Topology, fall 2022.

NAME:

Topology (fall 2022). Midterm exam I, October 6

You can solve problems in any order. Justify your answers.
I. (15 points) Let $A \subset X$ be a subspace of the topological space X.
(a) State the definition of the closure \bar{A} of A in X.
(b) Prove that $\overline{A \cup B}=\bar{A} \cup \bar{B}$ for any subspaces $A, B \subset X$.
II. (30 points) (a) Let \mathcal{T} be the topology on $X=\{a, b, c, d\}$ with the subbasic $\mathcal{S}=\{\{a, b\},\{b, c\},\{b, c, d\}\}$. Give an example of a basis \mathcal{B} for this topology. (It may be useful to draw a picture of elements of X and various open sets you can build from the subbasis.)
(b) Compute the closure \bar{A} of the subspace $A=\{a, c\}$ of X in this topology.
(c) Consider the map $f: X \longrightarrow Y$ to the two-element discrete topological space $Y=\{0,1\}$ given by $f(a)=f(d)=0, f(b)=$ $f(c)=1$. Is f continuous?
(d) Let $A=\{a, c\} \subset X$. Determine the subspace topology on A. Is A discrete? Is A connected?
(e) Consider the infinite sequence b, b, b, \ldots Find all limit points of this sequence in X.
III. (20 points) Which of the following maps are continuous? Briefly justify your answer.

1) The map $f: \mathbb{R}_{\ell} \longrightarrow \mathbb{R}$ from \mathbb{R} with the lower limit topology to \mathbb{R} with the standard topology given by $f(x)=3 x$.
2) The identity map from X in problem II above to X with the indiscrete topology.
3) The map from the Cantor set $C=\prod_{\mathbb{N}}\{0,1\}$ to itself taking a sequence $b_{1} \times b_{2} \times \ldots$ to $b_{2} \times b_{3} \times \ldots$ (the map which forgets the first coordinate).
4) The map from the Cantor set $C=\prod_{\mathbb{N}}\{0,1\}$ to itself taking a sequence $b_{1} \times b_{2} \times b_{3} \ldots$ to $b_{1} \times b_{1} \times b_{2} \times b_{2} \times b_{3} \times b_{3} \ldots$ (repeat each entry twice).
IV. (15 points) Mark the square in the first column, respectively second column, if the corresponding subset of \mathbb{R}^{2} with the standard topology is open, respectively connected.

$$
\begin{aligned}
& \square \square\{(x, y) \mid x \in \mathbb{Q}, y \in \mathbb{R} .\} \\
& \square \square\{(x, y) \mid-1<x<1 \text { and } 1<y<3\} \\
& \square \square\{(x, y) \mid x=1 \text { or } y=1\} \\
& \square \square\{(x, y) \mid x y>1\} \\
& \square \square\{(x, y) \mid x \neq y\}
\end{aligned}
$$

V. (20 points) (a) Given topological spaces X, Y, state the definition of the product topology on $X \times Y$.
(b) Prove that $X \times Y$ is Hausdorff if both X, Y are Hausdorff.
VI. (Optional problem, extra credit, 10 points). Suppose that X_{i}, $i \in \mathbb{N}$ are discrete topological spaces. Prove that the product

$$
X=X_{1} \times X_{2} \times X_{3} \times \ldots
$$

with the box topology is discrete.

