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Abstract. There has recently been much activity within the Kardar-Parisi-Zhang universality class
spurred by the construction of the canonical limiting object, the parabolic Airy sheet S : R2 → R
[DOV18]. The parabolic Airy sheet provides a coupling of parabolic Airy2 processes—a universal
limiting geodesic weight profile in planar last passage percolation models—and a natural goal is to
understand this coupling. Geodesic geometry suggests that the difference of two parabolic Airy2

processes, i.e., a difference profile, encodes important structural information. This difference profile
D, given by R→ R : x 7→ S(1, x)− S(−1, x), was first studied by Basu, Ganguly, and Hammond
[BGH19a], who showed that it is monotone and almost everywhere constant, with its points of
non-constancy forming a set of Hausdorff dimension 1/2. Noticing that this is also the Hausdorff
dimension of the zero set of Brownian motion leads to the question: is there a connection between
D and Brownian local time? Establishing that there is indeed a connection, we prove two results.
On a global scale, we show that D can be written as a Brownian local time patchwork quilt, i.e., as a
concatenation of random restrictions of functions which are each absolutely continuous to Brownian
local time (of rate four) away from the origin. On a local scale, we explicitly obtain Brownian
local time of rate four as a local limit of D at a point of increase, picked by a number of methods,
including at a typical point sampled according to the distribution function D. Our arguments rely on
the representation of S in terms of a last passage problem through the parabolic Airy line ensemble
and an understanding of geodesic geometry at deterministic and random times.
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1. Introduction and main result

The Kardar-Parisi-Zhang (KPZ) universality class refers to a broad family of models of one-
dimensional random growth which are believed to exhibit certain common features, such as universal
scaling exponents and limiting distributions. A plethora of models are believed to lie in this class,
including asymmetric exclusion processes, first passage percolation, directed polymers in random
environment, and the stochastic PDE known as the KPZ equation. Nonetheless, in spite of the
breadth of models thought to lie in the class, only a handful have been rigorously shown to do so.

An important subclass of models believed to be members of the KPZ universality class is known
as last passage percolation (LPP). While the microscopic details depend on the specification, in
general terms they all consist of an environment of random noise through which directed paths
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travel, accruing the integral of the noise along it—a quantity known as energy or weight. Typically,
two endpoints in the environment are fixed, and a maximization is done over the weights of all paths
with these endpoints. A path which achieves the maximum weight is called a geodesic, although,
traditionally, the latter is used to denote shortest paths in a metric space.

To facilitate our discussion here without getting into technical definitions, we imagine a limiting last
passage percolation model defined on R× [0, 1], i.e., an infinite strip with height one; the height
can be thought of as a time parameter. (The purpose of this imagined model is to explain the
interpretations of certain limiting objects we will introduce, and is not meant to be one which
is rigorously defined.) The precise distribution of the noise is not important for our expository
purposes, but it can be thought of as translationally invariant and independent. We consider paths
γ : [0, 1]→ R, where γ(t) denotes the position of the path at time t; the directedness constraint on
paths is implemented by the requirement that they are functions, and so cannot “backtrack” and
have multiple values at any height, i.e., time. The weight of a given path can be thought of as the
integral of the noise along the path in some sense. The last passage value from (y, 0) to (x, 1) is the
maximum weight over all paths γ with γ(0) = y and γ(1) = x.

A canonical limiting object in the KPZ universality class is known as the parabolic Airy2 process,
P1 : R→ R [PS02]. (The subscript of 1 is due to P1 being the first in a family of random curves,
the parabolic Airy line ensemble, which plays a central role in this paper.) In terms of our last
passage percolation model, P1(x) should be thought of as encoding the weight of the geodesic from
(0, 0) to (x, 1). The term “parabolic” is included in the name because P1 is obtained by subtracting
the parabola x2 from the Airy2 process, which is stationary.

Note that while the endpoint x is allowed to adopt any real value, the starting point is fixed to be
zero in the interpretation of P1(x). In our LPP model, of course, any starting point is also allowed
(i.e., γ(0) can take any real value), but the joint distributions of geodesic weights with differing
starting and ending points is not captured in the one-dimensional object P1.
There is a richer universal object that encodes this larger class of joint distributions, providing a
joint coupling of the geodesic weights as the endpoints are allowed to vary arbitrarily, known as
the parabolic Airy sheet S : R2 → R. While first conjectured to exist in [CQR15], this was only
recently proved in the important work [DOV18] (with assistance from [DV21]). The value of the
parabolic Airy sheet S(y, x) should be thought of as the weight of the geodesic from (y, 0) to (x, 1).

The parabolic Airy sheet admits invariance under appropriate scalings guided by certain critical
exponents, much like Brownian motion. Hence, as in the case of the latter, S is expected to exhibit
various fractal or self-similar properties.

The inquiry into such aspects, including the existence of random fractal sets and their fractal
dimensions, is indeed a well-established theme in probability theory and statistical mechanics.
Particularly important examples include: (i) the zero set of Brownian motion (which has an
important connection to our methods that we will return to), (ii) the set of exceptional times in
dynamical critical planar percolation where an infinite cluster is present, which is proven to have
Hausdorff dimension 31

36 [GPS10] on the honeycomb lattice (and conjectured to have the same on the
Euclidean lattice), and (iii) the study of Schramm-Loewner evolutions in connection to scaling limits
of interfaces at criticality in various statistical mechanics models; here too Hausdorff dimensions are
known, in this case of the curves themselves [RS05, Bef08].

The above has naturally led to the study of random fractal geometry within KPZ, which is still at
a rather nascent stage, notwithstanding some important recent advances. The first such work is
[BGH19a]. In deriving our main results, we will illuminate certain connections mooted by [BGH19a]
and offer an alternative proof of the main result of that work. To make things more precise, let us
define the object of study.
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Fix ya, yb ∈ R with yb > ya. We consider the random function D : R→ R given by

D(x) = S(yb, x)− S(ya, x). (1)

We will call D a weight difference profile; it encodes the difference in the weight of two geodesics
with differing but fixed starting points and a common ending point as the latter varies. A first fact
about D sets the stage for our work.

Lemma 1.1. D is a continuous non-decreasing function almost surely.

This has been proved several times in the literature, for example [DOV18, Lemma 9.1] or [BGH19a,
Theorem 1.1(2)], but we will include the simple proof ahead in Section 2 for completeness. Lemma 1.1
implies that at any given point x, D is either constant in a neighbourhood of x or increasing at x
on at least one side. The latter is defined precisely as follows.

Definition 1.2. A point x ∈ R is a non-constant point of a continuous function f : R→ R if there
does not exist any ε > 0 such that f(y) = f(x) for all y ∈ (x− ε, x+ ε). The set of non-constant
points of f is denoted by NC(f).

It turns out that D is almost everywhere constant, with probability one. Further, it is an easy
argument that the non-constant points of a continuous non-decreasing function must form a perfect
set, i.e., be closed and have no isolated points. Perfect sets must necessarily be uncountable. In
particular, D can be interpreted as the distribution function of a random measure supported on the
uncountable set D. Canonical examples of a similar nature include the Cantor function or Brownian
local time. Associated to any such set is its fractal dimension, which quantifies how “sparse” the set
is. With the dimension of the mentioned two examples being classically known, one is led to ask:
what is the fractal dimension of the set of non-constant points of D?

This question was originally raised and answered in [BGH19a], yielding the following theorem, where
the notion of fractal dimension adopted is the Hausdorff dimension. (The definition of the Hausdorff
dimension of a set is recalled ahead in Definition 4.3 for the reader’s convenience.)

Theorem 1 (Theorem 1.1 of [BGH19a]). The Hausdorff dimension of NC(D) is equal to one-half
almost surely.

It is well-known that the set of non-constant points of Brownian local time (to be denoted by L
henceforth), i.e, the set of zeroes of Brownian motion, also has Hausdorff dimension one-half, which
might make one wonder if there is a stronger connection between the latter and NC(D). Indeed, this
question was posed by Manjunath Krishnapur to the first author after a talk on [BGH19a] in 2019.

The aim of the present article is to illustrate that there is indeed a connection, and to develop it in
a few forms. As one consequence, we obtain a second, shorter proof of Theorem 1.

Now, one can enquire about a comparison to L globally as well as locally. We obtain results for
both scales and start by discussing the former.

1.1. A Brownian local time comparison on a global scale. Comparisons of objects arising
in KPZ to Brownian counterparts are by now a well-established theme. One form of comparison
typically involves absolute continuity of the relevant objects to each other. For example, for the
parabolic Airy2 process P1, [CH14] proved that x 7→ P1(x)− P1(a) is absolutely continuous, as a
process on a compact interval [a, b], to Brownian motion; this was strengthened by getting bounds
on a superpolynomial moment of the resulting Radon-Nikodym derivative in [Ham16] (though with
an affinely shifted version of P1 being compared to Brownian bridge) and [CHH19] (comparing the
originally introduced increment to Brownian motion).

As we mentioned earlier, the process P1 should be thought of as encoding the weight of geodesics with
starting point fixed at (0, 0). One can also consider other initial conditions, which are parametrized
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by functions h0 : R→ R ∪ {−∞}. The interpretation of h0 is that paths starting at (y, 0) are given
an extra (though possibly negative) weight h0(y) in addition to the usual weight they obtain on
their journey through the environment. Maximizing this augmented weight over all paths with
given endpoint (x, 1) (with unconstrained starting point) gives the KPZ fixed point h1.

(Here the subscript of 1 in h1 indicates that we are at time 1, and we can analogously defined ht
by making the purely notational modifications in our imagined continuum LPP model to allow all
times in (0,∞). We will discuss fractal properties of the process t 7→ ht ahead in our review of
previous literature.)

Hammond used his results in [Ham16] along with a detailed study of geodesic geometry in a model
known as Brownian LPP to obtain a comparison of h1 with Brownian motion on a unit order, i.e.,
global, scale for quite a general class of initial data in [Ham19b] (and aided by two further works,
[Ham19a, Ham20]). These works all relied on the Brownian Gibbs property, an invariance under
resampling enjoyed by the parabolic Airy line ensemble, which shall play a central role in this paper
as well. We will introduce it slightly later in Section 1.4, and formally in Definition 2.3.

[Ham19b]’s result on a unit-order comparison of h1 to Brownian motion proved to be quite subtle
and had a delicate quantification. In brief, it was roughly the following for a given compact interval
[a, b]. First, there exists an infinite sequence of random functions {Yi}i∈N defined on [a, b], called
a fabric sequence, with each Yi absolutely continuous to Brownian bridge (with a certain number
of moments of the Radon-Nikodym derivative finite). Then, [a, b] can be divided up into a finite
(but random) number of random patches {[xi, xi+1]} such that the restriction of Yi to [xi, xi+1]
can be shifted vertically by a random amount yi to equal h1 on that patch. He introduced the
terminology of a Brownian patchwork quilt to describe this setup. Later, the comparison of Yi to
Brownian bridge was improved to one with Brownian motion, with the same regularity guarantees,
in [CHH19]. More recently, [SV21] obtained a comparison with a single patch, but with no further
regularity information than absolute continuity. We will say more about [SV21] and their proof
approach later in Sections 1.4 and 2.

Let L : [0,∞)→ [0,∞) be the local time at zero associated to Brownian motion of rate σ2 begun at
the origin (the definition of local time is recalled in Definition 3.1). We will always explicitly mention
the relevant diffusivity σ, and so we will drop the dependence on the same in the notation L.
For our first comparison result for the weight difference profile D to L, we will rely on an analogous
patchwork quilt framework as well. One difference with [Ham19b] is that we work on all of R instead
of a compact interval, which necessitates an extra horizontal shift µk in addition to the vertical
shifts yk. We now proceed to setting up the precise definition tailored to our purposes.

Definition 1.3. A stochastic processX : R→ R is said to be a Brownian local time patchwork quilt of
rate σ2 if there exist random {µk, yk}k∈Z ⊆ R, random functions {Yk}k∈Z, with Yk : [0,∞)→ [0,∞)
for all k ∈ Z, and random points {xk}k∈Z ⊆ R, with xk > µk and xk < xk+1 for all k ∈ Z, such that
the following hold (with (ii) and (iii) on an almost sure event):

(i) For any δ ∈ (0, 1) and k ∈ Z, the law of Yk|[δ,δ−1] is absolutely continuous to that of L|[δ,δ−1].
(ii) For any compact set K ⊆ R, at most finitely many xk lie in K.

(iii) Yk(z − µk) + yk = X(z) for all z ∈ [xk, xk+1] and k ∈ Z.

The functions Yk|[xk−µk,xk+1−µk] again should be thought of as fabric pieces which are stitched
together (after a vertical shift of yk to ensure continuity) at the boundaries of the intervals [xk, xk+1]
to form a patchwork quilt which equals X.

Note that in point (i) the comparison of Yk to L avoids the origin; this is because the Yks we
will define for X = D are expected to possess a singularity at zero, which we will discuss later in
Remark 3.11. However, since xk > µk, this singularity at the origin for the Yk is not seen at any
point for X.
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We also point out that (ii) implies that the intervals [xk, xk+1] cover all of R. Finally, we observe
that devices which play the roles of yk and µk are necessary to make (iii) possible; the former since
{Yk}k∈Z are non-negative but X may adopt any real value (as well as to ensure continuity across
patches), and the latter to handle the domain of Yk being [0,∞) while that of X is R.

We now come to the first main result of this paper.

Theorem 2. D is a Brownian local time patchwork quilt of rate four.

We in fact a prove a technically stronger version of Theorem 2 which contains more information on
the quantities µk, yk, xk, etc., as Theorem 4.1.

The source of the rate of four in Theorem 2 is that S (recall the definition from the discussion
preceding (1)), roughly speaking, locally has diffusion rate two. This is simply the normalization
adopted in the definition of the Airy2 process to ensure that P1, or equivalently S(0, ·), is obtained
from the latter by simply subtracting off the parabola x2 without any multiplicative factor. This
local diffusivity rate is reflected in the fact that the distributional limit of ε−1/2(S(0, x+εt)−S(0, x))
is two-sided Brownian motion of rate two [Häg08, QR13, CP15]. The aforementioned Brownian
Gibbs property of the yet-to-be-introduced parabolic Airy line ensemble also makes this evident (see
Section 2 for further elaboration). Our proof will express D as the running maximum of a difference
of two processes which enjoy a joint comparison to independent Brownian motions of rate two. The
difference of these processes is like a rate four Brownian motion. We then use Lévy’s identity to
relate the running maximum to L.
Given Theorem 2, it is easy to prove Theorem 1 using that the support of L almost surely has
Hausdorff dimension one-half, along with the countable stability property of Hausdorff dimension.
However, to maintain the flow of exposition and properly recall these properties, we defer the proof
of Theorem 1 to Section 4.2.

1.2. Brownian local time in the local limit. In contrast to the global scale result, our main
result on the local scale is stronger: we explicitly obtain L as a local limit. Before stating it precisely,
we make a few remarks.

We will be considering limits of the form ε−1/2(D(τ + εt)−D(τ)) where τ is a random time. First,
note that τ indeed needs to be random: at a deterministic time, L is almost surely constant, and
the local limit will be trivial. Further, for the same reason, τ needs to be almost surely a point of
increase of D for there to be any hope of obtaining L in the limit.

Now, there are a number of ways of choosing a point of increase of D. For instance, we may fix
λ ∈ R and consider the first point of increase τλ following λ. This would, in some sense, be a choice
size-biased by the length of the flat portion preceding τλ; also, it excludes any of the “interior”
points of increase of D from being considered. Alternately, we may consider the first time ρh that
D hits a given level h ∈ R; intuitively (and as we will prove), this is a point of increase of D and
will typically be an “interior” one. A third method of choice, which addresses the size-biasing
issue, could be to choose, for an interval [c, d], a point ξ[c,d] uniformly from all the non-constant
points of D on [c, d], by sampling from the probability measure on [c, d] with distribution function
(D(·)−D(c))/(D(d)−D(c)), conditionally on the event that this is a non-zero measure, which we
will show has positive probability in Lemma 5.11. (Indeed, distributions at random times sampled
according to such local times have been studied, for example, in the context of dynamical critical
percolation [HPS15].)

We prove that the local limit at any of these three types of random times is Brownian local time:

Theorem 3. Let τ be equal to either τλ, ρh, or ξ[c,d] (the last conditionally on NC(D) ∩ [c, d] 6= ∅)
as above. Then,

lim
ε→0

ε−1/2
(
D(τ + εt)−D(τ)

)
= L(t),
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where, as before, L : [0,∞)→ [0,∞) is the local time at the origin of rate four Brownian motion,
and the limit is in distribution in the topology of uniform convergence on compact sets of [0,∞).

For completeness, we will also prove that each of the mentioned random points are almost surely
points of increase of D, and, as mentioned, that NC(D) ∩ [c, d] 6= ∅ with positive probability.

As was said earlier, we expect that the fabric pieces Yk in Theorem 2 have a singularity with
Brownian local time at the origin. Given this, the fact that Theorem 3 holds is initially somewhat
surprising. The proof indeed has a few subtleties and we will explain how the apparent tension is
resolved in the proof overview in Section 1.4.

Several recent papers have proved an analogous statement that the local limit of the KPZ fixed
point at a fixed location is two-sided Brownian motion. In the case of the parabolic Airy2 process,
this was first done in various senses in [Häg08, CP15, QR13]. Under general initial conditions, this
is proven in the sense of convergence of finite dimensional distributions in [MQR21, Theorem 4.14].
In the stronger topology of uniform convergence on compact sets, the convergence is implied by
combining the statement of absolute continuity to Brownian motion on compact intervals ([SV21,
Theorem 1.2]) with a statement that a local limit of a process which is absolutely continuous to
Brownian motion is itself Brownian motion (see [DSV20, Lemma 4.3], also cited here as Lemma 5.3).

That the local limit is a given process generally does not logically follow from a patchwork quilt
description. Indeed, that the local limit of the KPZ fixed point is Brownian motion is not an
immediate implication of its Brownian patchwork quilt description as proved in [Ham19b, CHH19],
essentially because of the randomness inherent to which of the fabric functions Yk is in operation at
a given point, and the possibility that the given point is an endpoint of a patch. (However, it might
well be possible to overcome these issues without requiring any significantly new ideas.) Nonetheless,
all of this is avoided in [SV21] because it is a single patch.

In the same vein, Theorem 3 is not a direct logical consequence of Theorem 2. However, an
enhancement of the techniques used to prove Theorem 2 suffices to yield Theorem 3 as well. We
will discuss the proof techniques in greater detail in Section 1.4.

We mention another interesting recent work investigating a local limit, though in a slightly different
sense. [DSV20] considers the local limit of the environment around the geodesic, in the continuum
LPP model where the environment is given by the directed landscape, constructed in [DOV18], which
is a richer scaling limit than S and, in terms of our earlier imagined continuum LPP model, encodes
the joint distribution of LPP weights when even the starting and ending heights, fixed to be 0 and 1
for S, are allowed to adopt any values s < t. [DSV20] shows that the local limit of the environment
around an interior point of the geodesic in this random environment as well as the local limits of the
geodesic and its weight can be described in terms of an LPP problem driven by S and boundary
data involving classical objects such as two-sided Brownian motion and the Bessel-3 process.

(It is this continuum model of LPP defined by the directed landscape which is a rigorously realized
version of the continuum model we have been using for expository purposes, in the sense that
limiting objects such as P1 and ht are as described above with the directed landscape LPP model.
However, the environment defined by the directed landscape does not consist of independent noise.
A continuum LPP model with some sort of independent noise whose weights are encoded by the
directed landscape, i.e., a zero temperature analogue to the continuum directed random polymer
[AKQ14] whose free energy is encoded by the KPZ equation, has not yet been constructed.)

1.3. Prior work on fractal aspects of KPZ. As we said, [BGH19a] initiated the study of fractal
geometry within KPZ by identifying the Hausdorff dimension of the set NC := NC(D). At a high
level, the argument for the upper bound on the Hausdorff dimension relied on showing that NC is a
subset of the set of points x admitting geodesics from (ya, 0) and (yb, 0) to (x, 1) that are disjoint
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except for the common endpoint. We will elaborate on this slightly when we contrast our proof
strategy with that of [BGH19a] in Section 1.4; see also Figure 1.

An exact form of this correspondence between geodesic disjointness and the non-constant points of
D, i.e., that the sets are equal, was proved shortly afterwards in [BGH19b]. Additionally, [BGH19b]
identified the Hausdorff dimension of the set of points (y, x), as a subset of R2, such that there are
at least two disjoint geodesics (except for the common start and endpoints) from (y, 0) to (x, 1).
This set’s dimension was also shown to be one-half. In both these results of [BGH19b] the geodesics
are defined in terms of the directed landscape, similar to the earlier mentioned [DSV20].

There are two further recent studies of fractal dimension within KPZ, [CHHM21] and [DG21].

In the first [CHHM21], instead of studying the parabolic Airy sheet or directed landscape directly,
the KPZ fixed point is studied. Recall its definition as a process in t from Section 1.1. [CHHM21]
identifies as 2

3 the Hausdorff dimension of the set of exceptional times t > 0 where ht has multiple
maximizers, for a broad class of initial data h0, conditionally on the set of exceptional times being
non-empty (an event which is shown to have positive probability, and conjectured to be an almost
sure event). In the geodesic picture, these exceptional times are exactly when there is not a unique
geodesic with initial condition given by h0 and unconstrained ending point.

The second [DG21] investigates the upper and lower laws of iterated logarithm (LIL) in time, at
a fixed spatial location, for the solution to the KPZ equation (a canonical stochastic PDE in the
KPZ universality class) started from narrow-wedge initial condition. They show that the upper
LIL occurs at scale (log log t)2/3 and the lower at scale (log log t)1/3. This agrees with the scales
of laws of iterated logarithm proved previously in prelimiting LPP models in [Led18, BGHK21].
The result of [DG21] of relevance from the point of view of fractal geometry is their further study

of the level sets, parametrized by α, i.e., times t where the solution exceeds α(log log t)2/3 and
their Hausdorff dimensions. They also establish an interesting transition from mono-fractal to
multi-fractal behaviour under an appropriate exponential time change.

Finally, in a recent preprint [SS21], the authors announce that in forthcoming work they will prove
that, in the model of Brownian LPP, the set of points (m, t) in the semi-discrete plane for which
there is a random direction θ such that there exist two semi-infinite geodesics (which will be disjoint)
in direction θ starting from (m, t) has Hausdorff dimension 1

2 .

1.4. Remarks on proof strategy and organization of the paper. In this section we sketch
the basic ideas behind Theorems 2 and 3. Theorem 1 is a straightforward consequence of Theorem 2
and the fact that the support of L almost surely has Hausdorff dimension one-half. But we start off
by giving a brief description of how [BGH19a] proved Theorem 1 to contrast with our approach.

[BGH19a]’s argument worked in Brownian LPP and relied on probability estimates for rare geometric
events involving geodesics. To start, let us discuss the geometric significance of Theorem 1 in the
continuum LPP model from above.

1.4.1. Geodesic geometry of non-constant points of D. The two possible behaviours of D at x—
constant or not—have distinct manifestations in terms of geodesics. For the first, where D is constant
in a neighbourhood of x, the leftmost and rightmost geodesics from ya and yb (their existence can
be shown by a simple topological argument using planarity) to x have non-trivial overlap near their
end; they coalesce. See Figure 1. As the endpoint x varies very slightly, the point of coalescence
does not change, and the change in the two geodesics is identical; in particular, the change in their
weights is identical, so the weight difference D remains constant.

On the other hand, in the second case, the geodesics from ya to x and from yb to x remain disjoint
for their entire lifetimes, except the final instant when their endpoint is shared. In this case the
geodesics each change in distinct ways as the endpoint shifts. Thus the non-constant points of D
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(yb, 0)(ya, 0)

(x, 1) (x′, 1)

(yb, 0)(ya, 0)

(x, 1)

Figure 1. A depiction of the two possible behaviours of the geodesics with separate
fixed starting points (ya, 0) and (yb, 0) and common ending point (x, 1). Left: The
two geodesics (green and orange) coalesce, with the common portion shown in brown.
When x is varied locally (eg. to x′), the brown portion will be modified, but the green
and orange portions will remain fixed; since D(z) for z close to x is the difference of
the orange and green weights, D is locally constant at x. Right: The contrasting
situation when the two geodesics remain disjoint till the last instant. Here moving x
locally modifies both geodesics in an unshared way, so D does not remain constant.

correspond exactly to the endpoint locations admitting disjoint geodesics from the fixed starting
points ya and yb.

As mentioned above, the containment of the former set in the latter was proved in [BGH19a] and
was sufficient for their purposes. But the equality of the two sets is not obvious and was established
only later in [BGH19b]. The argument is similar to that of Lemma 1.1 and proceeds by showing
that, for any point where D is locally constant, the leftmost and rightmost geodesics from ya and yb
respectively must intersect non-trivially.

Thus, on a rough level, [BGH19a]’s arguments used estimates on the probability of disjoint geodesics
in Brownian LPP arising from earlier work of Hammond [Ham20] to obtain an upper bound on the
Hausdorff dimension. In contrast, the lower bound was obtained by a different argument relying on
a quantified form of Brownianity of the parabolic Airy2 process P1.
We now describe the approach taken in this paper, which, in contrast to [BGH19a], relies on what
may be called a continuous Robinson-Schensted-Knuth correspondence which [DOV18] used to
define the parabolic Airy sheet S.

1.4.2. The parabolic Airy sheet via continuous RSK. [DOV18] defined the parabolic Airy sheet S in
terms of a limiting semi-discrete LPP problem in an environment defined by the parabolic Airy
line ensemble P. The latter is an infinite N-indexed collection of random non-intersecting curves
whose lowest indexed, but highest in value, curve is P1, the parabolically shifted Airy2 process; see
Figure 2.

The above mentioned last passage problem in P can be described by fixing a starting coordinate on
the kth line (for some k ≥ 1) and an ending coordinate on the first (i.e., top) line, and considering
up-right paths between the two. The weight of a given path is given by the sum (over i) of increments
of values of Pi along the interval that the path spends on the ith line. If the starting point is (y, k)
and ending point is (x, 1), we denote this by P[(y, k)→ (x, 1)].

It was shown in [DOV18] that the set of last passage values obtained this way encodes S. At a high
level, the increments of S with a fixed starting point, i.e., of the form S(y, x)− S(y, z), are defined
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...

P1

P2

P3

Figure 2. A depiction of the parabolic Airy line ensemble.

as the limit of a difference P[((y)k, k) → (x, 1)] − P[((y)k, k) → (z, 1) of LPP values in P. Here
{(y)k}k∈N is a sequence of deterministic points, depending on y, which is such that (y)k → −∞ in a
parabolically curved manner as k →∞; see Definition 2.6. Similar formulations have recently been
used to construct the extended directed landscape in [DZ21].

Note that here the increment of S is with shared starting point and differing ending points, while
our object of interest D(x) = S(yb, x)−S(ya, x) has differing starting point but shared ending point.
Thus the description of the former type of increment of S in terms of a difference of LPP values
in P is not directly useful for us; we need a LPP description that holds for S(y, x) itself. This is
rather difficult and in fact an open problem ([DOV18, Conjecture 14.2]).

This issue was encountered by [SV21] as well, who bypassed it by considering an LPP problem
in P with appropriate boundary data which encodes S(y, x). More precisely, [SV21, Lemma 3.10]
(and cited here as Lemma 2.8) says that, for given λ ∈ R, there exist random numbers {aλi }i∈N and
{bλj }j∈N such that, for x ≥ 0,

S(ya, λ+ x) = sup
i∈N

{
aλi + P[(λ, i)→ (λ+ x, 1)]

}
.

S(yb, λ+ x) = sup
j∈N

{
bλj + P[(λ, j)→ (λ+ x, 1)]

}
.

(2)

Thus the RHS is the last passage value in P from the set {λ}×N to (λ+ x, 1)with boundary values
{aλi }i∈N and {bλj }j∈N respectively. The latter implicitly encode the weight contribution coming from

the initial segments of the geodesics between the points ((y)k, k) and (λ + x, 1) as k → ∞ when
y = ya and yb.

Before proceeding further it would be convenient to setup some notation. Given P, for i < j and
λ ∈ R, let

Pλj�i(x) := P[(λ, j)→ (λ+ x, i)]. (3)

For our applications we will often be using the case that i = 1. Note also that when i = j,
Pλi�i(x) = Pi(λ+ x)− Pi(λ) measures the increment of the ith line Pi across the interval [λ, λ+ x];
for ease of notation, we will often denote Pλi�i by simply Pλi .

Given the above notation and the representation in (2), the starting point of the present work is the
observation that to relate D to Brownian local time we should look at functions of the form

Pλj�1(x)− Pλi�1(x), (4)

and, indeed, these will essentially be the fabric functions Yk for different values of λ, i, and j.

Before we outline how to relate such a function to Brownian local time, let us mention the important
fact about P that is the source of all Brownian comparisons we make, namely that it enjoys the
Brownian Gibbs property [CH14]. This means that conditional on everything apart from the top k
curves of P on an interval [a, b], the distribution of (P1, . . . ,Pk) on [a, b] is given by k independent
rate two Brownian bridges between the correct endpoints which are conditioned to not intersect
each other or the lower curve Pk+1. An immediate implication is that the joint law of Pi(·)−Pi(a),
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for i = 1, . . . , k, is absolutely continuous with respect to the law of k independent rate two Brownian
motions on [a, b]. The formal definition of the Brownian Gibbs property is given in Definition 2.3.

1.4.3. Analyzing LPP values using Pitman transforms. As we saw, to relate D to Brownian local
times, we need to relate Pλj�1 − Pλi�1 to the same. To do this, we make fundamental use of a
representation of LPP values as the result of a sequence of more basic transformations known as
Pitman transforms, which will be denoted by PT. Use of the transform and this representation is
present most closely in the spirit we utilize them in [DOV18, SV21], but were first introduced in
the context of LPP in [OY02]. The formal definition appears in Section 3.

In a general sense, the PT takes as input two functions (f1, f2) defined, say, on a compact interval,
and outputs two functions (g1, g2) defined on the same domain such that f1 + f2 = g1 + g2 as
functions.

Proceeding to describe how they naturally appear in our setting, we first consider (4) when j = 2
and i = 1. It is easy to see that

Pλ2�1(x) = P[(λ, 2)→ (λ+ x, 1)] = Pλ1 (x) + max
0≤s≤x

(
Pλ2 (s)− Pλ1 (s)

)
. (5)

The righthand side appearing at the end of the above equation defines the first component of the
Pitman transform of Pλ1 and Pλ2 , with the other component being determined by the equality of
sums property mentioned above. For us, the important feature of the Pitman transform of stochastic
processes X1 and X2 is that it is represented via the maximum of the difference of X1 and X2.
Returning to (5), we see that when j = 2 and i = 1, (4) is equal to

Pλ2�1(x)− Pλ1�1(x) = max
0≤s≤x

(
Pλ2 (s)− Pλ1 (s)

)
. (6)

By the Brownian Gibbs property, (Pλ1 ,Pλ2 ) is absolutely continuous to a pair of independent
Brownian motions of rate two, and so (6) is absolutely continuous, on the whole interval x ∈ [0, T ]
for any fixed T , to the running maximum of rate four Brownian motion. By Lévy’s famous identity,
the latter has exactly the distribution of the local time at the origin of rate four Brownian motion
(see Proposition 3.2 to recall this).

For different values of i and j, we will need to use multiple compositions of PT. Indeed, a key step
in our argument is to find a particular sequence of transforms which gives tractable representations
of Pλi�1 and Pλj�1 such that the difference in (4) can be analyzed.

However, in this case, we cannot obtain absolute continuity to independent Brownian motions on
the entire interval [0, T ] for the input functions, unlike the pair (Pλ1 ,Pλ2 ) for the case j = 2 and
i = 1. Without going into technical details, this is broadly because of the fact that two components
of the Pitman transform of independent Brownian motions are not jointly absolutely continuous to
independent Brownian motions on an interval containing zero. In fact, the joint law of the output
of PT is precisely a 2-Dyson Brownian motion, where an n-Dyson Brownian motion may be defined
as n independent Brownian motions conditioned on non-intersection. (The singular conditioning
at the origin is achieved via a suitable Doob h-transform, see, for example, [Gra99].) Thus on
successively applying PT, the singular output of one round gets fed into the next round, and, hence,
one cannot expect the next output to be absolutely continuous to independent Brownian motions
on an interval containing zero. However, fortunately, zero is the only source of singularity, and the
absolute continuity does hold on any interval avoiding the origin. Further, this property is preserved
even on successive applications of PT, which suffices for our purposes.

Section 3 contains the arguments making use of the Pitman transform to establish absolute continuity
to Brownian local time of the functions which will be the fabric functions Yk of Definition 1.3.
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1.4.4. Using geodesics to define fabric functions and patches. The discussion in the previous subsec-
tion gave some idea of how to show that functions of the form (4), which will essentially play the
role of Yk, are absolutely continuous to Brownian local time. Next we indicate how the boundaries
of the patches [xk, xk+1] are defined.

We will need to know some monotonicity properties of the {aλi }i∈N and {bλj }j∈N sequences. Heuristi-
cally, aλi can can be thought of as the weight of the infinite geodesic defined as the limit of the finite
geodesic from ((ya)k, k) to (λ, i) as k →∞. We will refer to this infinite geodesic as the one from
ya to (λ, i).

(Such an infinite geodesic can be defined rigorously, as was done in [SV21]. But it is difficult to
make sense of its weight directly through a limit as it will diverge. It is to handle this divergence
that the rigorous definition of aλi is different; see Section 2.3.)

This heuristic suggests that aλi ≥ aλi+1 by considering simple path modifications: any path ending at
(λ, i+ 1) can trivially be extended to end at (λ, i) by jumping from line i+ 1 to line i at the last
instant, which does not modify its weight. A similar monotonicity holds for {bλj }j∈N.

An implication of these monotonicity properties is that the minimum indices achieving the two
supremums in (2) are equal to 1 when x = 0. Let us call the supremum achieving indices in (2)
respectively iλ(x) and jλ(x) (always the minimum such in case of non-uniqueness). It will be
important to understand their relation to each other and how they behave as x increases. As a first
fact we will of course need to know that they are finite for each x, which we cite from the previously
mentioned [SV21, Lemma 3.10].

Again the heuristic in terms of an infinite geodesic helps explain the behaviour of iλ and jλ. In
particular, iλ(x) is the location at λ of the infinite geodesic from ya to (λ+x, 1), and jλ(x) the same
for the one from yb to (λ+ x, 1). Since yb > ya, planarity suggests that the geodesic corresponding
to yb should be to the right of that from ya. This would give that iλ(x) ≤ jλ(x). Similarly, if x′ > x,
the geodesic from ya to x′ should be to the right of the one from ya to x: x 7→ iλ(x) should be
non-decreasing, and the same for jλ.

Now, from (2), we see that on intervals where iλ and jλ are both constant, say with values i ≤ j,
D(x) is equal to (4) up to a vertical shift given by bλj − aλi . Thus the patch boundaries xk should be
exactly the points where iλ or jλ change value, and the vertical shifts yk should be bλj − aλi on the
interval where iλ and jλ are i and j. This gives a patchwork quilt description on an infinite ray,
and to cover R, we can also vary λ over a countable sequence going to −∞ (we concretely take λ
over Z).

Arguments involving the geometry of geodesics in the LPP problem (4) are handled in Section 2. In
Section 4 we combine the geometric information of Section 2 and the absolute continuity information
of Section 3 to prove Theorem 2, and then derive Theorem 1 as an easy consequence.

1.4.5. Understanding geodesic geometry at a random time. The proof of Theorem 3 requires a more
detailed understanding of the geodesic geometry outlined in the previous subsection. A particularly
elegant aspect of our proof is that it ultimately reduces to the well-known fact that two-dimensional
Brownian motion avoids any given point in the plane forever with probability one.

While the theorem is stated for three different choices of τ, in this proof overview we will mainly
discuss the case where τ = τλ, which captures the main conceptual points common to all the cases.
We will say a few words at the end about the other choices of τ .

First, observe that Theorem 3 concerns behaviour of D at a random time τλ, which is almost surely
greater than λ. So a first approach to proving Theorem 3 might proceed by arguing as above to
conclude that D(τλ) equals Pλj�1(τλ)− Pλi�1(τλ) with some values of j and i. The problem is that
τλ, though a stopping time with respect to the right-continuous filtration of P, is not one with
respect to the top j curves of P for any fixed j, and so it unclear how to pin down the behaviour



COMPARISONS OF THE AIRY DIFFERENCE PROFILE TO BROWNIAN LOCAL TIME 12

of Pλj�1 − Pλi�1 at such a random time; in addition, the random values of j and i at τλ introduce
complicated correlations.

Instead, we consider the geodesic itself as its endpoint moves from τλ slightly forward. More precisely,
we look at where the geodesic is at τλ as the endpoint moves further. In other words, we need a
formula for S(yb, τλ +x)−S(ya, τλ +x) in terms of boundary data at τλ, analogous to (2) with τλ in
place of λ. But now the issue is that behaviour at τλ of D corresponds to behaviour of an expression
of the form (4) (again with τλ in place of λ) at the origin. But as we saw, unless j = 2 and i = 1,
expressions like (4) are not absolutely continuous to Brownian local time around the origin!

Conversely, if j = 2 and i = 1, it is an easy argument, using the scale invariance and indepen-
dence across scales of Brownian motion, that the local limit at the origin of an expression like
max0≤s≤x

(
Pλ2 (s)− Pλ1 (s)

)
is Brownian local time; see Lemma 5.3 and Corollary 5.4. We can handle

the fact that we are looking at Pλ2 and Pλ1 at a stopping time of P by making use of a stronger
version of the Brownian Gibbs property which works for spatial analogues of stopping times for
Markov processes; τλ is such a random quantity. So Pλ2 and Pλ1 look Brownian even at τλ.

So our proof consists of showing that in the immediate right-neighbourhood of τλ, we do in fact
have j = 2 and i = 1.

Ignoring certain technical details, such as setting up the appropriate right-continuous filtration, we
review the the basic argument here. Note that the infinite geodesics (one for each starting point yb
and ya) ending at (τλ, 1) will certainly both be at the top line at τλ. Now, because τλ is a point of
increase of D, at least one of the geodesic must switch lines immediately after τλ; if not, j = i = 1
in that neighbourhood and D would be a constant. Because yb > ya, the ordering of the geodesic
says that the one corresponding to yb must certainly jump.

To say that j = 2 and i = 1 in the right-neighbourhood of τλ, we need to say that that the yb-geodesic
jumps to line 2 and not lower (which will also imply the ya-geodesic stays on line 1).

The above argument applies not only to τλ, but to any stopping time which is almost surely a point
of increase of D and is greater than λ. Dropping the condition of being greater than λ is a simple
technical task, which then takes care of the case where τ = ρh (hitting time of h ∈ R) in Theorem 3.
The final case of ξ[c,d] (an independent uniform sample from D on [c, d]) is slightly more complicated
as it is not a stopping time. For this, we rely on a representation of it as the hitting time ρUc , i.e.,
the hitting time of D(c) +U , with U a uniform random variable on [0,D(d)−D(c)], which can then
be decomposed into a mixture of stopping times ρhc .

Now we turn to explaining why the yb-geodesic must jump to line 2 and not lower.

1.4.6. Boundary data at random locations. To ensure this we analyze the boundary data {bτλj }j∈N
at the random location τλ (which needs some care to define precisely, as we will shortly discuss).
Recall first the stated monotonicity (bτλ1 ≥ bτλ2 ≥ . . .). Observe that under the strict inequality
bτλ2 > bτλ3 , the continuity of P will imply from (2) that

bτλ2 + P[(τλ, 2)→ (τλ + εx, 1)] > bτλ3 + P[(τλ, 3)→ (τλ + εx, 1)]

for all small ε and x in a compact set, and so the yb-geodesic must be at line two for all such small
ε and bounded x.

We also know that bτλ1 = bτλ2 , for otherwise the yb-geodesic could not jump to line 2 at τλ. So our
proof has essentially reduced to showing that bτλ1 > bτλ3 almost surely.

To do this, as mentioned above, we first have to find an expression for the boundary data as a
process (since τλ is random) that agrees with the definition of {bλj }j∈N adopted earlier from [SV21],
which only works for fixed values of λ. To emphasize this distinction, we call the boundary data
process Zλ,bj , where Zλ,bj (x) should be thought of as bλ+xj . So it suffices to show that, almost surely
for all x ≥ 0, Zλ,b1 (x) > Zλ,b3 (x).
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To define Zλ,bi (x), we consider the LPP problem from the vertical line at λ, with boundary data
{bλj }j∈N, to (λ + x, i). In other words, Zλ,bi the righthand side of the second equality of (2) with
(λ+ x, i) in place of (λ+ x, 1).

Now, by arguments similar to before, it is plausible that Zλ,b3 is absolutely continuous to Brownian
motion away from the origin. We can now simply consider the three line ensemble given by
(Pλ1 ,Pλ2 , Zλ,b3 ) and use Pitman transforms to compute Zλ,b1 . In fact for any i ∈ N, Zλ,bi can essentially
be expressed as Pλi (·) reflected off of Zλ,bi+1, in the sense of Skorohod reflection; see [War07] for work
within KPZ on Brownian motions reflecting of Dyson’s Brownian motion.

With this, and forms of absolute continuity with respect to independent Brownian motions, the
event that Zλ,1(x) = Zλ,3(x) for some x can be related to the event that two dimensional Brownian
motion hits the origin at some strictly positive time. But of course, it is a classical fact that this
event has probability zero, which, by absolute continuity, implies what we need.

These arguments are developed in Section 5.

1.5. Extensions. It is an interesting question whether a stronger statement of absolute continuity
of D to Brownian local time can be made. We note that some kind of random shift to D will be
required for any such comparison: for example, D itself can adopt negative values, which is clearly
not the case for Brownian local time. We believe that a statement avoiding random intervals is
more subtle and challenging to obtain, for reasons similar to why we need to avoid the origin when
making our absolute continuity comparisons as, for example, in Definition 1.3(i); we expand on
these aspects slightly in Remarks 3.11 and 4.2. But, in brief, it appears that to remove the patches
one will need a good understanding of geodesic behaviour deep in the parabolic Airy line ensemble,
which is currently not very well understood; indeed, tools such as the Brownian Gibbs property
which work well at the top of P are not useful in this regime of its depths.

In the case of the KPZ fixed point, the decomposition into random patches was avoided in a sense
in [SV21], where the KPZ fixed point was proven to be absolutely continuous to Brownian motion
on any fixed interval; though finiteness of higher moments of the Radon-Nikodym derivative is not
asserted. As mentioned before, our proof makes use of a representation involving suitable boundary
data introduced in [SV21]. Further, there is an overall similarity of theme with the latter, in that
they too study absolute continuity of the Pitman transform of Brownian-like processes in the context
of an LPP problem through P, and we make use of two of their results: see (11) and Lemma 2.8.
The difficulty [SV21] faced in obtaining Radon-Nikodym derivatives is similarly obstructive in that
respect for this work.

Nonetheless, despite some thematic similarities with past works, including [BGH19a] and [SV21]
in particular, the results of this paper require a considerable number of novel arguments, as may
be seen by the proof overview in Section 1.4. We highlight a few of those points here. Firstly,
Theorem 3 requires a careful study of local geodesic behaviour at certain random locations, which
we believe has not appeared in the literature before. A primary device to undertake this study is the
analysis of a process version of the boundary data, introduced in [SV21] for fixed locations, which
leads to comparisons with planar Brownian motion. Finally, on a more technical level, Theorem 2
requires new absolute continuity statements of Pitman transforms to Brownian motion.
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2. Parabolic Airy line ensemble, LPP, and geometry of geodesics

This section develops formally the central objects that will be in play throughout the paper. We
then derive some useful geometric lemmas. We start by introducing the precise definition of the
parabolic Airy sheet S. Because this is defined in terms of a last passage problem in a random
environment defined by the parabolic Airy line ensemble P, we first define the former concept and
the latter object in Section 2.1.

1

...

n
(y, n)

(x, 1)

Figure 3. Left: An illustration of (a subset of) the environment defined by f . The
functions fi corresponding to each line are shown in blue on the corresponding black
line for visual clarity; the function values themselves are not necessarily ordered.
Right: An up-right path γ from (y, n) to (x, 1) is shown in green; note that in the
formal definition the depicted vertical portions are not part of γ. The path’s weight
is the sum of the increments of fi along the portion of the ith line γ spends on it.

Notation. We denote the integer interval {i, . . . , j} by Ji, jK, and the set {1, 2, . . . , } by N. For an
interval I ⊆ R, C(I) will be the set of continuous functions f : I → R. For a finite set A, #A will
denote its cardinality. Finally, given a function f defined on a set A, we will denote its restriction
to a subset B ⊆ A by f |B.

2.1. Last passage percolation and the parabolic Airy line ensemble.

Definition 2.1 (Last passage percolation). Let f = (f1, f2, . . .) : N× R→ R be a given sequence
of continuous functions. We will think of the curves f1, f2, . . . , as lying on horizontal lines which
are ordered vertically, indexed such that f1 is the top curve, f2 is below it, and so on; though the
function values themselves are not assumed to be ordered. See Figure 3. We will refer to these
curves as the environment given by f , or defined by f .

Let y ≤ x and n ≥ m. An up-right path from (y, n) to (x,m) is a path which begins at (y, n) and
moves rightward, jumping from one line to the next at various times, till it reaches (x,m); see
Figure 3. Up-right paths are parametrized by their jump times {ti}ni=m+1 at which they jump from

the ith line to the (i− 1)th line. The weight of an up-right path γ from (y, n) to (x,m) through f is
given by

f [γ] =

n∑
i=m

(
fi(ti)− fi(ti+1)

)
,

where tn+1 = y and tm = x. In other words, f [γ] is the sum over i of the increments of fi over the
interval that γ spends on the ith line. The last passage value from (y, n) to (x,m) through f is
given by

f [(y, n)→ (x,m)] = sup
γ:(y,n)→(x,m)

f [γ], (7)

where the supremum is over all up-right paths from (y, n) to (x,m). A path which achieves the
supremum is called a geodesic from (y, n) to (x,m).
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Note that the definition (7) immediately adapts to the case that f has domain I × R or I × [0,∞)
for some finite integer interval I ⊆ N, so long as n,m ∈ I, and, in the latter case, x, y ≥ 0.

While there are broad similarities, the heuristic LPP model described in Section 1 should not be
confused for the precise LPP model defined above. We emphasize that the directedness constraint
in Definition 2.1 imposes the inequality y ≤ x and that the paths are not well-defined functions of
their height, i.e., the line index.

Having defined the general LPP model, we now move on to formally introducing another central
object in this paper, the parabolic Airy line ensemble.

Definition 2.2 (Parabolic Airy line ensemble). The parabolic Airy line ensemble P : N× R→ R
is an N-indexed family of random non-intersecting continuous curves, such that the ensemble A
given by Ai(x) = Pi(x) + x2 has finite dimensional distributions determined as follows: for every
m ∈ N and real t1 < . . . < tm, the point process {(Ai(tj), tj) : i ∈ N, j ∈ J1,mK} is determinantal
with correlation kernel given by the extended Airy kernel Kext

Ai , where

Kext
Ai

(
(x, t); (y, s)

)
=

{∫∞
0 e−λ(t−s)Ai(x+ λ)Ai(y + λ) dλ t ≥ s
−
∫ 0
−∞ e

−λ(t−s)Ai(x+ λ)Ai(y + λ) dλ t < s;

here Ai is the classical Airy function. The reader is referred to [HKPV09] for background on
determinantal point processes.

The parabolic Airy line ensemble was first constructed in [CH14]. That paper also proved P enjoys
the Brownian Gibbs property, a central invariance property which we define next.

Definition 2.3 (Brownian Gibbs property). Let X : N→ R be a collection of random continuous
non-intersecting curves, and fix k ∈ N and [`, r] ⊂ R. Let Fext(k, `, r) be the σ-algebra generated
by {Xi(x) : (i, x) 6∈ J1, kK× [`, r]}, i.e., everything external to [`, r] on the top k curves. X is said
to possess the Brownian Gibbs property if, conditionally on Fext(k, `, r), the distribution of X on
J1, kK× [`, r] is that of k independent Brownian bridges (B1, . . . , Bk) of rate two, with Bi(x) = Xi(x)
for x ∈ {`, r} and i ∈ J1, kK, conditioned on not intersecting each other or Xk+1(·) on [`, r].

Theorem 2.4 (Theorem 3.1 of [CH14]). The parabolic Airy line ensemble P has the Brownian
Gibbs property.

We will be making use of the Brownian Gibbs property of P quite often; indeed, it is the ultimate
source of all the statements we make regarding absolute continuity to Brownian objects, the first of
which is the following.

Corollary 2.5. Let [`, r] ⊂ R and k ∈ N. Then {Pi(·)− Pi(`) : i ∈ J1, kK}, as a process on [`, r], is
absolutely continuous to the law of k independent Brownian motions of rate two, all started at (`, 0),
on [`, r].

This proof is the same as the one given for [CH14, Proposition 4.1], where the k = 1 case of
Corollary 2.5 is proved, and we reproduce it here.

Proof of Corollary 2.5. Applying the Brownian Gibbs property on J1, kK× [`, r] tells us that, con-
ditionally on Fext(`, r, k), {Pi(·) − Pi(`) : i ∈ J1, kK} is absolutely continuous to the law of k
independent Brownian bridges of rate two. To move from here to Brownian motions, we must know
that (Pi(r)− Pi(`))ki=1 has law which is absolutely continuous to product Lebesgue measure. This
is implied by applying the Brownian Gibbs property on J1, kK× [`, 2r]. �

We will often make use of this corollary without explicitly referring to it by name.
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2.2. The parabolic Airy sheet. The parabolic Airy sheet was proved to exist in [DOV18]. Its
definition, as given in [DOV18, Definition 8.1], is in terms of a last passage problem in the parabolic
Airy line ensemble. First, for k ∈ N and y > 0, let

(y)k =
(
− (k/2y)1/2 , k

)
.

Definition 2.6 (Parabolic Airy sheet). The parabolic Airy sheet S : R2 → R is a continuous process
with the following two properties.

(i) S(·+ z, ·+ z)
d
= S(·, ·) for each z ∈ R, where the equality is in distribution of processes.

(ii) S can be coupled with the parabolic Airy line ensemble P so that S(0, ·) = P1(·) and, almost
surely for all x, y, z ∈ Q with y > 0, there exists a random constant Kx,y,z such that, for all
k ≥ Kx,y,z,

S(y, z)− S(y, x) = P
[
(y)k → (z, 1)

]
− P

[
(y)k → (x, 1)

]
.

The existence of the parabolic Airy sheet was proven in [DOV18] via Brownian last passage
percolation. To state this, let B : N × R → R be a N-indexed family of independent two-sided
Brownian motions of rate one.

Theorem 2.7 (Theorem 1.3 of [DOV18]). The Airy sheet exists and is unique in law. Further,

S(y, x) = lim
n→∞

n−1/3
(
B[(2yn2/3, n)→ (n+ 2xn2/3, n)]− 2n− 2(x− y)n2/3

)
,

where the limit is in distribution, in the topology of uniform convergence on compact sets.

Note that the stationarity asserted in (i) of Definition 2.6 above allows us to assume without loss of
generality that ya, yb > 0 in the definition (1) of D, and we do so for the rest of the paper. This is
useful as it gives us access to the formula in (ii) of Definition 2.6, which requires the initial point y
to be positive.

2.3. LPP boundary values in P. We now set up the framework of LPP models with boundary
data which, as indicated in Section 1.4, will play a vital role in many of our arguments. This was
introduced in [SV21]. However, before formally defining things, we first discuss the various issues
one encounters in making certain definitions and how they are addressed.

Observe that item (ii) in Definition 2.6 is suggestive of the possibility that S(y, x) itself can be
written as a limiting LPP value in the parabolic Airy line ensemble, without having to resort to
an expression which only involves a difference. This is not directly true, as P[(y)k → (x, 1)] will
diverge to ∞ as k →∞. Instead, it is conjectured (see [DOV18, Conjecture 14.2]) that there exists
a deterministic function a : R+ × N→ R such that, for every fixed y > 0, almost surely

S(y, 0) = lim
k→∞

(
P[(y)k → (0, 1)]− a(y, k)

)
. (8)

However, something of this sort appears quite difficult to prove. The main utility for us of such
an expression is that it would allow the use of reasoning about geodesics in analyzing x 7→ D(x) =
S(yb, x) − S(ya, x), for which the LPP description of Definition 2.6 is not available as it is not a
difference of the parabolic Airy sheet at different ending values with common starting point.

Imagine for a moment that we could express S(y, x) as the weight of an infinite geodesic through
the parabolic Airy line ensemble ending at (x, 1) with a formula like (8). Then, by considering the
index i of the line this geodesic is at at a location λ ≤ x, we see that it would be possible to write
S(y, x) as

S(y, x) = sup
i∈N

(
P[y → (λ, i)] + P[(λ, i)→ (x, 1)]

)
, (9)
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where P[y → (λ, i)] represents a renormalized form of the weight of the infinite geodesic ending at
(λ, i), akin to the righthand side of (8) with i replacing 1. Note that, while the first term in the
supremum is currently difficult to define directly, the second is a standard finite LPP problem. The
collection {P[y → (λ, i)] : i ∈ N} can be thought of as boundary data, with respect to which the
finite LPP problem P[(λ, i)→ (x, 1)] is considered.

The crucial observation, however, is that even in the absence of (8), equation (9) is also useful for
analyzing D, for the expressions for both S(ya, x) and S(yb, x) involve the same finite LPP problems
(though with differing boundary data).

Thus it remains to look for a well-defined quantity that can take the place of P[y → (λ, i)] in the
above formula and play the role of boundary data. The problem with defining P [y → (λ, i)] directly
was that P[(y)k → (λ, i)] diverges to infinity and we do not currently have a statement of the form
(8) that would have allowed us normalize the latter by a quantity like a(y, k) to obtain a well defined
limit.

To get around this, with a device similar in spirit to how differences were considered in Definition
2.6, [SV21] considered the quantity

P[(y)k → (λ, i)]− P[(y)k → (λ, 1)]. (10)

Owing to the fact that the starting points are the same, this quantity’s limit can be shown to exist
more easily, and it is finite. This is essentially because the finite geodesics corresponding to the two
terms share the same path from their starting point to a certain height, i.e., coalesce, in a uniform
way, only to separate at a unit order distance away from the destination points (λ, 1) and (λ, i).
This makes the difference of these geodesics’ weights be of unit order.

Thus the difference in (10) is essentially an LPP problem from a random point, say the point of
separation whose depth, as mentioned, is uniformly bounded in k.

In spite of the issues with defining its weight directly, the notion of an infinite geodesic through
P can in fact be made precise, and this is the approach [SV21] adopts. They do this by carefully
considering the limit of the finite geodesics mentioned in the previous paragraph. We shall not
require that and choose simply to work with finite LPP problems with boundary data, as it avoids
some of the technical issues in defining the infinite geodesic. However, we do make use of a few
results of [SV21] which are proved via arguments involving infinite geodesics in order to ensure the
existence of the boundary data and that it satisfies a relation involving S as in (9) which will be
discussed next.

We now introduce the precise objects. We fix λ ∈ R for the rest of this section and, for i ∈ N, define

aλi = lim
k→∞

(
P
[
(ya)k → (λ, i)

]
− P

[
(ya)k → (λ, 1)

]
+ S(ya, λ)

)
bλi = lim

k→∞

(
P
[
(yb)k → (λ, i)

]
− P

[
(yb)k → (λ, 1)

]
+ S(yb, λ)

)
.

(11)

(The term S(y, λ) allows a formula like (9), see Lemma 2.8 below.) It is proved in [SV21, Theorem
3.7] that, for λ = 0 and every i ∈ N, these limits exist and are finite almost surely; in fact, there
exists a random integer Ki (which corresponds to the depth at which the geodesics from (y)k to
(λ, i) and (λ, 1) coalesce) such that the limiting values in (11) are achieved for all k ≥ Ki.

While [SV21] states the existence of the limits (11) only for λ = 0, their argument applies verbatim
for any fixed λ ∈ R.

Next, we define some notation for the finite LPP value term in (9). Recall from (3) the functions
Pλi�1 : [0,∞)→ R given by

Pλi�1(x) = P[(λ, i)→ (λ+ x, 1)]. (12)

The following lemma is the rigorous analogue of (9) with the boundary data {aλi }i∈N and {bλj }j∈N.

It was proved in [SV21], again in the λ = 0 case, but the argument applies to λ ∈ R.
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Lemma 2.8 (Lemma 3.10 of [SV21]). Fix λ ∈ R. For all x ≥ 0,

S(ya, λ+ x) = sup
i∈N

{
aλi + Pλi�1(x)

}
S(yb, λ+ x) = sup

j∈N

{
bλj + Pλj�1(x)

}
.

(13)

Further, the supremums are almost surely achieved at finite values of i and j.

That the supremums in (13) are attained will be important for us, and we will need to understand
properties of the supremum-achieving indices. This will require arguments involving the geometry
of the geodesics for the finite LPP problems encoded by Pλi�1, and the next section is devoted to
developing these arguments.

2.4. Geometry of geodesics. For λ ∈ R fixed and x ≥ 0, let iλ(x) be the minimum i which
achieves the supremum in the first equation of (13), and jλ(x) be defined similarly for the second
equation. We will need the following properties.

Lemma 2.9. The following hold almost surely: (i) iλ(x) ≤ jλ(x) for all x ≥ 0, (ii) iλ and
jλ are left-continuous non-decreasing functions, and (iii) there exists (random) ε > 0 such that
iλ(x) = jλ(x) = 1 for all x ∈ [0, ε].

The intuition behind Lemma 2.9 is that iλ(x) and jλ(x) should be thought of as the line index
at λ of the infinite geodesic from ya to (λ+ x, 1) and yb to (λ+ x, 1) respectively. Since ya < yb,
by planarity, the first infinite geodesic should be to the left of the second, which is encoded by (i)
above. Similarly, as x increases, the geodesic corresponding to it should move to the right, which is
encoded by (ii). The reason behind (iii) is an almost surely strict monotonicity property enjoyed by
the sequences {aλi }i∈N and {bλj }j∈N.
The weaker version, namely that the boundary data satisfy aλi+1 ≤ aλi and bλi+1 ≤ bλi , is in fact
immediate from the inequality P [(ya)k → (λ, i+ 1)] ≤ P [(ya)k → (λ, i)] for all k. The latter follows
by considering the geodesic corresponding to the lefthand side and extending it to jump to line i at
the last instant. The extended path is in the set of paths that P [(ya)k → (λ, i)] is maximizing over,
which gives the inequality. To show that it is almost surely strict we will make use of the Brownian
Gibbs property, the first of many times in this paper.

Lemma 2.10. Almost surely, aλi > aλi+1 and bλj > bλj+1 for every i, j ∈ N.

Proof. We give the proof for aλi as that for bλi is identical. Let Ki be the random constant introduced
after the definition (11) of aλi and bλi . Then writing out their definition, we see that the inequality
aλi > aλi+1 is implied if we show that, almost surely, for all k ≥ Ki,

P[(ya)k → (λ, i)] > P[(ya)k → (λ, i+ 1)]. (14)

Consider the probability one event Ω that, for each i ∈ N, the function

x 7→
(
Pi(λ− x)− Pi(λ)

)
−
(
Pi+1(λ− x)− Pi+1(λ)

)
, (15)

defined for x ∈ [0, 1], is strictly positive on a sequence of points {xim}m∈N such that xim < λ for all
i,m ∈ N and limm→∞ x

i
m = λ for all i ∈ N. That this event, to be denoted by Ω, has probability one

follows by using the absolute continuity of the displayed function to Brownian motion of rate four
by the same argument as in Corollary 2.5; Brownian motion, of course, has the required property.
We will show that (14) holds on Ω for all i, k ∈ N.

Fix k ∈ N. Let πk�i be the geodesic from (ya)k to (λ, i). We claim that, on Ω, it holds that
πk�i(λ

−) = i for each i ∈ N, i.e., the geodesic does not jump to its destination line at the last instant.
For suppose that πk�i(λ

−) = j > i. Note that j is finite since we are considering the geodesic from
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(ya)k and hence j ≤ k. The argument now is to construct, on this event, a path which has weight
greater than πk�i. Let (λ− ε, λ) be an interval on which πk�i = j, and let x0 ∈ (λ− ε, λ) be such
that (15) with i = j − 1 is positive at x0; such a point exists by the definition of Ω. Consider the
modified path π′ which is πk�i(x) for x < x0, equals j − 1 for x ∈ (x0, λ), and is i at x = λ. By our
choice of x0, the weight of π′ exceeds that of πk�i, which is a contradiction.

Thus we know that for any given i, the geodesic πk�i+1 lies on i+ 1 for a short interval (λ− ε, λ].
Now consider a point x0 < λ close to λ such that πk�i+1(x0) = i+ 1 and such that (15) is positive
at x0. We can do a similar path construction as described in the previous paragraph to find a path
which agrees with πk�i+1 till x0, and then equals i on [x0, λ]; this is a path from (ya)k to (λ, i)
whose weight is greater than P[(ya)k → (λ, i+ 1)], and so we get (14). This completes the proof of
Lemma 2.10. �

However, we will not need the monotonicity of {aλi }i∈N or {bλi }i∈N to prove parts (i) and (ii)
of Lemma 2.9. Instead, we will require the monotonicity of the difference, i.e., that we have
aλi+1 − bλi+1 ≤ aλi − bλi , which is a consequence of a simple planarity argument that we record next.

Lemma 2.11 (Crossing lemma). Let f : N× R→ R be any sequence of functions. Let n1 ≥ m1,
n2 ≥ m2, n1 ≤ n2, and m1 ≤ m2. Also let y1 ≤ x1, y2 ≤ x2, x1 ≤ x2, and y1 ≤ y2. Then we have

f [(y1, n1)→ (x1,m1)] + f [(y2, n2)→ (x2,m2)] ≥ f [(y1, n1)→ (x2,m2)] + f [(y2, n2)→ (x1,m1)].

This lemma has appeared many times in the LPP literature, see for instance [DOV18, BBS20, CLP19].
See also Figure 4 for a visual aid for the proof.

(y2, n2)

(y1, n1)

(x2,m2)

(x1,m1)

(z, `)

Figure 4. An illustration of a choice of starting and ending points which ensures, by
planarity, that the geodesics between those points must intersect. The intersection,
depicted by a square, is at (z, `). By following the brown geodesic from (y2, n2) to
(z, `), and then following the green geodesic from (z, `) to (x2,m2), we obtain a path
from (y2, n2) to (x2,m2) whose weight can be at most f [(y2, n2) → (x2,m2)], and
similarly for from (y1, n1) to (x1,m1).

Proof of Lemma 2.11. By the positioning of the points assumed and planarity, we have that any
geodesic from (y1, n1) to (x2,m2) must cross any geodesic from (y2, n2) to (x1,m1) at some point
(z, `), with z ∈ [y2, x1] and m2 ≤ ` ≤ n1. This implies

f [(y1, n1)→ (x2,m2)] + f [(y2, n2)→ (x1,m1)] = f [(y1, n1)→ (z, `)] + f [(z, `)→ (x2,m2)]

+ f [(y2, n2)→ (z, `)] + f [(z, `)→ (x1,m1)].

But we have that f [(y1, n1)→ (z, `)] + f [(z, `)→ (x1,m1)] ≤ f [(y1, n1)→ (x1,m1)] as the lefthand
side is the weight of a particular up-right path from (y1, n1) to (x1,m1). We have a similar
inequality with y2, n2, x2,m2. Applying these inequalities to the last display completes the proof of
Lemma 2.11. �
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Corollary 2.12. Suppose j ≥ i. Then we have bλj − aλj ≥ bλi − aλi .

Proof. Recalling the definitions (11) of aλi and bλj , it is enough to show that, for all k ∈ N,

P[(yb)k → (λ, j)]− P[(ya)k → (λ, j)] ≥ P[(yb)k → (λ, i)]− P[(ya)k → (λ, i)]

and then take the limit as k →∞. This last inequality is an immediate consequence of Lemma 2.11
since ya ≤ yb implies (ya)k ≤ (yb)k. �

Remark 2.13. It is not the case that bλj − aλj > bλi − aλi almost surely, i.e., strict inequality does
not always hold, though it may hold with positive probability. Indeed, observe from the proof of
Lemma 2.11 that equality holds in that lemma when the geodesic from (y1, n1) to (x1,m1) coalesces
with the geodesic from (y2, n2) to (x2,m2), i.e, when those two geodesics are not disjoint. This does
occur for finite geodesics from (ya)k to (yb)k in P with positive probability, and the coalescence
asserted via the existence of Ki in the definition (11) of aλi and bλi implies that equality can hold in
the limit as k →∞ as well with positive probability.

The outstanding proof of Lemma 1.1 is also an immediate consequence of Lemma 2.11:

Proof of Lemma 1.1. We have to show that S(yb, x1)− S(ya, x1) ≤ S(yb, x2)− S(ya, x2) whenever
x1 ≤ x2, i.e.,

S(yb, x2) + S(ya, x1) ≥ S(yb, x1) + S(ya, x2).

The analogous inequality for Brownian LPP follows from Lemma 2.11, and the convergence of
Brownian LPP to the parabolic Airy sheet (Theorem 2.7) implies the displayed inequality. �

Now we turn to the proof of Lemma 2.9 on the ordering and monotonicity properties of iλ and jλ.
Based on the intuition in terms of planarity of infinite geodesics explained after Lemma 2.9, the
proof idea for each property is to show that assuming the contrary leads to a contradiction between
the definitions of i and j as maximizers and the relations imposed by planarity via Corollary 2.12.

Proof of Lemma 2.9. We start with (i). Suppose to the contrary that there is an x∗ ≥ 0 such that
iλ(x∗) > jλ(x∗). Let us for shorthand call these values i and j. Then,

aλi + Pλi�1(x
∗) > aλj + Pλj�1(x

∗)

bλj + Pλj�1(x
∗) ≥ bλi + Pλi�1(x

∗);

the first is a strict inequality since i = iλ(x∗) is the minimum index which achieves the supremum
in (13) and we have assumed i > j. The above pair of inequalities implies that aλi − bλi > aλj − bλj ,
which contradicts Corollary 2.12.

Next we turn to (ii). The proof is the same for both iλ and jλ and we show here that iλ is
left-continuous and non-decreasing. We start with showing that iλ is non-decreasing.

Again to the contrary, suppose we have x1 < x2 with iλ(x1) > iλ(x2). Let i1 = iλ(x1) and i2 = iλ(x2)
so that i1 > i2. Then,

aλi1 + Pλi1�1(x1) > aλi2 + Pλi2�1(x1)

aλi2 + Pλi2�1(x2) ≥ aλi1 + Pλi1�1(x2);

again the first inequality is strict since i1 is the minimum index which achieves the supremum in
(13). These two inequalities combined imply that

Pλi1�1(x1) + Pλi2�1(x2) > Pλi1�1(x2) + Pλi2�1(x1),

which is equivalent to

P[(λ, i1)→ (λ+ x1, 1)] + P[(λ, i2)→ (λ+ x, 1)]
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> P[(λ, i1)→ (λ+ x2, 1)] + P[(λ, i2)→ (λ+ x1, 1)];

but since i1 > i2 and x1 < x2, this contradicts Lemma 2.11.

Now we turn to showing iλ is left-continuous. Left-continuity is a consequence of the fact that
aλi +Pλi�1(x) is a continuous function of x for each i ∈ N and iλ(x) is defined as the minimum index
which achieves the supremum in (13). Indeed, suppose that limx↑x∗ i

λ(x) = i∗. This implies that

aλi∗ + Pλi∗�1(x) ≥ aλi + Pλi�1(x)

for all i 6= i∗ and x ∈ [x∗− ε, x∗) with ε > 0 sufficiently small, since, for x in this interval, iλ(x) = i∗.
Taking the limit of x ↑ x∗ shows that the displayed inequality also holds for x = x∗. Since iλ(x∗) is
the minimum index achieving the supremum in (13), we have that iλ(x∗) ≤ i∗. But the monotonicity
of iλ implies iλ(x∗) ≥ i∗, which completes the proof of part (ii) of Lemma 2.9.

For part (iii), observe from Lemma 2.10 that aλi > aλi+1 for each i ∈ N almost surely. For δ > 0, let

Mδ be such that iλ(1) ≤ Mδ with probability at least 1− δ. On this event, we know iλ(x) ≤ Mδ

for all x ∈ [0, 1] by the monotonicity of iλ. We pick ε > 0 such that a1 + Pλ1�1(x) ≥ ai + Pλi�1(x)
for all x ∈ [0, ε] and i ∈ N, which is possible by the strict inequalities of aλi , since Pλi�1(0) = 0,
and the uniform continuity of {Pλi�1 : i ∈ J1,MδK} on [0, 1]. This implies that iλ(x) = 1 for all
x ∈ [0, ε]. Here ε was defined on an event with probability at least 1 − δ. Taking δ → 0 along a
countable sequence, and defining ε > 0 on each resulting event, completes the proof of item (iii) of
Lemma 2.9. �

3. Absolute continuity with respect to Brownian local time

In this section we identify the processes which will play the role of the patch functions {Yk}k∈Z in
Definition 1.3 and prove that they are absolutely continuous on compact intervals away from zero
to Brownian local time; see Proposition 3.3. We start by formally defining Brownian local time (at
zero), which, heuristically, measures the amount of time Brownian motion spends at the origin.

Definition 3.1 (Brownian local time). Let B : [0,∞)→ R be a one-dimensional Brownian motion
of rate σ2 started at the origin. The associated Brownian local time at zero L : [0,∞)→ [0,∞) of
rate σ2 is defined as

L(t) = lim
ε↓0

1

2ε

∫ t

0
1−ε<B(s)<ε ds.

In our arguments, we will generally relate last passage values to the running maximum process
of various processes which are absolutely continuous to Brownian motion. We move from these
running maximum processes to the local time process of Brownian motion via the famous identity
of Lévy; see for example [MP10, Theorems 6.16 and 7.38].

Proposition 3.2 (Lévy’s identity). Let B : [0,∞)→ R be Brownian motion of rate σ2 started at
the origin. Let L : [0,∞)→ [0,∞) be its associated local time at zero and M : [0,∞)→ [0,∞) be
its running maximum process, i.e., M(t) = sups≤tB(s). Then (L, |B|) and (M,M −B) are equal
in law as processes on [0,∞).

We will be making many absolute continuity statements in this section, and we introduce some
convenient notation and terminology to streamline this. For two probability measures µ1 and µ2 on
a measure space, µ1 � µ2 will denote that µ1 is absolutely continuous with respect to µ2. We will
often abuse notation and, for random variables X1 and X2, say that X1 � X2 to mean that the
distributions of X1 and X2 satisfy the corresponding relation; obviously, the joint distribution of X1

and X2 has no relevance to the statement. When for two processes X and Y defined on [0,∞) we
have that X|[ε,T ] � Y |[ε,T ] for every 0 < ε < T , we will sometimes say that X is locally absolutely
continuous away from zero to Y .
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In this section too we fix λ ∈ R, and we recall the definition of Pλi from (12). Finally, here and in
the rest of this section, a continuous function f : [0,∞)→ R is said to have a point of increase at
the origin if f(x) > f(0) for all x > 0.

The goal of this section is to prove the following proposition.

Proposition 3.3. Let i < j. There is a process X : [0,∞)→ R with X|[ε,T ] � B|[ε,T ] for all 0 <

ε < T with B a Brownian motion of rate four, such that (Pλj�1−Pλi�1)(t) = max0≤s≤tX(s). Further,
(Pλj�1 − Pλi�1)|[ε,T ] � L|[ε,T ], where L is Brownian local time of rate four. Finally, Pλj�1 − Pλi�1
almost surely has a point of increase at the origin.

Here we consider a restriction to [ε, T ] as we expect the processes to exhibit singular behaviour “at”
the origin; we will say more about this shortly in Remark 3.11.

The following is an overview of the proof of Proposition 3.3. We start with the environment given
by {Pλ` (·) : ` ∈ J1, jK} where the latter was defined in (3).

As outlined in Section 1.4.3, we make multiple use Pitman transforms which we formally define next.
For continuous functions f1, f2 : [0,∞)→ R with f1(0) = f2(0) = 0, define the Pitman transform
PT(f1, f2) : [0,∞)→ R2 by(

PT(f1, f2)
)
1
(x) = f [(0, 2)→ (x, 1)]

= f1(x) + max
0≤s≤x

(f2(s)− f1(s)) ;(
PT(f1, f2)

)
2
(x) = f1(x) + f2(x)− f [(0, 2)→ (x, 1)]

= f2(x)− max
0≤s≤x

(f2(s)− f1(s)) .

(16)

Observe that the first component is nothing but the solution of the LPP problem over the two
lines (f1, f2); this gives a hint of an important fact that we rely on, namely that composing Pitman
transforms in particular ways on an environment of k curves gives the LPP value across the k curves.

In fact, and more precisely, there are many sequences of Pitman transforms which, when applied to
adjacent curves within the environment of k curves P1, . . . ,Pk, take the original environment into a
new sequence of k curves, such that the new top curve is the last passage value Pλk�1. An important
idea of Proposition 3.3 is to find a sequence of Pitman transforms which have the property that,
when applied to the environment, they yield an ensemble of lines with the top line being Pλi→1, and,
on applying a final Pitman transform to the top two lines, turns the top line into Pλj→1.

This last line along with (16) gives a representation of Pλj�1 − Pλi�1 as the running maximum of

a complicated third process X. The form of (16) suggests that X will be the difference of two
processes which, by the Brownian Gibbs property, are plausibly jointly absolutely continuous to
independent rate two Brownian motions. This will allow us to compare X to rate four Brownian
local time.

However, we will in fact only make claims about local absolute continuity away from zero, i.e, that
X|[ε,T ] � B|[ε,T ] for all 0 < ε < T (with B a rate four Brownian motion), and, similarly, that this

implies that (Pλj�1 − Pλi�1)|[ε,T ] � L|[ε,T ] for all 0 < ε < T .

Thus we will need to know that applying Pitman transforms to a pair of processes which are locally
absolutely continuous away from zero to a pair of independent Brownian motions preserves this
property. This is Lemma 3.5. As a preliminary step, we will need to show that the same occurs when
the transform is applied to independent Brownian motions; this is Lemma 3.4. That the running
maximum of a process which is locally absolutely continuous away from zero to Brownian motion is
itself locally absolutely continuous away from zero to Brownian local time is Lemma 3.6. These
three statements and their proofs comprise Section 3.1. Then in Section 3.2 we prove Proposition 3.3
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according to the above outline, after recalling the details of which sequences of Pitman transforms
yield the top curve as the LPP function.

3.1. Absolute continuity properties of Pitman transforms. To prove our claims about
absolute continuity to Brownian local time or to Brownian motion on intervals only away from
zero, since the Pitman transform involves the full function from zero onwards in the form of the
maximizations in (16), it will be convenient to have a form of PT which excludes behaviour of the
input functions near the origin.

To this end, for δ ≥ 0, we define a truncated Pitman transform PTδ(f1, f2) : [δ,∞) → R2 by
replacing the condition 0 ≤ s ≤ x over which the maximizations are done in (16) by the condition
δ ≤ s ≤ x, i.e., (

PTδ(f1, f2)
)
1
(x) = f1(x) + max

δ≤s≤x
(f2(s)− f1(s))(

PTδ(f1, f2)
)
2
(x) = f2(x)− max

δ≤s≤x
(f2(s)− f1(s)) .

The δ = 0 case gives back the original Pitman transform.

Our first lemma says that the truncated Pitman transform of independent Brownian motions is
locally absolutely continuous away from zero to independent Brownian motions.

Lemma 3.4. Let B1, B2 : [0,∞)→ R be independent rate two Brownian motions, and 0 ≤ δ < ε < T .

Then PTδ(B1, B2)|[ε,T ] � (B1, B2)|[ε,T ].

A special case of this statement where δ = 0 and (PT(B1, B2))1 is compared to a single Brownian
motion is proven in [SV21, Lemma 4.1], and our proof is similar.

Proof of Lemma 3.4. Observe that we can write PTδ(B1, B2) as follows:(
PTδ(B1, B2)

)
1
(x) = B1(x)−B1(δ) + max

δ≤s≤x

([
B2(s)−B2(δ)

]
−
[
B1(s)−B1(δ)

])
+B2(δ)(

PTδ(B1, B2)
)
2
(x) = B2(x)−B2(δ)− max

δ≤s≤x

([
B2(s)−B2(δ)

]
−
[
B1(s)−B1(δ)

])
+B1(δ).

This implies, by the Markov property of Brownian motion, that

PTδ(B1, B2)(·) d
= PT(B1, B2)(· − δ) +N,

where the equality in distribution is as processes on [δ,∞), and N = (B2(δ), B1(δ)) is a random
element of R2 whose components are independent normal random variables of mean zero and
variance 2δ which are also independent of B1(·)−B1(δ) and B2(·)−B2(δ) as processes on [δ,∞).
Now, it is sufficient to show that PT(B1, B2)(· − δ)|[ε,T ] � (B1, B2)|[ε,T ] for all δ < ε < T , because
of the independence of N and since (B1(ε), B2(ε)) is absolutely continuous with respect to Lebesgue
measure on R2.

So we now show that, for any η > 0, PT(B1, B2)|[η,T ] � (B1, B2)|[η,T ]. Note that we have adopted
an implicit relabeling of T in the domain of PT(B1, B2), and translated the domain of (B1, B2) so
that the domains of both objects on which we do the comparison are the same. The change in
domain of (B1, B2) is inconsequential as it is easy to see that (B1, B2)|[η1,T ] is mutually absolutely
continuous with (B1, B2)|[η1+η2,T+η2] for any η1, η2 > 0.

That PT(B1, B2)|[η,T ] � (B1, B2)|[η,T ] follows by recalling that PT(B1, B2) is 2-level Dyson Brownian
motion (of rate two), which has the distribution of two independent Brownian motions of rate
two conditioned to not intersect (with the singular conditioning at the origin made precise via
a Doob h-transform [Gra99]). The explicit entrance law of Dyson Brownian motion implies that
PT(B1, B2)(η) is absolutely continuous to Lebesgue measure on the quadrant {(x, y) ∈ R2 : x ≥ y},
and the transition probability formula shows that, conditionally on PT(B1, B2)(η), PT(B1, B2)|[η,T ]
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has the law of two independent Brownian motions of rate two with appropriate starting points
conditioned not to intersect. The latter is absolutely continuous to the law of two independent
Brownian motions of rate two on [δ, T ] with the same starting points since they are almost surely
distinct. Together, this implies that PT(B1, B2)|[η,T ] � (B1, B2)|[η,T ] and completes the proof of
Lemma 3.4. �

The next lemma uses the previous one to say that if the input functions to the Pitman transform
are only known to be absolutely continuous away from zero to independent Brownian motions, the
same will be true of the output functions. The form of this lemma allows it to be applied iteratively
in an induction argument, as we will do in the proof of Proposition 3.3.

Lemma 3.5. Let B1, B2 : [0,∞) → R be independent rate two Brownian motions. Suppose
X1, X2 : [0,∞) → R satisfy X1(0) = X2(0) = 0 and are such that, almost surely, X2 − X1 has
positive maximum over every neighbourhood of the origin. Further assume that, for every 0 < ε < T ,
(X1, X2)|[ε,T ] � (B1, B2)|[ε,T ]. Then, for every 0 < ε < T ,

PT(X1, X2)|[ε,T ] � (B1, B2)|[ε,T ].

The basic idea of the proof is to use the hypothesis that the origin is not the maximizer of X2 −X1

in any neighbourhood to equate PT(X1, X2) and PTδ(X1, X2) for a small random δ > 0. Then

PTδ(X1, X2) � PTδ(B1, B2) (which need not be true when δ = 0) and we can make use of
Lemma 3.4.

Proof of Lemma 3.5. Fix 0 < ε < T . For notational convenience, let Y ε : [ε, T ] → R2 be
PT(X1, X2)|[ε,T ]. Next, let A ⊆ C([ε, T ]) (recall that the latter denotes the set of all continu-
ous functions on [ε, T ]) be a measurable event such that

P
(

(B1, B2)
∣∣
[ε,T ]
∈ A

)
= 0. (17)

We must show that
P
(
Y ε ∈ A

)
= 0. (18)

Let En be defined by (where max∅ = −∞)

En =

{
max
0≤s≤x

(X2(s)−X1(s)) = max
n−1≤s≤x

(X2(s)−X1(s)) for all x ∈ [ε, T ]

}
.

Let E = ∪∞n=2dε−1eEn. We have that

P
(
Y ε ∈ A

)
≤

∞∑
n=2dε−1e

P
(
Y ε ∈ A,En

)
+ P

(
Y ε ∈ A,Ec

)
. (19)

We will show that each summand is zero. First we deal with the term containing Ec. On Ec, the
unique maximizer of X2(s)−X1(s) on s ∈ [0, ε] is attained at s = 0, where X2 −X1 equals zero.
Therefore by our hypothesis that the maximum on [0, ε] is positive, P(Ec) = 0.

Now we handle the terms in the summation in (19). It holds on En that Y ε = PT1/n(X1, X2)
on [ε, T ]. Since PT1/n(X1, X2) is a function of (X1, X2)|[n−1,T ], by our hypothesis it is absolutely

continuous with respect to PT1/n(B1, B2). Now since ε > n−1, Lemma 3.4 with δ = n−1 asserts
that PT1/n(B1, B2)|[ε,T ] � (B1, B2)|[ε,T ]. This, along with (17), implies that the summand of (19)
indexed by n equals zero, completing the proof of Lemma 3.5. �

Finally, while the previous two lemmas were regarding absolute continuity to Brownian motion, we
will need to make a comparison to Brownian local time. This is done in the form of comparing the
running maximum of a process which is locally absolutely continuous away from zero to Brownian
motion to the running maximum of Brownian motion.
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Lemma 3.6. Let B be a Brownian motion of rate σ2. Suppose X : [0,∞) → R is continuous
and such that X|[ε,T ] � B|[ε,T ] for every 0 < ε < T , X(0) = 0, and X almost surely has positive
maximum over every neighbourhood of zero. Let MB(t) = max0≤s≤tB(s) and MX(t) be defined
similarly. Then, for every 0 < ε < T , MX |[ε,T ] �MB|[ε,T ].

Because here we compare with running maximum of Brownian motion instead of Brownian motion
itself, the earlier trick of isolating the origin and considering the maximization away from it, as
used in Lemma 3.5, does not work; essentially because maxε≤s≤tB(s) is not absolutely continuous
to max0≤s≤tB(s) (both as processes of t ∈ [ε, T ]). For this reason, the proof of Lemma 3.6 is
technically slightly more subtle. Instead of isolating the origin, we first perform a “surgery” near
the origin to get a process which is absolutely continuous to B on the entire interval [0, T ].

Proof. Let η > 0. Define Xη : [0,∞)→ R by

Xη(x) =

{
Bbr,η(x) 0 ≤ x ≤ η
X(x) x ≥ η,

where, conditionally on X|[η,∞), B
br,η is an independent Brownian bridge from (0, 0) to (η,X(η)).

We may couple Xη such that Bbr,η is constructed for all η > 0 by scaling and affine shifting of a
single independent Brownian bridge from (0, 0) to (1, 0).

We claim that Xη � B as processes on [0, T ]. Indeed, this can be seen by decomposing the Brownian
motion path on [0, T ] in a similar way as the definition of Xη. First, sample a Brownian motion

B̃ on [0, T ] and retain the portion on [η, T ]; by hypothesis, X|[η,T ] is absolutely continuous to the
law of this portion, i.e., the law of B̃|[η,T ]. Then, conditionally on B̃|[η,T ], sample an independent
Brownian bridge Bbr,η with endpoints (0, 0) and (η, B̃(η)). The resulting process on [0, T ] has the
law of Brownian motion. Since we have performed the same sequence of operations to obtain Xη or
B, depending on whether we started with X|[η,T ] or B|[η,T ], our claim is proved.

Now, let ε > 0 and A ⊆ C([ε, T ]) be an event such that P(MB|[ε,T ] ∈ A) = 0. We must show that

P
(
MX |[ε,T ] ∈ A

)
= 0. (20)

Let δ > 0 be given. We claim that there exists 0 < η < ε small enough such that, with probability
at least 1− δ, and for all t ∈ [ε, T ],

max
0≤s≤t

X(s) = max
0≤s≤t

Xη(s). (21)

This is essentially a consequence of continuity of X. To prove this, we first find a simpler event which
implies (21). Observe that for any η ≥ 0 (noting that Xη = X when η = 0), since Xη|[η,T ] = X|[η,T ],

max
0≤s≤t

Xη(s) = max

{
max
0≤s≤η

Xη(s), max
η≤s≤t

X(s)

}
. (22)

Since ε > η, (22) implies that (21) is equivalent to the t = ε case, i.e., to max0≤s≤εX(s) =
max0≤s≤εX

η(s). Now taking t = ε in (22), and since Bbr,η|[0,η] = Xη|[0,η] for all η > 0, we see that
(21) is implied by the event that

max

{
max
0≤s≤η

X(s), max
0≤s≤η

Bbr,η(s)

}
≤ max

η≤s≤ε
X(s). (23)

We will show that this event holds with probability at least 1− δ for η > 0 small enough.

Since X(0) = 0 and is continuous almost surely, and by our coupling of Xη across η > 0, the
lefthand side of (23) decreases to 0 almost surely as η → 0. Since the maximum of X over every
neighbourhood of zero is strictly positive, the righthand side of (23) has a strictly positive limit as
η → 0. Thus there exists η > 0 such that (21) holds with probability at least 1− δ.



COMPARISONS OF THE AIRY DIFFERENCE PROFILE TO BROWNIAN LOCAL TIME 26

Now we see that, for such an η,

P
(
MX |[ε,T ] ∈ A

)
≤ P

(
MXη |[ε,T ] ∈ A

)
+ δ = δ,

the last equality since Xη|[0,T ] � B|[0,T ] and P(MB|[ε,T ] ∈ A) = 0. Since δ was arbitrary, we have
verified (20) and proved Lemma 3.6. �

3.2. Proving Proposition 3.3. Recall that we mentioned earlier that certain sequences of Pitman
transforms, applied to an environment of k curves, results in the top most curve of the transformed
environment being the last passage value function across the original k curves. We start this section
by specifying this more precisely.

Given an environment f : J1, nK× [0,∞)→ R of n curves, we will apply the Pitman transform (PT)
to adjacent pairs, say the kth and (k + 1)st curves. We associate this application of PT with the
adjacent transposition (k k+ 1). Indeed, denote the obtained transformed environment by σ(k k+1)f ,
which is defined by (σ(k k+1)f)`(·) = f`(·) for ` 6= k, k + 1 and

(σ(k k+1)f)k(·) =
(
PT(fk, fk+1)

)
1
(·),

(σ(k k+1)f)k+1(·) =
(
PT(fk, fk+1)

)
2
(·).

A sufficient condition that a sequence of Pitman transforms results in the top curve being the
LPP value across the environment, i.e., equals x 7→ f [(0, n) → (x, 1)] can be expressed in terms
of the compositions of the associated adjacent transpositions. Indeed, suppose N =

(
n
2

)
adjacent

transpositions σ1, . . . , σN are such that σ1 ◦ · · · ◦ σN is the reverse permutation revn on J1, nK. (N
is the minimum number such that this is possible.) Then,(

(σ1 ◦ · · · ◦ σN )f
)
1
(x) = f [(0, n)→ (x, 1)],

where (σ1◦· · ·◦σN )f = σ1(σ2(· · · (σNf)) · · · ) is the environment obtained by applying the associated
Pitman transforms iteratively right to left (see [DOV18, Section 4] and the references therein, or
[BBO05]).

(Setting τ = σ1◦· · ·σk, we will at times adopt the slight abuse of notation that τf is the environment
obtained by iteratively applying the Pitman transforms associated to σ1, . . . , σk from right-to-left,
keeping in mind that in general τf is not well-defined without its expression as a particular product
of adjacent transpositions specified.)

Our previous displayed equation implies that if, for some k ≤ N , σ1, . . . , σk are adjacent transposi-
tions such that there exist N − k adjacent transpositions ρ1, . . . , ρN−k that act only on {2, . . . , n}
such that ρ1 ◦ · · · ◦ ρN−k ◦ σ1 ◦ · · ·σk = revn, then also(

(σ1 ◦ · · · ◦ σk)f
)
1
(x) = f [(0, n)→ (x, 1)], (24)

for the Pitman transforms corresponding to ρ1, . . . , ρN−k do not modify the top line.

There is a simple condition that ensures, for given σ1, . . . , σk, that there exist N − k more adjacent
transpositions whose left-composition with the original k is revn. Let us recall the inversion number
Inv(σ) of a permutation σ on J1, nK, defined as

Inv(σ) = #
{

(i, j) ∈ J1, nK2 : i < j and σ(i) > σ(j)
}
.

Then the mentioned condition is the following lemma.

Lemma 3.7. Let σ be a permutation on J1, nK, k = Inv(σ), and N =
(
n
2

)
. Then there exists a

sequence of N − k adjacent transpositions ρ1, . . . , ρN−k such that ρ1 ◦ · · · ◦ ρN−k ◦ σ = revn.

Proof. We may assume N − k ≥ 1. It is sufficient to find a single adjacent transposition ρ such
that Inv(ρ ◦ σ) = k + 1 and then iterate. Now, since σ 6= revn, there must exist an i such that
σ−1(i) < σ−1(i+ 1). Then it is easy to check that Inv(ρ ◦ σ) = k + 1 when ρ = (i i+ 1). �
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Using this, we can obtain a simple criterion that ensures that (24) holds which will be used several
times.

Lemma 3.8. Let n ∈ N, ` ∈ J1, nK, σ1, . . . , σk be adjacent transpositions on J1, `K, and τ = σ1◦· · ·◦σk.
If Inv(τ) = k and τ(`) = 1, then

(τf)1(x) = f [(0, `)→ (x, 1)].

Proof. Let L =
(
`
2

)
. By (24), we only need to verify that there exist L− k adjacent transpositions

ρ1, . . . , ρL−k on J2, `K such that ρ1 ◦ · · · ◦ ρL−k ◦ τ = rev`. But since τ−1(1) = `, which is the
maximum possible value, the sequence of L − k adjacent transpositions defined by the proof of
Lemma 3.7 do not include (1 2). �

The main idea of the proof of Proposition 3.3 is to find a sequence of adjacent transpositions
σ1, . . . , σk satisfying the hypotheses of Lemma 3.8 such that (σ1 ◦ · · ·σk)P has top line equal to
Pλi�1 and second line, labeled B′, such that (PT(Pλi�1, B

′))1 = Pλj�1. The latter equality, with the

definition of PT from (16), implies that Pλj�1(x)− Pλi�1(x) = max0≤s≤x(B′(s)− Pλi�1(s)). If Pλi�1
and B′ are jointly locally absolutely continuous away from zero to independent Brownian motions,
then, by Lemma 3.6 and Lévy’s identity (Proposition 3.2), Pλj�1 − Pλi�1 is absolutely continuous
away from zero to Brownian local time and the proof is complete.

This joint absolute continuity of Pλi�1 and B′ to Brownian motion is essentially a result of induction
and Lemma 3.5 on the absolute continuity of the Pitman transform to independent Brownian
motions. To make certain technical aspects of the argument easier, however, we will actually do the
above after replacing the environment given by the top j lines of P with j independent Brownian
motions using the absolute continuity of the former to the latter ensured by the Brownian Gibbs
property (Corollary 2.5).

Proof of Proposition 3.3. Let T > 0. By the Brownian Gibbs property, {Pλ` (·) = P`(λ+ ·)−P`(λ) :
` ∈ J1, jK}[0,T ] is absolutely continuous with respect to j independent Brownian motions of rate
two started at the origin. Note that LPP values in P (with argument translated by λ) and in
the environment {Pλi (·) : i ∈ N} are identical, as constant vertical shifts for each function are not
seen by the increments. Thus to prove that Pλj�1(·)−Pλi�1(·) is locally absolutely continuous away
from zero with respect to rate four Brownian local time, and further that it almost surely has a
point of increase at the origin, it suffices to prove instead the same for Bλ

j�1(·)−Bλ
i�1(·), where

Bλ
`�1 : [0, T ]→ R is defined, for ` ∈ J1, jK, by

Bλ
`�1(x) = B[(λ, `)→ (λ+ x, 1)]

with B = (B1, . . . , Bj) a collection of j independent Brownian motions of rate two. That Pλj�1−Pλi�1

can be written as the running maximum of a process which is locally absolutely continuous away
from zero to Brownian motion does not logically follow from this fact holding for Bλ

j�1 −Bλ
i�1, and

we will indicate this aspect of the proof separately.

We claim that there exists a function B′ : [0, T ]→ R such that

Bλ
j�1(·) =

(
PT(Bλ

i�1, B
′)
)
1
(·) (25)

with B′ such that, for every δ > 0, (Bλ
i�1, B

′)|[δ,T ] � (B1, B2)|[δ,T ], B′(0) = 0, and B′−Bλ
i�1 almost

surely has a positive maximum over every neighbourhood of the origin. We show how to finish the
proof of local absolute continuity away from zero to Brownian local time given the claim. Using
(25), it would follow from (16) that, for x ∈ [0, T ],

Bλ
j�1(x)−Bλ

i�1(x) = max
0≤s≤x

(
B′(s)−Bλ

i�1(s)
)
. (26)
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Since (Bλ
i�1, B

′)|[δ,T ] � (B1, B2)|[δ,T ] for every δ > 0, it follows that, for every ε > 0, (B′ −
Bλ
i�1)|[ε,T ] � B|[ε,T ], where B is a Brownian motion of rate four. The same holds for the analogue

of B′ −Bλ
i�1 in the original environment defined by P , and thus we may take X in the statement of

Proposition 3.3 to be this analogue of B′ −Bλ
i�1.

By Lemma 3.6, (26) is locally absolutely continuous away from zero to the running maximum of
B. By Lévy’s identity (Proposition 3.2), the latter process has the same distribution as Brownian
local time of rate four. So Bλ

j�1 −Bλ
i�1 is locally absolutely continuous away from zero to Brownian

local time of rate four. Since we claim B′ −Bλ
i�1 almost surely has a positive maximum over every

neighbourhood of the origin, Bλ
j�1 −Bλ

i�1 has a point of increase at the origin, by (26), as required.

Thus we only need to prove the claim (25). This requires identifying a sequence of adjacent
transpositions satisfying the hypotheses of Lemma 3.8. Consider the compositions of adjacent
transpositions given by

τ1 = (1 2) ◦ (2 3) ◦ · · · ◦ (i− 2 i− 1) ◦ (i− 1 i)

τ2 = (2 3) ◦ (3 4) ◦ · · · ◦ (j − 2 j − 1) ◦ (j − 1 j);
(27)

this encodes the transpositions depicted in Figure 5.

1

i− 1
swaps

2

j − 2
swaps

...

...

1

2

i

j

Figure 5. The sequence of adjacent transpositions τ2 ◦ τ1 is depicted. First, for
τ1, lines from the ith upwards are iteratively swapped (i.e., the Pitman transform is
applied) till the top two are swapped. Then, for τ2, the same is done from the jth

line upwards till the second and third lines are swapped.

Observe that Inv(τ1) = i− 1 and τ1 maps i to 1. Then by Lemma 3.8 (taking k = i− 1 and ` = i),
it follows that

(τ1B)1(λ+ x) = Bλ
i�1(x).

We define B′ by B′(x) =
(
(τ2 ◦ τ1)B

)
2
(λ+ x) and claim that this satisfies (25), the independence

condition following that equation, and the condition of having a positive maximum (for B′ −Bλ
i�1)

over every neighbourhood of the origin.

First note that
(
(τ2 ◦ τ1)B

)
1
(λ + •) = (τ1B)1(λ + •) = Bλ

i�1. Since the righthand side of (25) is
the result of applying the Pitman transform to the top two lines of (τ2 ◦ τ1)B, we now verify that
(1 2) ◦ τ2 ◦ τ1 satisfies the hypotheses of Lemma 3.8 with ` = j.

We see that (1 2) ◦ τ2 ◦ τ1 in the given representation consists of 1 + (j − 2) + (i− 1) = j + i− 2
transpositions. Now, it is easy to check that Inv((1 2) ◦ τ2 ◦ τ1) = j + i− 2, since each transposition
increases the number of inversions by one. Finally, it is also immediate that (1 2) ◦ τ2 ◦ τ1 maps j to
1. Then applying Lemma 3.8 (with k = j + i− 2 and ` = j) verifies (25).

We next need to verify the independence condition following (25) and that B′ −Bλ
i�1 almost surely

has a positive maximum over every neighbourhood of the origin. For the first aim, we will iteratively
apply Lemma 3.5, which asserts the local absolute continuity away from zero to independent
Brownian motions of PT(X1, X2) if X1 and X2 jointly satisfy the same absolute continuity condition.
Lemma 3.5 has a hypothesis that X2 − X1 almost surely has a positive maximum over every
neighbourhood of the origin, and we need to verify that this holds at every step of applying PT
corresponding to the adjacent transpositions encoded by τ2 ◦ τ1. This task is performed by the
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following Lemma 3.9; Lemma 3.9 also implies that B′ − Bλ
i�1 has positive maximum over every

neighbourhood of the origin.

This completes the proof of the claim preceding (25) and so also the proof of Proposition 3.3, save
for the proof of Lemma 3.9. �

Lemma 3.9. Let i < j and τ1 be as in (27). Let σ = (k k + 1) ◦ · · · ◦ (i − 2 i − 1) ◦ (i − 1 i)
(with k ∈ J1, i − 1K) or σ = (k k + 1) ◦ · · · ◦ (j − 2 j − 1) ◦ (j − 1 j) ◦ τ1 (with k ∈ J2, j − 1K).
Let B = (B1, . . . , Bj) be the environment of independent Brownian motions, X1 = (σB)k−1, and
X2 = (σB)k. Then X2 −X1 almost surely has positive maximum over every neighbourhood of the
origin.

The two cases defining different forms of σ (i.e., with τ1 not present or present) correspond to the
Pitman transforms associated to the adjacent transpositions in τ2 ◦ τ1. In other words, the two cases
correspond to verifying that the process has a positive maximum over every neighbourhood of zero
at every intermediate step of the swaps on the left and right side of Figure 5 respectively.

To prove Lemma 3.9, we will need a simple scaling property of the Pitman transform; it is to have
this scaling property that we transformed to the Brownian environment instead of working in the
original parabolic Airy environment in the proof of Proposition 3.3.

Lemma 3.10. Suppose T > 0 and X1, X2 : [0, T ]→ R are random processes with X1(0) = X2(0) = 0
and which satisfy (X1, X2)(t)

d
= α−1/2(X1, X2)(αt), where α ∈ (0, 1] and the distributional equality

is as processes in t ∈ [0, T ]. Then for α ∈ (0, 1], PT(X1, X2)(t)
d
= α−1/2PT(X1, X2)(αt) again as

processes in t ∈ [0, T ].

Proof. We will show the scaling property for the first component of PT(X1, X2) as the argument
for the other component is quite similar. Recall that (PT(X1, X2))1(t) is given by(

PT(X1, X2)
)
1
(t) = X1(t) + max

0≤s≤t
(X2(s)−X1(s))

For fixed α > 0, the scaling property for (X1, X2) implies that(
PT(X1, X2)

)
1
(t)

d
= α−1/2X1(αt) + α−1/2 max

0≤s≤t
(X2(αs)−X1(αs))

= α−1/2X1(αt) + α−1/2 max
0≤s≤αt

(X2(s)−X1(s)) ,

which is clearly α−1/2PT(X1, X2)(αt). That the distributional equality holds at the level of processes
is immediate. �

Proof of Lemma 3.9. Let ρ = inf{t > 0 : X2(t) − X1(t) > 0}. We must show that ρ = 0 almost
surely. First, note that X1 and X2 are functions of B by a sequence of Pitman transforms, and that
{ρ = 0} is in the germ σ-algebra of these Brownian motions. Hence by Blumenthal’s zero-one law,
P(ρ = 0) ∈ {0, 1}. It is therefore sufficient to show that P(ρ = 0) > 0.

We note that

P(ρ = 0) = lim
t→0

P(ρ ≤ t) ≥ lim
t→0

P
(
X2(t) > X1(t)

)
= P

(
X2(T ) > X1(T )

)
,

the last equality by the scaling invariance of X1 and X2 guaranteed by Lemma 3.10 and the same
property of Brownian motion. Thus it is sufficient to show that

P
(
X2(T ) > X1(T )

)
> 0. (28)

We break into cases depending on the two cases of σ in the statement, i.e., based on whether σ
contains a composition with τ1 or not.

Case 1: τ1 not present. In this case, X1 = (σB)k−1 is a rate two Brownian motion, namely the
(k− 1)st line of B, as that has not been involved in the Pitman transforms associated to σ that have
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been performed; further, X1 is independent of X2 since X2 is a function of {B` : ` ∈ Jk, iK}. This
immediately implies (28), as X2(T ) is almost surely finite and X1(T ) is an independent Gaussian
random variable of variance 2T .

Case 2: τ1 is present. For this case we don’t have explicit independence of X1 and X2. Instead, we
will find a Brownian motion in the environment which is at most X2 and independent of X1, which
suffices.

Let Y = τ1B and σk = (k k + 1) ◦ · · · ◦ (j − 1 j), where recall k ∈ J2, j − 1K. Then X1 = (σkY )k−1
and X2 = (σkY )k. Now, Inv(σk) = j−k, the same number of adjacent transpositions making up σk.
Further, σk(j) = k. Thus, viewing the environment formed by the kth to jth lines of Y separately
and applying Lemma 3.8, we see that

X2(T ) = Y [(0, j)→ (T, k)].

This implies that X2(T ) ≥ Yj(T ) as Yj(0) = 0. Next note that Y` = B` for ` ∈ Ji+ 1, jK. Therefore
X2(T ) ≥ Bj(T ), so to show (28) it suffices to show Bj(T ) > X1(T ) with positive probability. But
Bj is independent of X1 = (σB)k−1 = (τ1B)k−1 since (τ1B)k−1 is a function of only {B` : ` ∈ J1, iK}
and i < j. Thus since X1(T ) is almost surely finite and Bj(T ) is an independent Gaussian random
variable of variance 2T , we get (28).

This completes the proof of Lemma 3.9 and so also of Proposition 3.3. �

Remark 3.11. Observe that, in Proposition 3.3, we do not claim absolute continuity with respect
to Brownian local time on [0, T ]. This is because we believe that absolute continuity in fact does
not hold on the entire interval in general with a singularity at 0.

As a first step, one might try to show that Bλ
j�1 −Bλ

i�1, the analogue of Pλj�1 −Pλi�1 in a Brownian
environment used in the proof, is not absolutely continuous to L, Brownian local time of rate four, on
[0, T ]. Using the invariance under Brownian scaling of the process to express E[(Bλ

j�1 −Bλ
i�1)(t)] as

an almost sure limit at zero of an empirical mean of the process, the lack of absolute continuity would
follow from showing that E[(Bλ

j�1 −Bλ
i�1)(1)] 6= E[L(1)] (where we may take t = 1 by Brownian

scaling).

When j = 2 and i = 1, Bλ
j�1 −Bλ

i�1 actually has the distribution of L. However, we believe that

E[(Bλ
j�1 −Bλ

i�1)(1)] 6= E[L(1)] whenever (i, j) 6= (1, 2). This follows in the case that i = 1, j > 2 by
monotonicity, as well as by a different form of monotonicity in the case Bλ

j�1 −Bλ
j−1�1 for j > 2.

The latter can be seen by observing Bλ
j�1 = PT(Bλ

1 , B
λ
j�2) and Bλ

j�2
d
= Bλ

j−1�1 and noting

(Bλ
j�1 −Bλ

j�2)(1) = Bλ
1 (1) + max

0≤t≤1

(
Bλ
j�2(t)−Bλ

1 (t)
)
−Bλ

j�2(1)

= Bλ
1 (1)−Bλ

j�2(1) + max
0≤t≤1

{
Bλ

2 (t) + max
0≤s≤t

(
Bλ
j�3(s)−Bλ

2 (s)
)
−Bλ

1 (t)

}
= Bλ

1 (1)−
(
Bλ

2 (1) + max
0≤t≤1

(
Bλ
j�3(t)−Bλ

2 (t)
))

+ max
0≤t≤1

{
Bλ

2 (t) + max
0≤s≤t

(
Bλ
j�3(s)−Bλ

2 (s)
)
−Bλ

1 (t)
}

≤ Bλ
1 (1)−Bλ

2 (1)− max
0≤t≤1

(
Bλ
j�3(t)−Bλ

2 (t)
)

+ max
0≤t≤1

(
Bλ

2 (t)−Bλ
1 (t)

)
+ max

0≤s≤1

(
Bλ
j�3(s)−Bλ

2 (s)
)

= Bλ
1 (1)−Bλ

2 (1) + max
0≤t≤1

(
Bλ

2 (t)−Bλ
1 (t)

)
=
(
PT(Bλ

1 , B
λ
2 )
)
(1)−Bλ

2 (1)

(29)
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where in the second and third equalities we use that Bλ
j�2 = PT(Bλ

2 , B
λ
j�3). Finally, note that

PT(Bλ
1 , B

λ
2 ) = Bλ

2�1 and Bλ
2

d
= Bλ

1 ,

which, together with the above, implies that E[(Bλ
j�1 − Bλ

j−1�1)(1)] < E[L(1)]; this inequality is

strict since the inequality in (29) can easily be seen to be strict with positive probability, using the
independence of the Brownian motions and the fact that maxt(f(t)+g(t)) < maxt(f(t))+maxt(g(t))
holds whenever the set of maximizers of f and that of g are disjoint. Note also that the inequality
in (29) is not almost surely strict, which is essentially because t 7→ max0≤s≤t(B

λ
j�3(s)−Bλ

2 (s)) is

non-decreasing and so can have its set of maximizers on [0, 1] be [ε, 1] with positive probability for
any ε > 0.

It is not so easy to show the inequality E[(Bλ
j�1 −Bλ

i�1)(1)] 6= E[L(1)] for the remaining cases, and
the issue can be glimpsed by the fact that

E[(Bλ
j�1 −Bλ

j−1�1)(1)] < E[(Bλ
2�1 −Bλ

1�1)(1)] < E[(Bλ
j�1 −Bλ

1�1)(1)];

i.e., a single inequality does not hold between E[(Bλ
j�1 −Bλ

i�1)(1)] and E[L(1)] for all (i, j) 6= (1, 2).
Thus monotonicity arguments alone are unlikely to yield the desired conclusion.

One intriguing possible direction is to use the distributional identity between Bλ
k�1(1) and the top

eigenvalue of the size k GUE for each fixed k; the coupling of Bλ
k�1(1) across k given by the GUE

minor process is distinct from that given by the LPP coupling here, and so may furnish a different
argument. We have not explored this avenue in detail.

4. Proofs of the patchwork quilt and Hausdorff dimension results

4.1. D is a Brownian local time patchwork quilt: proving Theorem 2. In this section we
prove a technically more precise theorem, from which Theorem 2 immediately follows. Recall the
objects involved in the definition of the Brownian local time patchwork quilt (Definition 1.3): Yk
are fabric functions, and [xk, xk+1] are endpoints of the kth patch at which the fabric functions
are stitched together after a vertical shift yk (to ensure continuity) and a horizontal shift µk. The
horizontal shift µk is needed as the weight difference profile D, the function being written as a
patchwork quilt, is defined on R, while each Yk is defined on [0,∞).

Finally, we recall the canonical filtration of the process P. In the notation of Definition 2.3, this
can be written as the family of σ-algebras Fext(k =∞, t,∞), i.e., the data of all the curves in P
before location t. We will actually need the standard right-continuous augmentation of the filtration,
which, recall, gives an “infinitesimal peak” into the future. This is defined in a more general setting
that we will need later in Remark 5.8.

W may now state our more detailed theorem.

Theorem 4.1. D is a Brownian local time patchwork quilt of rate four. In addition, adopting the
notation of Definition 1.3, we have the following properties for each k ∈ Z:

(i) µk ∈ Z almost surely.
(ii) either Yk is identically zero or there exists a process B′k : [0,∞) → [0,∞) locally abso-

lutely continuous away from zero to Brownian motion of rate four, such that Yk(t) =
max0≤s≤tB

′
k(s). In the latter case, Yk almost surely increases at the origin.

(iii) xk is a stopping time with respect to the right-continuous filtration of P.

In Proposition 3.3 we have identified a family of functions, Pλj�1 − Pλi�1 with i < j and λ ∈ R, which
are locally absolutely continuous away from zero to Brownian local time of rate four. These will
essentially play the role of the Yk after some reindexing and translations (the latter will define µk
and yk). The other task of defining {xk}k∈Z will be done using the functions iλ and jλ defined after
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Lemma 2.8; it is because these functions are only left-continuous (Lemma 2.9) that we specified
that the filtration be right-continuous in Theorem 4.1.

Proof of Theorem 4.1. We will define the functions Yk, points xk, and variables µk and yk with a
more convenient indexing, and later show that an indexing as in Definition 1.3 is possible. We will
use an extra index λ which in this proof will take values in Z.

So for λ ∈ Z, let Nλ be the number of times either iλ or jλ changes its values in [0, 1], i.e.,

Nλ = #
{
x ∈ [λ, λ+ 1) : iλ(x+ − λ) 6= iλ(x− λ) or jλ(x+ − λ) 6= jλ(x− λ)

}
. (30)

We compare the values of iλ and jλ at x+ to that at x since the functions are left-continuous from
Lemma 2.9(ii); the shift by λ is to ensure that the points in the set lie in disjoint sets for different
values of λ.

Note that since iλ and jλ take values in N and are non-decreasing, Nλ < ∞ almost surely. Let
the elements of the set in (30) be xλ1 < xλ2 < . . . < xλ

Nλ (if Nλ 6= 0), which all lie in [λ, λ + 1).
Regardless of whether Nλ = 0 or not, define xλ0 = λ and xλ

Nλ+1
= λ+ 1.

Observe that xλ0 < xλ1 by part (iii) of Lemma 2.9, which says that both iλ and jλ equal one in a
small right-neighbourhood of λ. Also, we have by definition xλ+1

0 = xλ
Nλ+1

. While Definition 1.3
requires that xk < xk+1 for each k ∈ Z, we have allowed ourselves this violation for convenience of
indexing. Such coincidences of values of xλk can trivially be removed by a change in indexing while
preserving the other properties of Definition 1.3.

That each xλ` is a stopping time with respect to the right-continuous filtration of {Pk : k ∈ N} is

immediate from the fact that iλ and jλ are left continuous. (Note that iλ(x− λ) and jλ(x− λ) are
determined by the right-continuous filtration of P at x, not x− λ.)

Now for k ∈ J0, NλK, we have by definition that iλ and jλ are constant on (xλk − λ, xλk+1 − λ]
(including the right endpoint since iλ and jλ are left-continuous from Lemma 2.9(ii)). Fixing
k ∈ J0, NλK, let these values be labeled i and j. We define, for z ≥ 0,

Y λ
k (z) = Pλj�1(z)− Pλi�1(z), (31)

where we recall the definition of Pλk�1 from (12).

By Proposition 3.3, Y λ
k satisfies condition (i) of Definition 1.3, on the absolute continuity to Brownian

local time of rate four whenever iλ(x) < jλ(x). In the other case that iλ(x) = jλ(x) (recall that
iλ(x) ≤ jλ(x) by Lemma 2.9(i)), Y λ

k ≡ 0, which is indeed locally absolutely continuous away from
zero to Brownian local time of any rate.

We next set
µλ0 = λ− 1 and µλk = λ (32)

for k ∈ J1, NλK. The definition of µλ0 is different merely to ensure that xλ0 > µλ0 as required by
Definition 1.3, since xλ0 = λ by definition. Note that, by (30) and since xλ1 > xλ0 , we have xλk > µλk
for λ ∈ Z and k ∈ J1, NλK already. Now define

yλk = bλj − aλi (33)

for k ∈ J0, NλK, with i and j as above (31).

Next, we verify that Y λ
k satisfies D(z) = Y λ

k (z− µλk) + yλk for z ∈ [xλk , x
λ
k+1], thus establishing (iii) of

Definition 1.3.

From the definitions of i and j as the constant values of iλ and jλ on (xλk − λ, xλk+1 − λ] we observe

that, for all k ∈ J0, NλK and z ∈ (xλk , x
λ
k+1],

D(z) = S(yb, z)− S(ya, z) = bλj + Pλj�1(z − λ)− aλi − Pλi�1(z − λ). (34)
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By the continuity of both sides of the last equality, the equality also holds for z = xλk . Comparing

with the definitions (31), (32), and (33) we see that D(z) = Y λ
k (z − µλk) + yλk for all k ∈ J1, NλK and

z ∈ [xλk , x
λ
k+1]. So item (iii) of Definition 1.3 has been verified when k ∈ J1, NλK.

Next we consider the k = 0 case. We know from Lemma 2.9(iii) there exists a small random
interval [0, ε] such that iλ(x) = jλ(x) = 1 for all x ∈ [0, ε] and all λ ∈ Z. Thus, from (31), Y λ

0

must be identically zero. Thus in this case we may replace z − λ by z − (λ − 1) in both of the
instances on the righthand side of (34) and the equality still holds for z ∈ [xλ0 , x

λ
1 ]. This verifies

that D(z) = Y λ
0 (z − µλ0) + yλ0 when z ∈ [xλ0 , x

λ
1 ].

Now we let λ vary over elements of Z and consider the collection of random functions {Y λ
k : λ ∈

Z, k ∈ J0, NλK} and random points {xλk : λ ∈ Z, k ∈ J0, NλK}. Note that, since Nλ < ∞ for all

λ ∈ Z almost surely, it holds that only finitely many xλk lie in any compact set K ⊆ R. This verifies
item (ii) of Definition 1.3.

Finally we reindex these collections by Z instead of a subset of Z2 (namely,
⋃
λ∈Z{λ} × J0, NλK).

Item (i) of Theorem 4.1 is true by the definition (32) of µλk and (ii) follows from Proposition 3.3 and
(31). This completes the proof of Theorem 2. �

Remark 4.2. Here we briefly discuss the difficulties in formulating an absolute continuity result
without patches. One might expect that it would be possible to “stitch” together adjacent patches
using some degree of independence structure in their endpoints (for example, the endpoints are
defined by the locations of discontinuities of iλ and jλ, which are stopping times with respect to P).

In our argument, we have implicitly been conditioning on data to the left of λ and proving absolute
continuity of fabric functions to Brownian local time under this conditioning, which is preserved
on averaging over the conditioned data. However, observe that, under this conditioning, there are
patches corresponding to j = i, where D is flat with deterministic value bλj − aλj . On the other
hand, note that L has a flat portion at a given deterministic height with probability zero. Thus the
absolute continuity statement cannot hold under the conditioning.

Of course, it may still hold after averaging and we indeed expect this to be true. However for this,
we would at least need to know that bλj − aλj are continuous random variables. It turns out that
this can be shown with further arguments which bear similarity to the ones already introduced
in this paper—i.e., making use of geodesic geometry and the underlying Brownian nature of the
environment and its last passage values. However one needs further ingredients to obtain a result
without patches. Such results and related ones involving refined understanding of geodesic behavior
will be pursued in future work.

In summary, the fact that the absolute continuity to L with a single patch does not hold conditionally
on data to the left of the interval in question, but may (and does) on averaging, indicates the
subtleties in obtaining such patch-less absolute continuity statements.

Given Theorem 4.1, the proof of Theorem 1 is quick, and we proceed to it next.

4.2. The Hausdorff dimension of E: proving Theorem 1. We start by recalling the definition
of Hausdorff dimension.

Definition 4.3 (Hausdorff dimension). The α-Hausdorff measure of a set A ⊆ R, denoted Hα(A),
is defined as Hα(A) = limδ↓0H

α
δ (A), where, for δ > 0,

Hα
δ (A) = inf

{ ∞∑
i=1

diam(Ui)
α : A ⊆

∞⋃
i=1

Ui and 0 < diam(Ui) < δ

}
.

The Hausdorff dimension of A, denoted dim(A), is defined as

dim(A) = inf
{
α > 0 : Hα(A) <∞

}
.
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The Hausdorff dimension enjoys a countable stability property; see for example [Mat99, below
Definition 4.8]. It states that

dim

(⋃
i∈I

Si

)
= sup

i∈I
dim(Si),

where I is any countable set.

We next state a lemma on the Hausdorff dimension of the set of non-constant points of process
locally absolutely continuous away from zero to Brownian local time.

Lemma 4.4. Let Y : [0,∞)→ R be locally absolutely continuous away from zero to Brownian local
time of any given rate, and NC(Y ) be its set of non-constant points. Then the following holds with
probability one. For any 0 ≤ z1 < z2 ≤ ∞ and j > i, dim(NC(Y ) ∩ (z1, z2)) is equal to zero if
NC(Y ) ∩ (z1, z2) = ∅ and one-half if NC(Y ) ∩ (z1, z2) 6= ∅. Also, if Y almost surely increases at
zero, then dim(NC(Y ) ∩ [0, z)) = 1

2 for all z ∈ R.

Note that the statement holds for all the sets NC(Y ) ∩ (z1, z2) on the same probability one event.
Note also that in the first statement we consider an intersection with an open interval; the statement
is not true with a closed interval. For example, consider a sufficiently small closed interval whose
right endpoint is the first non-constant point after zero, for which the intersection with EY will be
a singleton.

Proof of Lemma 4.4. By the countable stability property of Hausdorff dimension, it is sufficient to
prove the statement for all NC(Y ) ∩ [q1 ∩ q2] with q1, q2 ∈ Q and q1 < q2 by writing the interval
(z1, z2) as a union of intervals with rational endpoints. Since the rationals are countable, it is
sufficient to prove the almost sure statement for a fixed pair of rationals q1 < q2. We may also
assume q1, q2 > 0 by a similar approximation argument for intervals with left endpoint equal to zero.

We next recall the well-known fact [MP10, Theorem 4.24] that the set of non-constant points of
Brownian local time of any given rate almost surely has Hausdorff dimension one-half on the event
that it is non-empty. Now, the statement we are proving follows immediately from our hypothesis
on the absolute continuity of Y on [q1, q2] to the restriction to [q1, q2] of Brownian local time.

For the case of NC(Y ) ∩ [0, q] with q ∈ Q, we note that 0 is almost surely a point of increase of Y
by hypothesis, and so both NC(Y ) ∩ [0, q] and NC(Y ) ∩ (0, q) are almost surely not empty. Thus
both have the same Hausdorff dimension. The case of the latter set has been dealt with above. �

We may now prove Theorem 1 using Theorem 2 and Lemma 4.4. Recall that NC = NC(D) is the set of
non-constant points of D. We first start by showing that NC is almost surely non-empty, in a slightly
stronger form that we will need later. This was essentially proven in [BGH19a, Proposition 3.10] in
a pre-limiting setting and we reproduce the argument for completeness.

Lemma 4.5. With probability one, limM→∞D(M) =∞.

Proof. Let S∪ be the parabolic Airy sheet with the parabola compensated for, i.e., S∪(y, x) =
S(y, x) + (y − x)2. The distribution of S∪(y, x) is the same for all x, y ∈ R, which follows from the
stationarity of S, that S(0, ·) = P1(·) from Definition 2.6(ii), and that the Airy2 process (given
by x 7→ P1(x) + x2) is stationary. (In fact, this implies that the common distribution is the GUE
Tracy-Widom distribution [TW94], though we will not make use of this fact.)

It is enough to show that lim supM→∞D(M) =∞ almost surely. We observe that

P
(

lim sup
M→∞

D(M) =∞
)
≥ lim sup

M→∞
P
(
D(M) > 2M1/2

)
. (35)

Writing out D(M) we see

D(M) = S(yb,M)− S(ya,M) = S∪(yb,M)− S∪(ya,M)− (yb −M)2 + (ya −M)2
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= S∪(yb,M)− S∪(ya,M)− (y2b − y2a) + 2M(yb − ya).
Note that S∪(yb,±M), S∪(ya,±M) all have the same distribution and are almost surely finite. For
notational simplicity, let X be a random variable with the same distribution. Now, by a union
bound,

P
(
D(M) ≤ 2M1/2

)
≤ P

(
X ≤M1/2 + y2a − (yb − ya)M

)
+ P

(
X ≥ −M1/2 − y2b + (yb − ya)M

)
.

Since X is almost surely finite and yb > ya, this implies that

lim sup
M→∞

P
(
D(M)−D(−M) > 2M1/2

)
= 1,

which, with (35), completes the proof of Lemma 4.5. �

Proof of Theorem 1. By Lemma 4.5, we have that E is almost surely uncountable. Let Ek be the set
of non-constant points of Yk, which are as defined in Definition 1.3. Then note that, by Theorem 2,

E =
⋃
k∈Z

E ∩ [xk, xk+1] =
⋃
k∈Z

Ek ∩ [xk, xk+1].

The second equality follows by noting that the set of non-constant points of function is unchanged
under constant vertical shifts of the function. By the countable stability property, the Hausdorff
dimension of the right-hand side is the same as if [xk, xk+1] is replaced by (xk, xk+1) for each k. Now,
since E is uncountable, there must exist at least one k such that Ek ∩ (zk, zk+1) is non-empty. Then
by Lemma 4.4 and the countable stability property, we obtain that dim(E) = 1

2 almost surely. �

Remark 4.6. It is worth mentioning that besides Hausdorff dimension, there are other natural
notions of dimensions that one might also consider, such as the Minkowski dimension and the
packing dimension. While they do not agree in general, it is known that, for Brownian local time,
all these notions of dimension agree and are equal to 1/2. This can then be used to obtain versions
of Lemma 4.4 for all the different notions, leading to analogues of Theorem 1.

5. Proof that local limit of D is Brownian local time

5.1. Outline and setup for the proof. We first recall and expand on the proof ideas of Theorem 3
as discussed in Section 1.4. As in the latter section, this overview will only discuss the case where
τ = τλ, as the important conceptual points of the proof are captured here. Recall for λ ∈ R that τλ
is the first time after λ that D is non-constant.

Consider the geodesic πta from the vertical line at λ, with the boundary data {aλi }i∈N as in Lemma 2.8,
to (t, 1), and similarly the geodesic πtb with boundary data {bλi }i∈N. When t = τλ, both geodesics
are at the top line at τλ since they end at (τλ, 1), although it may intersect the line {τλ} × N at
other levels as well; in fact, as we will show, it will also intersect (τλ, 2). As t increases, if both the
geodesics only use the top line in [τλ, t], then D will be constant in that interval by an analogue of
Lemma 2.8 expressing S(y, τλ + x) in terms of boundary data at τλ; see Lemma 5.1 ahead.

Thus by definition of τλ (it being a point of increase), at least one of the geodesics must jump to
a different line (i.e., its line index at τλ increases) as soon as t increases past τλ. Now planarity
implies πtb must jump.

If we know that it jumps to the second line, then it follows that πta must not jump (since otherwise
D continues to be constant past τλ) and D in the right-neighbourhood of τλ will essentially be the
running maximum of P2 −P1; this is because the weight of the geodesic which jumps to line two is
(PT(P1,P2))1(t), while that of the one which remains on line one is P1(t), and the difference of the
two is the running maximum of P2 −P1 from the definition of PT (16). Since P2 −P1 is absolutely
continuous to rate four Brownian motion, even including the origin, this running maximum is
absolutely continuous to Brownian local time, again without avoiding the origin. The local limit
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at zero of the increment of such a process can easily be shown to be Brownian local time by scale
invariant considerations.

Thus there are three aspects to the proof. The first is a notion of boundary data at the random
time τλ, for we are concerned with the behaviour of geodesics immediately following this point; in
particular, we need an analogue of Lemma 2.8 involving the boundary data at this random point
(Lemma 5.1). Second, we need to know that at τλ, the geodesic which jumps does so to the second
line and not a lower one (Lemma 5.9, using Proposition 5.2). Finally, we need a statement on
local limits of processes absolutely continuous to Brownian local time, where we will make use of
the added information that the process can be written as a running maximum of a Brownian-like
process (Corollary 5.4).

For the first step, because the limits (11) defining {aλi }i∈N and {bλi }i∈N are only known to exist
almost surely for fixed λ, and it is not a priori clear from their definition that they should be
continuous in λ, we need a different specification of the boundary data as a process in the location
λ. This is the role of the next definition, which is based on the idea that we can get boundary data
at λ+ x by considering the boundary data at λ and an LPP problem on [λ, λ+ x].

For λ ∈ R and i ∈ N, define Zλ,ai : [0,∞)→ R by

Zλ,ai (x) = sup
j≥i

{
aλj + Pλj�i(x)

}
= sup

j≥i

{
aλj + P[(λ, j)→ (λ+ x, i)]

}
; (36)

similarly define Zλ,bi with the boundary data {bλi }i∈N in place of {aλi }i∈N. In this section we will
state results in terms of Zλ,ai , {aλi }i∈N, and ya. The analogous results with Zλ,bi , {bλi }i∈N, and yb
also hold, though we will not mention this explicitly.

Note that, almost surely, for all i ∈ N and x ≥ 0, Zλ,ai (x) ≥ Zλ,ai+1(x). We also have that
S(ya, λ+ x) = Zλ,a1 (x) for all x ≥ 0 by Lemma 2.8. However, we can get another representation of

S(ya, λ+ x) in terms of all the Zλ,ai analogous to Lemma 2.8, which is the sense in which Zλ,ai (x) is
the boundary data from ya at x and can be thought of as the process x 7→ aλ+xi .

Lemma 5.1. Let λ ∈ R be fixed. Then almost surely, for all x ≥ y ≥ 0,

S(ya, λ+ x) = sup
i∈N

{
Zλ,ai (y) + P[(λ+ y, i)→ (λ+ x, 1)]

}
.

Moreover, the supremum is attained at a finite index.

Proof. We have from Lemma 2.8 and the definition (36) of Zλ,a1 that

S(ya, λ+ x) = Zλ,a1 (x).

Expanding the definition of the righthand side, and decomposing P[(λ, j)→ (λ+ x, 1)] based on
the location of the corresponding geodesic at λ+ y, we see that

Zλ,a1 (x) = sup
j∈N

{
aλj + P[(λ, j)→ (λ+ x, 1)]

}
= sup

j∈N
sup
i≤j

{
aλj + P[(λ, j)→ (λ+ y, i)] + P[(λ+ y, i)→ (λ+ x, 1)]

}
= sup

i∈N

{
Zλ,ai (y) + P[(λ+ y, i)→ (λ+ x, 1)]

}
;

for the final equality, we use that supj∈N supi≤j aij = supi∈N supj≥i aij for any real collection {aij},
and the definition (36) of Zλ,ai . Observe from this manipulation that if the supremum in the first
equality is attained at a finite index, then the same is true of the supremum in the final equality.
Since we know from Lemma 2.8 that the first supremum is indeed attained at a finite index, the
proof of Lemma 5.1 is complete. �
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The second aspect of the proof outline of Theorem 3 above was that the geodesic, on jumping after
τ , would jump to the second line and not a lower one. This is implied if the boundary data at τ at
the third line is strictly smaller than at the first line, i.e., if Zλ,b1 (τ − λ) > Zλ,b3 (τ − λ) by Lemma 5.1
and the continuity of x 7→ P[(τ, i)→ (x, 1)], and is written out in Lemma 5.9. That aλ1 > aλ3 and
bλ1 > bλ3 for any fixed λ is true almost surely, as we proved in Lemma 2.10, but we require such a
statement at the random time τ − λ. This is the content of the next proposition.

Proposition 5.2. Fix λ ∈ R. Almost surely, for all τ > 0, it holds that Zλ1 (τ) > Zλ3 (τ).

The proof of Proposition 5.2, which we give in Section 5.5, has several technical details to be handled,
but finally relies on the well-known fact that two-dimensional Brownian motion, started at any
given point in the plane, almost surely never subsequently hits the origin.

The final aspect of the proof outline was that the local limit of the running maximum of a process
absolutely continuous to Brownian motion is Brownian local time. This follows from an analogous
statement that the local limit of a process absolutely continuous to Brownian motion is itself
Brownian motion. We cite this from [DSV20].

Lemma 5.3 (Lemma 4.3 of [DSV20]). Let B′ : [0, T ]→ R be a process such that B′|[0,T ] � B|[0,T ]
for all T > 0, where B is Brownian motion of rate σ2. Then,

lim
ε→0

ε−1/2B′(εt) = B(t),

where the limit is in distribution in the topology of uniform convergence on compact sets.

The argument for Lemma 5.3 given in [DSV20] proceeds by contradiction, but is essentially to identify,

for a given event A in a convenient measure-determining class, a functional of t 7→ ε−1/2B(εt) which

converges almost surely to P(B ∈ A) as ε→ 0. The functional applied to t 7→ B′ε(t) := ε−1/2B′(εt)
converges to P(limε→0B

′
ε ∈ A), which, by absolute continuity, must be equal to P(B ∈ A).

Corollary 5.4. Let B′ : [0,∞) → R be a stochastic process such that B|[0,T ] � B|[0,T ] for any

T > 0, where B is Brownian motion B of rate σ2. Let Y : [0,∞) → [0,∞) be defined by
Y (t) = max0≤s≤tB

′(s). Let L : [0,∞) be the local time at the origin associated to B. Then

lim
ε→0

ε−1/2Y (εt) = L(t),

where the convergence is in distribution in the topology of uniform convergence on compact sets.

Proof. We see that Y (εt) = max0≤s≤εtB
′(s) = max0≤s≤tB

′(εs). It is an easy exercise that the map
taking a function defined on [0,∞) to its running maximum on [0,∞) is continuous in the topology
of uniform convergence on compact sets. Then by Lemma 5.3 and the continuous mapping theorem,

lim
ε→0

ε−1/2Y (εt) = max
0≤s≤t

B(s),

where the limit is in distribution in the same topology. Lévy’s identity (Proposition 3.2) completes
the proof of the corollary. �

5.2. Brownian Gibbs at nice random times. In the proof of Theorem 3, we will need to
understand the parabolic Airy line ensemble P at the random time τλ. For this we recall from
[CH14] the concept of a stopping domain and the associated strong Brownian Gibbs property of P.

Definition 5.5 (Stopping domain and strong Brownian Gibbs). Let X : N→ R be an N-indexed
collection of continuous curves. Recall the σ-algebra Fext(k, `, r) from Definition 2.3 generated by
the data external to the top k curves of X on [`, r]. A pair of random variables l, r is a stopping
domain for X1, . . . , Xk if, for all ` < r,

{l ≤ `, r ≥ r} ∈ Fext(k, `, r).
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Define the σ-algebra Fext(k, l, r) to be the one generated by events A such that A ∩ {l ≤ `, r ≥ r} ∈
Fext(k, `, r) for all ` < r.

An infinite collection of random continuous curves X has the strong Brownian Gibbs property if,
for any k ∈ N and conditionally on Fext(k, l, r), the distribution of X on J1, kK × [l, r] is that of
k independent Brownian bridges (B1, . . . , Bk) of rate two, with Bi(x) = Xi(x) for x ∈ {l, r} and
i ∈ J1, kK, conditioned on not intersecting each other or Xk+1(·) on [l, r].

Proposition 5.6 (Lemma 2.5 of [CH14]). The parabolic Airy line ensemble P has the strong
Brownian Gibbs property.

Remark 5.7. The definition of a stopping domain and the strong Brownian Gibbs property in
[CH14] considers ensembles with N curves instead of infinitely many. We require the infinite case as
our random time τλ is defined via all the curves of P. However, the proof given in [CH14] applies
verbatim for the infinite case.

Alternatively, the N =∞ case can be derived from the finite N one with a certain augmentation to
handle boundary data. Given a stopping domain [l, r] defined in terms of the entire line ensemble,
one can apply, for any δ > 0, the Brownian Gibbs property on the top k curves on an interval
[−M,M ] with M chosen such that [l, r] ⊆ [−M,M ] with probability at least 1− δ. Conditionally
on Fext(k,−M,M), [l, r] is determined by the conditioned data and P|[−M,M ], . . . ,Pk|[−M,M ]. Thus
we may consider the Fext(k,−M,M)-conditional ensemble P|[−M,M ], . . . ,Pk|[−M,M ]. Note that this
ensemble has the Brownian Gibbs property with the boundary condition Pk+1, i.e., the extra
condition that Pk|[−M,M ] remains above Pk+1.

Thus the finite N case (with N = k) with a boundary condition given by the curve Pk+1, for
which the argument in [CH14] goes through verbatim, can be applied to this ensemble defined on
J1, kK× [−M,M ] to obtain the conclusion that P1|[l,r], . . . ,Pk|[l,r] is distributed as non-intersecting
Brownian bridges with appropriate endpoints, on the high-probability event that [l, r] ⊆ [−M,M ].
Taking δ → 0 and M →∞ appropriately gives the conclusion.

Remark 5.8. In the proof of Theorem 3 we will want to apply the strong Brownian Gibbs
property to an interval like [τλ, τλ + 1]. But observe that this interval is actually not a stopping
domain, for the same reason that τλ is not a stopping time with respect to the canonical filtration
σ(Pi(s) : s ≤ t, i ∈ N) of P: determining the occurrence of τλ requires an “infinitesimal peak” into
the future.

To address this, we will actually need the strong Brownian Gibbs property to hold with respect
to the analogue of right-continuous filtrations in this spatial setting. Indeed, for ` < r and k ∈ N,
consider the σ-algebra Fext(k, `

+, r−) defined as

Fext(k, `
+, r−) =

∞⋂
n=1

Fext(k, `+ n−1, r − n−1).

To know that an ensemble X has the strong Brownian Gibbs property with respect to the above
family of augmented σ-algebras, it is sufficient to know that X has the Brownian Gibbs property
with respect to the same family. Indeed, the proof of Proposition 5.6 as given in [CH14] goes through
verbatim with Fext(k, `

+, r−) in place of Fext(k, `, r) if it is known that X has the Brownian Gibbs
property with respect to the former family of σ-algebras.

To prove that X having the Brownian Gibbs property with respect to Fext(k, `, r) implies the same
with respect to Fext(k, `

+, r−), it is sufficient to show a form of Blumenthal’s zero-one law for the
family of augmented σ-algebras, i.e., that almost surely for any A ∈ Fext(k, `

+, r−), it holds that

P (A | Fext(k, `, r)) ∈ {0, 1}. (37)
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(The argument to show X has the Brownian Gibbs property with respect to Fext(k, `
+, r−) via

(37) is analogous to the one showing that a process which is Markov with respect to its canonical
filtration is also so with respect to the right-continuous filtration; see eg. [RY13, Proposition 2.14].)

That (37) is true is easy to see. We may assume that A is a function of only P1|[`,r], . . . ,Pk|[`,r], as
everything else will be conditioned on. Conditionally on Fext(k, `, r), the distribution of P1, . . . ,Pk on
[`, r] is that of k independent Brownian bridges with boundary values determined by Fext(k, `

+, r−),
conditioned not to intersect one another or Pk+1. Since the boundary values are almost surely
separated, the Brownian bridges are conditioned on a positive probability event. Further, A lies
in the σ-algebra generated by the germ σ-algebras of the Brownian bridges as well as their time
reversals (so as to capture behaviour near r). We may assume that it lies in exactly one of these
σ-algebras. Then by Blumenthal’s zero-one law applied to these Brownian bridges (or their time
reversals), (37) follows.

5.3. The local limit argument: proving Theorem 3. We begin by proving a representation for
D(τ + εt) − D(τ) at a point of increase τ , using Proposition 5.2 which states that the boundary

data Zλ,b3 of the third curve never equals that of the first curve, Zλ,b1 .

Lemma 5.9. Let τ be a random variable which is almost surely a point of increase of D, and let
K ⊆ [0,∞) be a compact set. There exists random ε0 = ε0(τ,K) > 0 such that, almost surely, for
0 < ε < ε0 and t ∈ K,

D(τ + εt)−D(τ) = max
0≤s≤t

[(
P2(τ + εs)− P2(τ))− (P1(τ + εs)− P1(τ)

)]
. (38)

Proof. Fix λ ∈ R. We will show the representation (38) on the event that τ > λ, which will suffice
as we may take λ→ −∞ at the end.

Let t ∈ K. Using Lemma 5.1 with y = τ and x = τ + εt, we see

D(τ + εt) = sup
i∈N

{
Zλ,bi (τ − λ) + P[(τ, i)→ (τ + εt, 1)]

}
− sup

i∈N

{
Zλ,ai (τ − λ) + P[(τ, i)→ (τ + εt, 1)]

}
.

Note that, by Proposition 5.2, Zλ,a1 (τ − λ) > Zλ,a3 (τ − λ), and similarly Zλ,b1 (τ − λ) > Zλ,b3 (τ − λ).
Since by Lemma 5.1 the supremums in the last displayed equation are attained at finite indices, the
continuity of t 7→ P [(τ, i)→ (τ +εt, 1)] for each i implies that there exists random ε0 > 0 (depending
on the supremum-achieving indices and on the compact set K) such that, for all 0 < ε < ε0 and
t ∈ K,

D(τ + εt) = max
i=1,2

{
Zλ,bi (τ − λ) + P[(τ, i)→ (τ + εt, 1)]

}
−max
i=1,2

{
Zλ,ai (τ − λ) + P[(τ, i)→ (τ + εt, 1)]

}
.

Now by definition D(τ) = Zλ,b1 (τ − λ)− Zλ,a1 (τ − λ). We also know, since τ is a point of increase of
D and by the monotonicity (in t) of the maximizing index as proven in Lemma 2.9, that the first
maximum in the previous display is attained at i = 2 and the second at i = 1 for all 0 < ε < ε0 and
t ∈ K; this implies by continuity that Zλ,b1 (τ − λ) = Zλ,b2 (τ − λ). It also yields Lemma 5.9 since

D(τ + εt)−D(τ) = P[(τ, 2)→ (τ + εt, 1)]− P[(τ, 1)→ (τ + εt, 1)]

= max
0≤s≤t

((
P2(τ + εs)− P2(τ))− (P1(τ + εs)− P1(τ)

))
. �
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Proof of Theorem 3. We must prove that ε−1/2(D(τ + εt)−D(τ)) converges weakly, as a process
on any compact set, to L, for τ equal to τλ, ρh, or ξ[c,d] (the last conditionally on the event that
NC(D) ∩ [c, d] 6= ∅. We start by fixing a compact set K.

We will prove in Lemma 5.12 ahead that all of the types of random variables listed are almost surely
points of increase of D. Taking this statement for granted, by Lemma 5.9 we have, for each of the
three cases of the definition of τ ,

ε−1/2 (D(τ + εt)−D(τ)) = ε−1/2 max
0≤s≤t

[(
P2(τ + εs)− P2(τ))− (P1(τ + εs)− P1(τ)

)]
. (39)

We claim that the expression being maximized on the righthand side is absolutely continuous, as a
process in s, to rate four Brownian motion, for each case of τ . Given the claim, Theorem 3 follows
immediately by applying Corollary 5.4.

It remains to prove the claim for each case of τ .

Now, τλ and ρh are each stopping times with respect to the augmented filtration generated by
(Pi)i∈N as defined in Remark 5.8. Thus it follows that [τ, τ + 2] is a stopping domain in these
two cases. Then, by the strong Brownian Gibbs property and Remark 5.8, an argument as in
Corollary 2.5 implies that Pi(τ + εs)− Pi(τ) for i = 1 and 2 are jointly absolutely continuous to
two independent rate two Brownian motions. This implies the claim in these two cases.

So it only remains to prove the claim for ξ[c,d], on the event that NC(D) ∩ [c, d] 6= ∅. We start by
observing a convenient representation for ξ[c,d]. Namely, let U be an uniform random variable on
the interval [0,D(d)−D(c)], which is conditionally independent of D given D(d)−D(c), and let

ρUc = inf
{
t > c : D(t) = D(c) + U

}
;

the infimum is over a non-empty set on the event that D(d) > D(c), i.e., NC(D) ∩ [c, d] 6= ∅. It is
easy to see that ρUc has the same distribution as ξ[c,d] by the definition of the distribution function

of the latter. Also let ρhc be defined analogously to ρUc with h in place of U ; observe that ρhc is a
stopping time with respect to P.

Let P ′U (s) = (P1(ρUc + s) − P1(ρUc ),P2(ρUc + s) − P2(ρUc )) for notational convenience, and P ′h be

defined with ρhc in place of ρUc . We must show that P ′U � (B1, B2), with B1 and B2 independent
rate two Brownian motions. So let A ⊆ C([0, 1]) be an event such that P((B1, B2) ∈ A) = 0. Now,

P
(
P ′U ∈ A,D(d)−D(c) > 0

)
= E

[
P
(
P ′U ∈ A | U,D(d)−D(c)

)
1D(d)−D(c)>0

]
= E

[∫ D(d)−D(c)
0

P (P ′h ∈ A | D(d)−D(c))

D(d)−D(c)
1D(d)−D(c)>0 dh

]

≤ E

[∫ ∞
0

∞∑
k=1

P (P ′h ∈ A | D(d)−D(c))

D(d)−D(c)
1D(d)−D(c)∈[(k+1)−1,k−1] dh

]

≤
∫ ∞
0

∞∑
k=1

(k + 1)P
(
P ′h ∈ A

)
dh = 0.

In the final line, we used Fubini’s theorem and, in the final equality, that P ′h � (B1, B2) (and so

P(P ′h ∈ A) = 0) as above since ρhc is a stopping time. This along with the fact that D(d)−D(c) > 0
with positive probability which is proved next, completes the proof of the claim in the case that
τ = ξ[c,d] and the proof of Theorem 3. �

Remark 5.10. The above proof in the case of ξ[c,d] can be easily adapted to prove that the local
limit of Brownian local time L at a point sampled according to L on a compact interval is also L, a
statement for which we were unable to find a reference in the literature.



COMPARISONS OF THE AIRY DIFFERENCE PROFILE TO BROWNIAN LOCAL TIME 41

Lemma 5.11 (Positive probability of NC(D) ∩ [c, d] 6= ∅). Fix d > c. Then D(d)−D(c) > 0 with
positive probability.

Proof. As in the proof of Lemma 4.5, we can write, where S∪(y, x) = S(y, x) + (y − x)2,

D(d)−D(c) = S∪(yb, d)− S∪(ya, d)− (S∪(yb, c)− S∪(ya, c))

− (yb − d)2 + (yb − c)2 + (ya − d)2 − (ya − c)2.
Since S∪(y, x) has the same distribution for every fixed y, x ∈ R, taking expectations shows that
E[D(d)−D(c)] > 0. That D(d)−D(c) ≥ 0 almost surely completes the proof. �

We next prove the small missing step of the proof of Theorem 3, that the random locations in
question are almost surely points of increase of D, before turning to the larger task of proving
Proposition 5.2.

Lemma 5.12. Each of τλ, ρh, and ξ[c,d] is almost surely a point of increase (the final conditionally
on NC(D) ∩ [c, d] 6= ∅).

Proof. First, τλ is a point of increase by definition.

Next we consider ρh. Observe that, on the event that ρh is not a point of increase, there must be a
non-trivial interval with left endpoint ρh where D is flat, i.e., equals h. In particular, the mentioned
event implies the existence of a q ∈ Q such that D(q) = h. It is thus sufficient, by a union bound
over rationals, to show that D(x) is a continuous random variable for any fixed x ∈ R.

We will use the symmetry property of the parabolic Airy sheet S that S(x, y)
d
= S(−y,−x) as

processes on R2 (see [DOV18, Lemma 9.1]; this follows by a similar relation that holds in Brownian
LPP) and the stationarity of S from item (i) of Definition 2.6. Now,

D(x) = S(yb, x)− S(ya, x)
d
= S(−x,−yb)− S(−x,−ya)
d
= S(0, x− yb)− S(0, x− ya).

By the coupling of S with the parabolic Airy2 process P1 from item (ii) of Definition 2.6, we see
that

D(x)
d
= P1(x− yb)− P1(x− ya).

That the righthand side is a continuous random variable is an immediate consequence of Corollary 2.5
on the absolute continuity of increments of P1 to Brownian motion.

Finally, we consider ξ[c,d]. By definition, ξ[c,d] is a non-constant point. Now observe that there are
only countably many non-constant points of D that are not points of increase, again by considering
a small interval to the right of any such point and invoking the denseness of rationals. Since the
measure with distribution function D(·) − D(c)/(D(d) − D(c)) has no atoms, ξ[c,d] almost surely
does not lies in this countable subset of NC(D). This completes the proof of Lemma 5.12. �

Remark 5.13. It is natural to try to prove a local limit theorem like Theorem 3 with τ = ρhλ as
introduced in the proof of Theorem 3 above and h > 0. In fact, much of that proof remains intact
when τ = ρhλ as it is a stopping time. Unfortunately, a difficulty analogous to the one indicated in

Remark 4.2 arises in showing that ρhλ is almost surely a point of increase of D.

To see this, let us condition on the data of P to the left of λ. Then D(λ) = bλ1 − aλ1 is deterministic,
as are bλj − aλj for all j ∈ N, and ρhλ is the hitting time of the deterministic h+D(λ). Now, D has

flat portions which equal bλj − aλj for various values of j. If h = bλj − aλj −D(λ), then ρhλ will not be
a point of increase.

Thus, conditionally on the data to the left of λ, there are countably many values of h such that
ρhλ is not a point of increase. Again as in Remark 4.2, it is possible that, on averaging over the
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conditioned data, ρhλ will be a point of increase for every h > 0 almost surely—but this will require

further information such as quantities like bλj − aλj −D(λ) are continuous random variables, which
we aim to establish in future work.

It remains to prove Proposition 5.2, which is the task of the next two sections.

5.4. Absolute continuity to Brownian motion of Zλ,ai and Zλ,bi . To prove Proposition 5.2, we
will need that Zλ,ai and Zλ,bi are locally absolutely continuous away from zero to Brownian motion.
Using our earlier analysis of the same property for functions of the form x 7→ P[(λ, j)→ (λ+ x, i)],
this is straightforward, provided we know that the supremum in (36) is achieved at a finite index
with probability one.

The latter statement is obtained by a somewhat delicate geometric argument, using the i = 1 case
proved in [SV21] and recorded in this article as Lemma 2.8. The majority of this section will be
devoted to proving the following proposition.

Proposition 5.14. Almost surely, for all x ≥ 0 and j ∈ N, the supremum in the definition (36) of
Zλ,aj (x) is attained at a finite index. The index is uniformly bounded for x in any given compact set.

While the proof strategy as adopted in [SV21] involving infinite geodesics and the fact that they
follow roughly parabolic trajectories provides an approach to proving Proposition 5.14, here we
choose to adopt a different strategy, in keeping with our reliance on arguments involving boundary
data instead of infinite geodesics.

In the coming pages, we will refer several times to the geodesic implicit in the definition (36) of
Zλ,a1 (z). This means, if the minimum index at which the supremum in that definition is attained is
i0 (which is known to be finite by Lemma 2.8), to consider the geodesic from (λ, i0) to (λ+ z, 1) in
the environment defined by P. In the case that this geodesic is not unique, we will consider the
left-most one; it is a standard consequence of planarity that this is a well-defined notion, and we
refer the reader, for example, to [DOV18, Lemma 3.5].

The basic idea of Proposition 5.14 is geometric and uses the ordering or monotonicity properties of

geodesics. Namely, consider the geodesic πz implicitly defined by Zλ,a1 (z). If for some z ≥ x this
geodesic leaves line j after λ+x, then the maximizing index for Zλ,aj (x) must be at most the starting
line number of πz, by geodesic ordering, which we know is finite from Lemma 2.8 (Lemma 5.15).
See Figure 6. The proof of Proposition 5.14 comes down to showing that the location at which
πz leaves line j goes to ∞ as z → ∞, thus covering all values of x for Zλ,aj (x). This is shown by
arguing that, otherwise, the geodesic from vertical line λ+ x (with boundary data {aλ+xi }i∈N) to
(λ+ z, 1) would have uniformly bounded starting line number for all z (Lemma 5.16); that this is
not possible is Lemma 5.17.

Lemma 5.15. Fix λ ∈ R and 0 ≤ x ≤ z, and let πz be the geodesic implicit in the definition (36)
of Zλ,a1 (z). Fix j ∈ N and suppose that πz exits line j after λ+ x. Then the maximizing index (the
minimum such in the case of non-uniqueness) in the definition of Zλ,aj (x) is at most iλ(z).

Proof. Let ` be the minimum index achieving the supremum in the definition (36) of Zλ,aj (x). Since
z is fixed, let π = πz. Suppose to the contrary that π leaves line j after λ+ x, and ` > iλ(z).

Consider the geodesic from (λ, `) to (λ+ x, j) and call it ρ. Note that our hypothesis that ` > iλ(z)
and planarity imply that ρ and π must have non-empty intersection, though it may possibly be just
(λ+ x, j). Let y ∈ R× N be the point of intersection with minimum first coordinate. Consider the
restriction of π from its starting point to y, which we label π′, and we define ρ′ from ρ similarly.
Recall from Definition 2.1 that the weight of a path γ in the environment given by P is denoted by
P[γ]. Note that

P[π′] + aλiλ(z) ≥ P[ρ′] + aλ` , (40)
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Figure 6. On the left panel is depicted the situation where the geodesic πz (in
green) from the vertical line λ with boundary data {aλi }i∈N to (λ+ z, 1) leaves line
j after λ + x. In this case, planarity and the weight maximization property of
geodesics implies that the geodesic ρ (in light blue) from the vertical line λ, again
with boundary data {aλi }i∈N, to (λ+ x, j) is to the left of πz; in particular, ρ starts
at a line whose index is lower than that of πz. (In fact in the depiction, since πz is at
line j at λ+ x, the portion of πz till λ+ x must coincide with ρ. We have not shown
this as it need not hold in general when πz is at an index greater than j at λ+x.) In
the right panel, πz leaves line j before λ+ x; this implies that the red geodesic from
λ+ x, with boundary data {aλ+xi }i∈N, to (λ+ z, 1) starts at a line above the jth one.

for otherwise we could replace π′, as portion of the path π, by ρ′ and obtain a path from the vertical
line λ to (λ+ z, 1) of greater weight (taking into account the boundary data at λ).

However, (40) contradicts the definition of k as the minimum index achieving a certain maximum.
This is because we can consider the path ρ′′ obtained by replacing ρ′, as a portion of the path ρ, by
π′; this path goes from (λ, iλ(z)) to (λ+ x, j) and, by (40), satisfies

P[ρ′′] + aλiλ(z) ≥ P[ρ] + aλ` ;

but then ` is not the minimum index achieving the supremum in the definition of Zλ,aj (x) since

` > iλ(z), whence the contradiction. Thus the proof of Lemma 5.15 is complete. �

Lemma 5.16. Fix λ ∈ R and 0 ≤ x ≤ z, and let πz be the geodesic implicit in the definition (36)

of Zλ,a1 (z). Let j be the index of the line that πz is on at λ+ x. Then j ≥ iλ+x(z − x).

Proof. For ease of notation, let πz = π, iλ+x = iλ+x(z − x), and iλ = iλ(z). Recall from Lemma 2.8
that iλ+x and iλ are respectively the minimum indices which achieve the supremums in

S(ya, λ+ z) = sup
i∈N

{
aλ+xi + P[(λ+ x, i)→ (λ+ z, 1)]

}
= sup

i∈N

{
aλi + P[(λ, i)→ (λ+ z, 1)]

}
.

(41)

We claim that

aλ+xj + P[(λ+ x, j)→ (λ+ z, 1)] ≥ aλiλ + P[(λ, iλ)→ (λ+ z, 1)]; (42)

though we will not need this, we note that combining this inequality with (41) implies that we
actually have equality.

We first prove Lemma 5.16 given this claim. By the definition of iλ and since both supremums in
(41) equal S(ya, λ+ z), (42) implies that the first supremum in (41) is achieved at i = j. Then by
the minimality in the definition of iλ+x, it follows that iλ+x ≤ j, which is the claim of Lemma 5.16.
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It remains to prove (42). Since j is the index of the line π (the geodesic from (λ, iλ) to (λ+ z, 1)) is
on at λ+ x, we see that

P[(λ, iλ)→ (λ+ z, 1)] = P[(λ, iλ)→ (λ+ x, j)] + P[(λ+ x, j)→ (λ+ z, 1)].

Thus verifying (42) reduces to showing

aλ+xj ≥ aλiλ + P[(λ, iλ)→ (λ+ x, j)].

To show this, observe that, by the definition (11) of aλi for i ∈ N and since P[x → z] ≥ P[x →
y] + P[y → z] for any coordinates x, y, z ∈ R× N,

aλiλ + P[(λ, iλ)→ (λ+ x, j)]

= lim
k→∞

(
P[(ya)k → (λ, iλ)] + P[(λ, iλ)→ (λ+ x, j)]− P[(ya)k → (λ, 1)] + S(ya, λ)

)
≤ lim

k→∞

(
P[(ya)k → (λ+ x, j)]− P[(ya)k → (λ, 1)] + S(ya, λ)

)
= lim

k→∞

(
P[(ya)k → (λ+ x, j)]− P[(ya)k → (λ+ x, 1)] + S(ya, λ+ x)

)
+ lim
k→∞

(
P[(ya)k → (λ+ x, 1)]− P[(ya)k → (λ, 1)] + S(ya, λ)− S(ya, λ+ x)

)
.

Now, the first limit is aλ+xj by definition, while the second is zero by item (ii) of Definition 2.6. This

completes the verification of (42) and thus the proof of Lemma 5.16. �

The next lemma says that the geodesic from the vertical line at λ, with boundary data {aλi }i∈N,
to (λ + z, 1) must have starting line index go to ∞ as z → ∞. We have till now adopted the
notation iλ(z) for the starting line index of this geodesic (recall from before Lemma 2.9). Here we
slightly augment the notation: for y > 0, λ ∈ R, and z ≥ λ, iλy(z) will be the starting line index
of the geodesic from vertical line at λ to (λ+ z, 1), where the boundary data at λ is given by the
analogue of {aλi }i∈N obtained by replacing ya by y in the definition of {aλi }i∈N (11). In this notation,
Lemma 2.9 says that, if y < y′, then iλy(z) ≤ iλy′(z) for all z ≥ 0, and we will make use of this.

Lemma 5.17. Fix y > 0 and λ ∈ R. Then, almost surely, limz→∞ i
λ
y(z) =∞.

Proof. Suppose not. Then with positive probability, there exists K such that

iλy(z) ≤ K
for all z ≥ 0. By Lemma 2.9, we have that iλy′(z) ≤ iλy(z) for all z ≥ 0 and 0 < y′ < y. Thus, on
the same event, by the pigeonhole principle, there exist positive rationals y1 < y2 such that, for all
large z, iλy1(z) = iλy2(z).

But then, by Lemma 2.8, we see that for all such large z,

S(y2, λ+ z)− S(y1, λ+ z) = c,

where c is a (random) finite constant. This contradicts Lemma 4.5, which, by a union bound over
positive rational starting points, implies that limz→∞(S(y2, λ + z) − S(y1, λ + z)) = ∞ almost
surely. �

We may now give the proof of Proposition 5.14. It may be useful to refer to Figure 6 once again.

Proof of Proposition 5.14. The case of j = 1 is asserted by Lemma 2.8 (which is being cited from
[SV21]), and we will rely on this input to prove the general case.

Let us denote the smallest index achieving the maximum for Zλ,aj (x) by `λj (x), which is infinite
in the case that the maximum is not achieved at any finite index. By a planarity argument as in



COMPARISONS OF THE AIRY DIFFERENCE PROFILE TO BROWNIAN LOCAL TIME 45

Lemma 2.9 (which asserts the following for j = 1), we see that `λj (x) is non-decreasing in x. Thus it
is sufficient to prove that, almost surely, `λj (x) is finite for each x ∈ N. Fix an x ∈ N now.

By Lemma 5.15, we see that `λj (x) ≤ iλ(z) whenever z is such that the geodesic πz implicit in the

definition (36) of Zλ,a1 (z) exits line j after λ+ x. Since iλ(z) <∞ for all z by the j = 1 case, we
are done if we can show that, almost surely, for all large enough z, πz exits line j after λ+ x.

Suppose not. Then on a positive probability event the index of the line that πz is on at λ+ x is at
most j− 1 for all z ≥ x. Then on the same event, by Lemma 5.16, for all z ≥ x, iλ+x(z− x) ≤ j− 1.
This contradicts Lemma 5.17, which asserts that, with probability one, iλ+x(z − x)→∞ as z →∞.
This completes the proof of Proposition 5.14. �

Equipped with Lemma 5.14 we now provide the outstanding proof of Proposition 5.2.

5.5. Proving Proposition 5.2. As mentioned, the proof relies on the fact that two-dimensional
Brownian motion almost surely never hits any given point in the plane, which we recall precisely.

Lemma 5.18 (Corollary 2.26 of [MP10]). Let x, y ∈ R2 and B : [0,∞)→ R2 be two-dimensional
Brownian motion begun at x. Almost surely, P(y ∈ {B(t) : t > 0}) = 0.

The proof of Proposition 5.2 will convert the condition that Zλ,a1 and Zλ,a3 meet into one on Zλ,a3 ,
P1, and P2. To do this, we will prove a recursive formula for Zλ,ai in terms of P. To explain this,

recall the definition (36) of Zλ,ai :

Zλ,ai (x) = sup
j≥i

{
aλj + P[(λ, j)→ (λ+ x, i)]

}
.

Essentially, Zλ,ai (x) is the best weight from λ to (x, i) with the boundary data {aλi }i∈N. Thus
heuristically, it should be expressible as a two-line LPP problem with top line Pi and bottom
line Zλ,ai+1. However, observe that Zλ,ai+1(0) = aλi+1, not zero as required by the definition (16) of the
Pitman transform PT; and, indeed, we should not expect to be able to express Zλ,ai in terms of Zλ,ai+1
if we subtract off the value of Zλ,ai+1(0) as we would if it was the bottom line in an LPP problem, as
doing so would be throwing away the information of the weight of paths starting at (λ, i+ 1).

Thus, we need to modify the definition of PT(f1, f2) to allow non-zero values at the origin for f1 and
f2. In fact, we will only need a variant of (PT(f1, f2))1. Our variant is really just the second equality
in the definition (16) of the latter, which is no longer equivalent to the first equality expressing it as
an LPP problem in a two-line environment. But to emphasize the distinction, we label our variant
PT∗(f1, f2). So for continuous functions f1, f2 : [0,∞)→ R, define PT∗(f1, f2) by

(PT∗(f1, f2))(x) = f1(x) + max
0≤s≤x

(f2(s)− f1(s)). (43)

This works better with boundary data, for example, by allowing a convenient behaviour with additive
constants.

Lemma 5.19. Let a ∈ R. Let f1, f2, f
i
2 : [0,∞)→ R be continuous for i ∈ N. Then,

(i) a+ PT∗(f1, f2) = PT∗(f1, a+ f2), where (a+ f2)(x) = a+ f2(x)
(ii) maxi∈N PT∗(f1, f

i
2) = PT∗(f1,maxi∈N f

i
2).

The proof of Lemma 5.19 is trivial and we omit it.

Now we may state the recursive formula for Zλ,ai . Essentially, Zλ,ai is Pi reflected off of Zλ,ai+1 (in the
sense of Skorohod reflection; see the earlier mentioned [War07] for work within KPZ on Brownian
motions reflecting off of other Brownian objects, namely Dyson Brownian motion).
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Lemma 5.20. Let λ ∈ R and recall that Pλj (x) = Pj(λ+ x)− Pj(λ) for all j ∈ N. Almost surely,
for all i ∈ N and x ≥ 0,

Zλ,ai (x) = max
{

(PT∗(Pλi , Zλ,ai+1))(x), aλi + Pλi (x)
}
.

Proof. From the definition (36) of Zλi ,

Zλi (x) = max
j≥i+1

{
aλj + P[(λ, j)→ (λ+ x, i)]

}
∨ (aλi + Pλi (x)). (44)

So it is enough to show that the first maximization is PT∗(Pλi , Zλi+1). For this, observe that

P[(λ, j)→ (λ+ x, i)] = Pi(λ+ x) + max
0≤z≤x

(
P[(λ, j)→ (λ+ z, i+ 1)]− Pi(λ+ z)

)
=
(
PT∗

(
Pλi ,P[(λ, j)→ (λ+ • , i+ 1)]

))
(x).

Putting this into (44), applying Lemma 5.19, and recalling the definition (36) of Zλi+1 completes the
proof of Lemma 5.20. �

The proof of Proposition 5.2 will show that any point where Zλ,a1 and Zλ,a2 agree is a running
maximizer of Zλ,a2 − Pλ1 , and a similar statement for points of agreement of Zλ,a2 and Zλ,a3 . Thus
we introduce the following notation. For a stochastic process X : [0,∞) → R and ε > 0, let
recε(X) ⊆ [ε,∞) be the set of running maximizers of X|[ε,∞), i.e., the points x ≥ ε such that
X(x) = maxε≤s≤xX(s).

Proof of Proposition 5.2. It is enough to show that for every 0 < ε < T rationals, there almost

surely does not exist τ ∈ [ε, T ] such that Zλ,a1 (τ) = Zλ,a3 (τ), since Zλ,a1 (x) ≥ Zλ,a3 (x) for all x ≥ 0.
Fix such ε and T now.

Suppose to the contrary that τ ∈ [ε, T ] is such that Zλ,a1 (τ) = Zλ,a2 (τ) = Zλ,a3 (τ), since always
Zλ1 (x) ≥ Zλ2 (x) ≥ Zλ3 (x). By Lemma 5.20 and the definition (43) of PT∗, Z

λ
2 (τ) = Zλ3 (τ) implies

that

Zλ,a3 (τ)− Pλ2 (τ) = a2 ∨ max
0≤s≤τ

(
Zλ,a3 (s)− Pλ2 (s)

)
≥ max

ε/2≤s≤τ

(
Zλ,a3 (s)− Pλ2 (s)

)
.

Similarly, Zλ,a1 (τ) = Zλ,a3 (τ) implies that

Zλ,a3 (τ)− Pλ1 (τ) = a1 ∨ max
0≤s≤τ

(
Zλ,a2 (s)− Pλ1 (s)

)
≥ max

ε/2≤s≤τ

(
Zλ,a3 (s)− Pλ1 (s)

)
,

the inequality using also that Zλ,a2 (x) ≥ Zλ,a3 (x) for all x. Thus, we see that Zλ,a1 (τ) = Zλ,a2 (τ) =
Zλ,a3 (τ) implies that

τ ∈ recε/2(Z
λ,a
3 − Pλ1 ) ∩ recε/2(Z

λ,a
3 − Pλ2 ) ∩ [ε, T ]. (45)

We claim that the set on the righthand side is almost surely empty.

First, observe that (Pλ1 ,Pλ2 , Zλ,a3 )|[ε/2,T ] � (B1, B2, B3)[ε/2,T ], where the Bi are independent rate
two Brownian motions. To see this, note that Proposition 5.14 implies that the index achieving the
supremum in the definition (36) of Zλ,ai (x) is at most a random finite constant K for all x ∈ [ε/2, T ].
On the event that K = k, we use that (Pλ1 , . . . ,Pλk ) is absolutely continuous to k independent rate
two Brownian motions. Now, on {K = k}, Zλ,a3 is a function of Pλ3 , . . . ,Pλk : it is equal to the
function x 7→ aλi + P[(λ, i)→ (x, 3)] for some i ∈ J3, kK.
Recall from Section 3.2 that functions of the form x 7→ P[(λ, i) → (x, 3)] can be written as a
sequence of Pitman transforms on the environment Pλ3 , . . . ,Pλi . Also recall Lemma 3.5, which says
that Pitman transforms preserve local absolute continuity away from zero to Brownian motion.
Thus by induction and Lemma 3.5, each of the functions x 7→ P [(λ, i)→ (x, 3)] is locally absolutely
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continuous away from zero to rate two Brownian motion; a union bound over i ∈ J1, kK and k ∈ N
therefore implies that the same is true of Zλ,a3 .

That (Pλ1 ,Pλ2 , Zλ,a3 )|[ε/2,T ] � (B1, B2, B3)[ε/2,T ] implies that (Zλ,a3 −Pλ1 , Zλ,a3 −Pλ2 )|[ε/2,T ] is absolutely
continuous to the restriction to [ε/2, T ] of a pair of (non-trivially) correlated Brownian motions,
which is in turn absolutely continuous to (B,B′)|[ε/2,T ], where B and B′ are a pair of independent
Brownian motions on [0,∞).

Since the set on the righthand side of (45) is a function of (Zλ,a3 −Pλ1 )|[ε/2,T ] and (Zλ,a3 −Pλ2 )|[ε/2,T ],
to prove that that set is empty almost surely, it is sufficient to show that, almost surely,

recε/2(B) ∩ recε/2(B
′) ∩ [ε, T ] = ∅.

Now by the Markov property of Brownian motion, and since recε/2(X) is unaffected by vertical
shifts to X, recε/2(B) ∩ recε/2(B

′) has the same distribution as ε/2 + rec0(B) ∩ rec0(B
′), where

x+A for x ∈ R and a set A is the set {x+ y : y ∈ A}.
By Lévy’s identity (Proposition 3.2), (ε/2 + rec0(B) ∩ rec0(B

′)) ∩ [ε,∞) = ∅ almost surely is
equivalent to two independent Brownian motions almost surely not sharing a zero after time ε/2.
This is because, if M is the running maximum of B, then rec0(B) is the set of points where M = B,
i.e., M −B = 0; by Lévy’s identity, these have the distribution of the set of points where |B| = 0.
That independent Brownian motions almost surely do not share a zero after time ε/2 is implied by
Lemma 5.18, thus completing the proof of Proposition 5.2. �
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[HPS15] Alan Hammond, Gábor Pete, and Oded Schramm. Local time on the exceptional set of dynamical
percolation and the incipient infinite cluster. Annals of Probability, 43(6):2949–3005, 2015.

[Led18] Michel Ledoux. A law of the iterated logarithm for directed last passage percolation. Journal of Theoretical
Probability, 31(4):2366–2375, 2018.

[Mat99] Pertti Mattila. Geometry of sets and measures in Euclidean spaces: fractals and rectifiability. Number 44.
Cambridge University Press, 1999.

[MP10] Peter Mörters and Yuval Peres. Brownian motion, volume 30. Cambridge University Press, 2010.
[MQR21] Konstantin Matetski, Jeremy Quastel, and Daniel Remenik. The KPZ fixed point. Acta Mathematica,

2021+. To appear.
[OY02] Neil O’Connell and Marc Yor. A representation for non-colliding random walks. Electronic communications

in probability, 7:1–12, 2002.
[PS02] Michael Prähofer and Herbert Spohn. Scale invariance of the PNG droplet and the Airy process. J. Statist.

Phys., 108(5-6):1071–1106, 2002. Dedicated to David Ruelle and Yasha Sinai on the occasion of their 65th
birthdays.

[QR13] Jeremy Quastel and Daniel Remenik. Local behavior and hitting probabilities of the Airy1 process.
Probability Theory and Related Fields, 157(3-4):605–634, 2013.

[RS05] Steffen Rohde and Oded Schramm. Basic properties of SLE. Annals of Mathematics, pages 883–924, 2005.
[RY13] Daniel Revuz and Marc Yor. Continuous martingales and Brownian motion, volume 293. Springer Science

& Business Media, 2013.
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