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Everything is over an algebraically closed field k (which can be loosened to an infinite perfect
field, I think). We will consider sheaves of F-modules, where F is a finite field of characteristic ℓ
invertible in k.

1 Main theorem
To state the main theorem, we need the following definition.

Definition 1. Let X be a smooth variety of dimension n, and let C be a conical cycle in T˚X of
dimension n. Let x be a closed point of X. For 0 ď i ď n, we define the ith polar multiplicity of
C at x (denoted γi

Cpxq) as follows:

• If 0 ď i ď n´1: Let V be a rank i`1 subbundle of T˚X defined over a neighborhood of x such
that the fiber Vx is a generic point of the Grassmannian of pi ` 1q-dimensional subspaces of
T˚
x X. Then γi

Cpxq is defined as the multiplicity of the pushforward cycle π˚pPpCq X PpV qq at
x, where π : PpT˚Xq Ñ X is the projection. (Note that this pushforward is an i-dimensional
cycle.)

• If i “ n: γn
Cpxq is the multiplicity of the zero section T˚

XX in C.

Lemma 1. The 0th polar multiplicity of C at x is the multiplicity of T˚
x X in C.

Proof. PpV q is a generic section of PpT˚Xq defined near x. Thus, over x, it can only intersect the
components of PpCq with maximal dimension, i.e. the copies of PpT˚

x Xq. We get the lemma from
the fact that the intersection of PpT˚

x Xq with a generic section is a point of multiplicity 1 above
x.

Of course, it has to be shown that polar multiplicities are well-defined, which I won’t do for
time’s sake. Here’s the main theorem:

Theorem 1. Let K be a perverse Λ-sheaf on X smooth projective. Then for all i, dimF H´iKx ď

γi
CCpKq

pxq.

Corollary 1. For a conical closed set C in T˚X, let Cx denote the fiber of C above x. If i ă

n ´ dimSSpKqx, then H´iKx – 0.
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2 Alternate definition of polar multiplicities
By definition, the multiplicity of a cycle at a point x P X is the local intersection number of that
cycle with a sufficiently general smooth subvariety through x. In particular, polar multiplicities are
local intersection numbers on X. Using the projection formula, we can alternatively define polar
multiplicities as local intersection numbers on P˚pT˚Xq.

Definition 2. Let Y be a smooth variety with a map f : Y Ñ X. Let C1 and C2 be cycles on Y with
total dimension dimY such that C1 XC2 Xf´1pxq is proper. Suppose that all connected components
of C1 XC2 are either contained in f´1pxq or disjoint from f´1pxq. We define the local intersection
number pC1, C2qY,x as the degree of the part of the refined intersection C1 ¨C2 supported on f´1pxq.

Definition 3 (Alternate). We present an alternate definition of the ith polar multiplicity of a conical
cycle C at a point x P X.

• If 0 ď i ď n´ 1: Let Y be a sufficiently general (locally defined) smooth codimension i subva-
riety of X through x, and let V be a sufficiently general (locally defined) rank i` 1 subbundle
of the restriction T˚X|Y . Define γi

Cpxq as the local intersection number pPpCq,PpV qqPpT˚Xq,x.

• If i “ n: Same as before (multiplicity of the zero section).

Here, “sufficiently general” means that TxY Ă TxX and Vx Ă T˚
x X are generic subspaces. This

helps ensure that pPpCq,PpV qqPpT˚Xq,x makes sense (the intersection PpCq XPpV q is 0-dimensional)
and is independent of choice of Y and x.

Lemma 2. The definitions agree.

Proof. As mentioned above, the multiplicity of π˚pPpCq X PpV qq (for a subbundle V Ă T˚X on X,
not Y ) is defined as pπ˚pPpCq X PpV qq, Y qX,x for sufficiently general Y . We have

pπ˚pPpCq X PpV qq, Y qX,x “ pPpCq X PpV q, π˚Y qPpT˚Xq,x

“ pPpCq,PpV q X π˚Y qPpT˚Xq,x.

Here, the first equality is the projection formula, and the second equality is associativity of refined
intersections. Note that PpV q X π˚Y is simply PpV |Y q. It remains to check that the pair pY, V |Y q

is sufficiently general if Vx is sufficiently general and Y is sufficiently general depending on Vx. This
check is done by counting dimensions.

3 Proof of the main theorem

3.1 Proper C-transversality
The proof of the main theorem makes use of the functoriality of characteristic cycles under certain
pullbacks. To state this functoriality result, we’ll need to define proper C-transversality.

Definition 4. Let W be smooth of dimension m, and let h : W Ñ X be a map. We say that
h is properly C-transversal if it is C-transversal and each irreducible component of h˚C has
dimension m.

Definition 5. Let A be a conical cycle of dimension n on T˚X, and let C be its support. Let
h : W Ñ X be properly C-transversal. We define the conical cycle h!A :“ p´1qn´mdh˚ph´1pAqq

on T˚W , where m is the dimension of W and the maps are dh : W ˆX T˚X Ñ T˚W and h :
W ˆX T˚X Ñ T˚X.
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Theorem 2. Let h : W Ñ X be properly C-transversal, and let L be a complex micro-supported
on C. Then CCph˚Lq “ h!CCpLq.

There’s also a functoriality result for proper pushforwards, but I’m too lazy to state it precisely,
so we’ll see the result when we need it.

3.2 The proof modulo some lemmas
Theorem 3. Let K be a perverse Λ-sheaf on X smooth projective. Then for all i, dimF H´iKx ď

γi
CCpKq

pxq.

Proof. The proof is done by induction on i. Fix a projective embedding of X, and take a generic
pencil of conics X Ă X ˆ P1. Let p : X Ñ X and q : X Ñ P1 be the projections. Since the pencil
is generic, we can choose it so that x does not lie on the base locus, so that p is an isomorphism
above a neighborhood of x and q makes sense as a map from a neighborhood of x to P1. Thus, we
will sometimes use X and X interchangeably.

To induct, we use the nearby/vanishing cycles distinguished triangle for q:

p˚K Ñ RΨqp
˚K Ñ RΦqp

˚K.

This triangle gets us an exact sequence of cohomology sheaves:

pR´i´1Φqp
˚Kqx Ñ H´ipKqx Ñ pR´iΨqp

˚Kqx Ñ pR´iΦqp
˚Kqx.

Since the pencil is generic, we may assume that p is an isomorphism above a neighborhood of x.
Thus, p˚K is perverse near p´1pxq (which we’ll just denote x for convenience). By the perverse
t-exactness of nearby cycles, RΨqp

˚Kr´1s is perverse near x as well.
Our base case is i “ 0. We need the following lemmas.

Lemma 3. Let L P Db
cpX,Fq be a complex. Let CC 1pLq (resp. SS1pLq) be CCpLq (resp. SSpLq)

with any occurrence of T˚
x X removed. As above, let X Ă X ˆ P1 be a generic pencil of conics with

projections p : X Ñ X and q : X Ñ P1. Let y “ qpxq, and let i : q´1 ãÝÑ X be the inclusion. Then
we have the following:

(1) CCpRΨqp
˚Lq “ i!p!CC 1pLq.

(2) In a neighborhood of x, RΨqp
˚L is supported at x.

(3) The multiplicity of T˚
x X in CCpKq is ´ dimtotpRΦqp

˚Lqx.

(4) If L is perverse, then pRΦqp
˚Lqx is concentrated in degree -1.

Lemma 4. Let C be a conical cycle, and let C 1 be C with all copies of T˚
x X removed. Let rX be a

generic conic section of X through x, let i : rX Ñ X be the inclusion, and let rC :“ ´i!C 1.
Then for i ą 0, the ith polar multiplicity of C at x equals the pi´ 1qst polar multiplicity of rC at

x.

Since RΨqp
˚Kr´1s is perverse, R0Ψqp

˚K – 0. Thus,

dimH0pKqx ď dimpR´1Ψqp
˚Kqx ď dimtotpR´1Ψqp

˚Kqx “ ´dimtotpRΦqp
˚Kqx,

where the last equality follows from Lemma 3. By the Milnor formula, ´dimtotpRΦqp
˚Kqx “

pCCpKq, dq˚pωqqT˚X,x (the RHS should actually be an intersection number in T˚X, but since X
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and X are the same in a neighborhood of x, we are okay). It can be shown that q is SS1pKq in
a neighborhood of x, so that the only component of SSpKq that intersects dq˚pωq is T˚

x X. Thus,
pCCpKq, dq˚pωqqT˚X,x is the multiplicity of T˚

x X in CCpKq, as T˚
x X is the only conical cycle with

high enough fiber dimension at x. This multiplicity is the 0th polar multiplicity of CCpKq at x, so
we have proven the theorem for i “ 0.

By Lemma 3(4), pR´i´1Φqp
˚Kqx – 0 for all i ą 0, so the map H´ipKqx Ñ pR´iΨqp

˚Kqx is
injective for all i ą 0. Thus, dimH´ipKqx ď dimpR´iΨqp

˚Kqx for all i ą 0. Because RΨqp
˚Kr´1s

is perverse, we can apply the inductive hypothesis to deduce that dimH´ipKqx is at most the pi´1qst
polar multiplicity of CCpRΨqp

˚Kr´1sq at x. By Lemma 3, CCpRΨqp
˚Kr´1sq “ ´i!CC 1pKq, and

by Lemma 4, the pi´1qst polar multiplicity of ´i!CC 1pKq at x is the same as the ith polar multiplicity
of CCpKq. Thus, we conclude that dimH´ipKqx is at most the ith polar multiplicity of CCpKq at
x.
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