is an extension of $w+B^{2}$, by earlier Lemma, w is null homotopic.
Moreover, $-w$ is also homotopic to the inclusion $J=S^{\prime} \rightarrow \mathbb{R}^{2} \backslash\{0\}$, via $F: S^{1} \times I \longrightarrow \mathbb{R}^{2} \backslash\{0\}$

$$
F(x, t)=t x-(1-t) w(x) \quad \text { avoids } 0
$$

Check: $\forall x \in S^{\prime}, \quad t \in(0,1), \quad 0 \neq F(x, t)$ otherwise, $w(x)=\underbrace{\frac{t}{1-t}}_{>0} x$.

$\Rightarrow j$ is null homotopic, a contradiction.
didn 4 get to cover in class

