
Lectures

solutions to the in-class exercises

1. QTQ -- In ⇒ det(QT)det(QI = 1- ⇒ delta)2=1 ⇒ detCQ)=±l
.

2. Eigenvalues : 1 and 3
. Eigenspaces : Ea = Span ((f) I , E, = Span / ( !))

I 1
So (2+1)=(1%4%1/1,5) ("ri"" on basis #(f) ON basis 'ñ( 1)"rz Yr,/

Today : Assorted topics and questions
some things we didn't cover but I should mention

• Cross products : you've already done the quit .

• Determinant of a 3×3 matrix

If you have seen determinants before, chances are you were taught to compote the determinant

of a 3×3 matrix as follows :
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Note : Laplacian expansion is equally fast and generalizes better .

• The inverse of a matrix .

If you have seen inverses before, chances are you were taught to compote the inverse of a matrix

as follows : A-
'
=
1-
detox

. Adj (A)
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where mij = det ( Aij )Here

,
the adjoint matrix is obtained by f-m" m" :

Mst ↓

Mmm . _ . Man A without ith row andjthcol .

This has theoretical value but it's more prone to mistakes /signs, transposes :-) than Gaussian elimination.



• Cramer 's rule : pith position

detf?
" " - bi . - - ay ,

If A is invertible and we have a system A /
n
/ = 1b¥ / , then ✗ i = dm-ib-n.am) .

det IA)

Again this has some theoretical value bit it's much slower than Gaussian elimination .

• LU decomposition
Just like the Gram - Schmidt algorithm yields a factorization A = QR

,
Gaussian elimination

gives a factorization A = LU , where L is lower triangular and His upper triangular .

Computers generally solve
. systems using the LU factoritation .

An example :

a- = 1: ;) Ii :/
" Ii :) ÷"= ( '◦ it

4--1: :| ↳Hit ↳=L! %) a-
Now Li:-(} ;) , Li:( i it , Li -- It ;) so

↳ 44A = (to ;) ⇒ A = a = 12,5) 16,4 .

• Linearity condition : to check that a transformation is linear, we usually apply the definition :

Tlvtw) = Tcu) +Tlw) and TANK XTIV)
.

However
,
these can be condensed into one:

a linear transformation is linear iff forall v.WEIR
"

, t.pe ER, THv+µw)=tTH+µTlw) .

(It's easy to see these are equivalent)
• Inner product spaces
The dot product /orthogonality business has an important generalization : a vector space V is an

inner product space if it comes with a "

product
"

Lviv> such that : 1
. Win> = swiv>

2. (V, tvz, W> = Cv , , W> t {V2,W>

3. {Cv , w > = ca,w> .

4 . <v.v> ≥ 0 .

Important example which is not R
"
: continuous functions f : 1-t.IT] → R . (e.g . sink))



IT

The inner product on this is given by <fig > = f.fltlgtldt .

This space (essentially . . . ) has a basis given by sinlnx)
,
coslnx) for all n c- 21 .

The problem is : given a function f leg . f- ✗2) , what are the scalars such that

✗
2
= X

,
sin (x) + µ , cos (x) + Izsin/Zx) + µ, cos (Zx)

t
- _ . ?

Gaussian elimination will not work /infinitely many columns! )

Answer : it turns out this basis is orthonormal
,
so e.g .

I
,
= ( sink, ×

≥ >

µ , = < cos Cx) , ✗
2
>

i.

This is the beginning of Fourier series , which has remarkable applications in

sound engineering , physics and math .
Gee 313113 's videos)

• Differential equations
The differential equation

{ = ✗ It) is easy to solve : ¥ = 1 ⇒ /¥ it = ttc ⇒ lnix) =t+c ⇒ ✗ = K
- et

✗ (o) = ✗◦ ✗ (o) = ✗◦ ⇒ ✗= et- Xo

similarly , if 4×1
= / = A [ ,

then ✗ = e
#

✗◦ ,
where éA= I + A + { A'+ f- A' + . . .

✗ (o) = Xo

• Quadratic forms :
A quadratic form is a polynomial in ✗

. -
-sin of the form Étijxixj .

i,j=i

These can be seen as maps ✗ ↳ ✗TAX
, for some symmetric matrix A.

This allows one to change basis into the more pleasing form Kyi -1 . . _ + inyi .

Geometrically , these are things like finding the axes of an ellipse .

Not much use outside pure math that I know of .



Assotedqvestions

(Note : solutions can be found in
the instructor 's manual)

In-class exercises : (whichever exercises we haven't done)


