Topology II /10
Las time : Liftings
• Given covering
$$\begin{bmatrix} P \\ P \end{bmatrix}$$
, point and path homotopies can be
 $B = Lifted$ uniquely
• If E is path - conn., then given bire B, the lifting coverpondence
 $\phi : \pi_1(B, bo) \longrightarrow P^+(bo)$ is surjective.
• If E is simply connected. If is bijective.
 $\Rightarrow \pi_1(S') = Z$
Today : Applications of this reall
to "classical" topologiest
 $\begin{bmatrix} T_{aday} & Applications of this reall & bijective bo
Today : Def X topologiest space. As X subspace
A retraction of X onto A is a continuous map
 $r: X \longrightarrow A$ sit. $rl_A = IdA$.
If such r exists, we say A is a retract of X.
 E_X Fix ang X, $e X$, $A = {xi}$
 \Rightarrow content map $r: X \longrightarrow {xi}$ is a retraction.
 $X \to Xi$$

Strategy: Look at induced maps on fundamental groups
Lemma If
$$A \subset X$$
 is a retract, and let $j: A \rightarrow X$
denote the inclusion, then $j_{X}: \pi_{i}(A) \longrightarrow \pi_{i}(X)$ is injective.
Pt Let $r: X \longrightarrow A$ be a retraction. Then
 $r \circ j : A \longrightarrow X \longrightarrow A$ is the identity on A .
 $\Rightarrow r_{A} \circ j_{X} : \pi_{i}(A) \longrightarrow \pi_{i}(X) \rightarrow \pi_{i}(A)$ is the identity on $\tau_{i}(A)$
 j_{X} injective $r_{X} \ augestive$
 U
Proof of Nor retraction That If $S' \subset B^{2}$ is a retract-
by Lemma : $j_{X}: \pi_{i}(S') \longrightarrow \pi_{i}(B')$ is injective.
 B_{it} this is impossible : $\pi_{i}(S') = Z$
 $\pi_{i}(B')$ is third.
Exercise $S' \times S'$ is not a retract of $S' \times B^{2}$
 $S' \times B^{2}$
Null heartypies
Lemma Let $h: S' \longrightarrow X$ be continuous. Then the following
 $are equivalent :$

(1) h extends to a map
$$k: B^2 \longrightarrow X$$
.
(3) $h_{*}: \pi, (S') \longrightarrow \pi, (X)$ is trivial.

$$\Rightarrow \exists null homotopy F: Ix I \rightarrow X between hof and$$

the constant map to Xo

$$F(0,4) = F(1,4) = F(s,1) = Xo$$
 \forall sit
 \Rightarrow Under the quotient $S' \times I = I \times I / (o,t) \sim (1,t)$.
 F induces a null homstopy $S' \times Z \longrightarrow X$ between h and.
the constant map.
 \Box
 $Corollary \bigcirc The identity map $S' \longrightarrow S'$ is not null homotopic.
 \bigcirc The inclusion $S' \longrightarrow \mathbb{R}^{2} \setminus 93$ is not null homotopic.
 $Purf of \bigcirc : S'$ is a retract of $\mathbb{R}^{2} \setminus 93$:
 $\Rightarrow \pi_{1}(S') \longrightarrow \pi_{1}(\mathbb{R}^{2} \setminus 93)$ is$

injective, and thus nontrivial.
$$\rightarrow \bigcirc$$

Fixed points
A point
$$x \in X$$
 is a fixed point of $f: X \to X$ if $f(x) = X$
Warm-up Every continuous $f: [0,1] \longrightarrow [0,1]$ has a fixed point.
(Consider $f(X) - X$ and apply IYT)

Browner Fixed-point Thm

Every continuous
$$f: B^2 \rightarrow B^2$$
 has a final point.
Prive Suppose otherwise that $f(x) \neq x \quad \forall x \in B^2$.
Define $x: B^2 \rightarrow R^2 \setminus \{i\}$ nowhere - vanishing
 $v(x) = f(x) - x$ value field
 $x_i \xrightarrow{v(x)} f(x)$
 $(x) = f(x) - x$ value field
 $x_i \xrightarrow{v(x)} f(x)$
 $(x) = f(x) - x = a \times for some a \in Ryo$
 $(after wise f(x) = (1+a) \times \notin B^2)$
Denote $w = v|_{S^1} : S^1 \rightarrow R^2 \setminus \{i\}$
Since v is an extension of w the B^2 , by earlier
Lemma, w is null homotopic to the inclusion $J_i S^1 \rightarrow R^2 \setminus \{i\}$
 $Wia \quad F : S^1 \times I \longrightarrow R^2 \setminus \{i\}$
 $wia \quad F : S^1 \times I \longrightarrow R^2 \setminus \{i\}$
 $i \in (x,b) = b \times - (1+b) w(x)$ and 2
 $i \in (bterwise, w(x)) = \frac{1}{1+b} \times .$
 $i = j$ is null homotopic. A contradiction.