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Abstract. This paper analyzes a random walk model for the level lines appearing in the en-
tropic repulsion phenomena of three-dimensional discrete random interfaces above a hard wall; we
are particularly motivated by the low-temperature (2+1)D solid-on-solid (SOS) model, where the
emergence of these level lines has been rigorously established. The model we consider is a line en-
semble of non-crossing random walk bridges above a wall with geometrically growing area tilts. Our
main result, which in particular resolves a question of Caputo, Ioffe, and Wachtel (2019), is an edge
1:2:3 scaling limit for this ensemble as the domain size N diverges, with a growing number of walks
(including the number of level lines of the SOS model) and high boundary conditions (covering the
maximum upper deviation of the SOS level lines). As a key input, we establish Tracy–Widom-type
upper tail bounds for each of the relevant curves in the line ensemble. An ingredient which may
be of independent interest is a ballot theorem for random walk bridges under a broader range of
boundary values than available in the literature.
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1. Introduction

In this paper, we study a random walk model of the level lines emerging from entropic repulsion
phenomena in the (2+1)-dimensional solid-on-solid (SOS) model above a hard wall at low temper-
ature. Similar entropic repulsion phenomena are expected to appear in a host of low-temperature
interfaces; see [IV18] for discussion. The random walk model in question was introduced by Ca-
puto, Ioffe, and Wachtel in [CIW19a]. Considering the SOS model in a box of side length N , the
level lines appear to fluctuate at scale N1/3 on intervals of length N2/3; moreover, they resemble a
line ensemble of � logN many non-crossing random walks with a floor at zero and geometrically
growing area tilts. Rigorously establishing this picture for the SOS model has been a longstanding
open problem, with the ultimate goal being to show a 1:2:3 edge scaling limit for these level lines.
Our main result (Theorem 1) is such a scaling limit for the random walk model, along with Tracy–
Widom-type upper tail bounds for the top curves (Theorem 2). Before describing our results, we
discuss the SOS model, entropic repulsion in dimension 2 + 1, the aforementioned level lines, and
the connection with line ensembles of area-tilted random walks.
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1.1. Background and motivation. The (2+ 1)D SOS model with zero boundary conditions and
a hard wall at height 0 is a random surface ϕ : J−N,NK2 → Z≥0, where J−N,NK := [−N,N ] ∩ Z,
with the probability of a given instance of ϕ proportional to

exp
(
− β

∑
x∼y
|ϕ(x)− ϕ(y)|

)
.

Here, β > 0 is the inverse temperature, the sum is over all pairs of adjacent sites x, y ∈ Z2, and we
set ϕ(x) = 0 for all x 6∈ J−N,NK2 (zero boundary conditions). The “hard wall” at height 0 refers
to the restriction of the values of ϕ to the nonnegative integers Z≥0. The model (without a wall)
was introduced in the 1950s (see [BCF51, Tem52]) as a low-temperature (large β) approximation
of the random surface separating the macroscopic + and − phases in the 3D Ising model on a cube
with Dobrushin boundary conditions: + spins above the xy-plane and − spins below it.

Dimension 2 + 1 for the SOS model is of special importance, as it is the unique dimension in
which the no-floor model exhibits a roughening transition: as N → ∞, at low temperature the
surface stays flat and localized (ϕ(x) = O(1) for typical x), while at high temperature the surface
becomes rough and delocalized (ϕ(x) diverges for typical x). These two phases were established in
[BW82] and [FS81a, FS81b] respectively; establishing the roughening transition for the 3D Ising
model remains a major open problem. See also [Lam22] showing sharpness of the phase transition.

1.1.1. Entropic repulsion in the SOS model above a hard wall. Introducing a wall at 0 in the low-
temperature setting of the (2 + 1)D SOS model results in behavior drastically different from the
flat geometry of the no-wall model, in a phenomenon known as entropic repulsion. This was first
observed by [BEMF86], who showed that the surface raises in height so that ϕ(x) is typically of
order logL for x in the bulk, due to the increased entropy of the class of such height functions.

Subsequently, a more detailed picture was obtained in [CLM+12, CLM+14, CLM+16], described
as follows. For large enough β, with high probability, the surface becomes rigid at a deterministic
height h, where h is either H(N) := b 1

4β log(2N)c or H(N)− 1. Moreover, the surface resembles a
wedding cake, featuring h layers of height 1 stacked on top of one another. Viewed from above, the
boundaries of the layers form a collection of concentric loops in R2 which are called level lines, as
the boundary of the layer at height h ∈ {1, . . . , h} delineates between macroscopic phases of height
≤ h and ≥ h + 1 in the surface. The innermost level line loop encloses a (1 − εβ)-fraction of sites
in J−N,NK2, where εβ ↓ 0 as β ↑ ∞. Upon scaling [−N,N ]2 to [−1, 1]2, the level lines admit a
scaling limit consisting of a nested collection of Wulff shapes, which in particular feature four flat
facets: the Wulff shapes all coincide with the boundary of the box except near the four corners, as
illustrated in Figure 1.

1.1.2. Fluctuations of SOS level lines. We are interested in the fluctuations of the level lines away
from these flat facets. In particular, zoom in, say, around the center of the bottom boundary of
the box. The level lines restricted to this region form a stacked collection of non-crossing open
contours, so that the top contour γ1 in this stack is the restriction of the innermost level line to
this region. From now on, level lines will be identified with their restriction to this region. Let γi
denote the ith level line from the top of this stack.

In [CLM+16], the fluctuations of γ1 were shown to be, with high probability, at most N1/3+ε

above the bottom boundary, for any ε > 0. In the recent work [CKL24], the fluctuations of γ1
were shown to be bounded from below by N1/3 on intervals of size N2/3. It is an interesting open
problem to prove a matching upper bound, which is complicated by the fact that the h− 1 � logN
many level lines below γ1 have the capacity to push γ1 upwards. However, our results here for the
area-tilted random walk model suggest that N1/3 should indeed be the correct scale.
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Figure 1. Left: an illustration of the limit shape of the SOS level lines after rescaling to
[−1, 1]2. The loops 1

N γi converge to the nested Wulff shapes shown here. The limit shape
is flat for all level lines on central (1 − δβ)-portions of each side of the box (cyan), where
δβ ↓ 0 as β ↑ ∞. Right: the effective random walk model (1.2) of the level line fluctuations
about their flat limit shape, as seen by zooming in on the blue dashed region in the figure
on the left. In this region the level lines appear as a stack of ordered open contours above a
floor. In an effective approximation one assumes these contours to be height functions with
respect to the horizontal axis (ignoring possible microscopic overhangs), as shown here.

1.1.3. SOS level lines and area tilting. The following effective “area tilt” description of the joint
law of the level lines was derived in [CLM+16]:

P(γ1, . . . , γh) ∝ exp
(
−

h∑
i=1

β|γi| −
h∑
i=1

a

N
bi−1|Ai|

) h∏
i=1

Ẑ∆i
, (1.1)

where a = aβ > 0 and b = e4β are constants (note h � logbN), Ai is the region outside of γi, and
Ẑ∆i

is the partition function for a certain SOS model with no wall on ∆i := Ai−1 \Ai. We briefly
sketch the origin of (1.1); see [CLM+16, Section 1.3], [CIW19a, Section 1.2] for further details.

The first term is an energy contribution that arises directly from the SOS Hamiltonian, since the
surface height jumps by height (at least) 1 across each level line. The second term is referred to as a
geometric area tilt: |Ai| is the area of the region outside of the contour γi, and the prefactor a

N b
i−1

is geometrically increasing with the curve index. This term arises from the hard wall constraint: on
a heuristic level, as level lines get closer to the boundary, they encompass more sites, increasing the
entropy as these sites can feature pits going down towards the hard wall. Sites encompassed by level
lines of higher curve index (corresponding to lower layers of the surface) cannot feature as-large
pits, and so such level lines feel a greater reward for the area they encompass, or equivalently, a
larger penalty for the area |Ai| they do not encompass.

After removing these area terms, one is left with the no-wall factors Ẑ∆i
. Cluster expansion can

be applied to each of these, resulting in a complicated interaction term Φ(γ1, . . . , γh), which itself
is made up of terms that cause the level lines to both repel and attract. In principle, the effect
of Φ should be negligible in the low-temperature regime, though rigorously showing this is highly
nontrivial. See [ISV15, CKL24] where this is shown for an SOS model with a single level line.

1.1.4. A random walk model. Per the last paragraph, we shall ignore the Ẑ∆i
terms in (1.1) to

produce our effective random walk model. Return to the region of the box around the center of
its bottom boundary, as in Section 1.1.2, where the level lines form a stack of non-crossing open
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contours and are asymptotically flat. Rescale the box and shift it upwards so that the bottom
boundary in this region is J−N,NK× {0}. Eq. (1.1) leads to our random walk model as follows.

If one assumes that the contours γi are single-valued, i.e., are height functions on J−N,NK,
then the factor exp(−β|γi|) from (1.1) is simply the probability that a random walk with transition
probability p(x) ∝ exp(−β|x|) follows the trajectory γi. (Indeed, random walk behavior is a feature
of low-temperature interfaces [IV18]. In a variety of models featuring a single interface, a coarse-
graining strategy known as Ornstein–Zernike theory has been implemented to actually obtain a
coupling between the interface and a random walk; this was pioneered by Campanino, Ioffe, and
Velenik in [CI02, CIV03, CIV08] and implemented in the setting of the SOS model with boundary
conditions resulting in a single level line in [IV08, IST15, CKL24].) The term |Ai| is then the area
enclosed between the random walk and the floor at 0.

This leads to the following random walk model for the SOS level lines; see Figure 1 for an
illustration. Fix a > 0 and b > 1. Let Pu,v

n,N denote the law of n = n(N) → ∞ (for instance
n = H(N)) many independent mean zero random walk bridges X1, . . . , Xn on J−N,NK with a
fixed common transition probability and suitable boundary conditions u = (u1 ≥ · · · ≥ un ≥
0),v = (v1 ≥ · · · ≥ vn ≥ 0) ∈ Rn at −N and N (for instance max(u1, v1) ≤ N1/3+ε, in accordance
with the aforementioned upper bound on SOS level line fluctuations). We then define a new non-
crossing area-tilted line ensemble measure Pa,b;u,vn,N ;0 by the Radon–Nikodym derivative

dPa,b;u,vn,N ;0
dPu,v

n,N

∝ exp
(
− a

N

n∑
i=1

bi−1A(Xi)
)
1X1(j)≥···≥Xn(j)≥0 ∀j∈J−N,NK, (1.2)

where A(Xi) =
∑N
j=−N Xi(j) is the (discrete) area between Xi and the floor at zero.

1.1.5. Candidate for the scaling limit. Though establishing an edge scaling limit (or even tightness
around N1/3) for the law of the SOS level lines remains a challenging open problem, one can con-
struct a candidate measure for the scaling limit. A natural candidate is the putative diffusive scaling
limit of (1.2) on compact windows as N →∞. The definition (1.2) can be naturally viewed as the
prescription of a Gibbs measure. The Gibbs property is simply that for an interval Jj, kK of curve in-
dices on a spatial interval J`, rK ⊆ J−N,NK, the conditional distribution of (Xj , . . . , Xk)|J`,rK, given
{Xi(x) : (i, x) 6∈ Jj, kK×J`, rK}, is that of k−j+1 independent random walk bridges with endpoints
prescribed by the conditioning, reweighted by the area tilt factor exp(− a

N

∑k
i=j b

i−1∑r
j=`Xi(j))

and conditioned to not cross each other, Xj−1, or Xk+1. Therefore, one would expect the scaling
limit of (1.2) to be an infinite-volume Gibbs measure involving Brownian paths.

Such an infinite-volume Gibbs measure µa,b was constructed, and later characterized, across a
series of works [CIW19a, CIW19b, DLZ24, CG25] via a continuum Brownian analogue of the model
(1.2) with n lines on a compact interval [−T, T ], sending n, T → ∞. The measure µa,b thus has a
Gibbs property in terms of area-tilted, non-intersecting Brownian bridges; see Definition 2.9.

The question of convergence under 1:2:3 scaling at the edge of the area-tilted random walk
ensemble (1.2) to the Gibbs state µa,b was originally posed in [CIW19b, Section 3.5.3]. The discrete,
non-Gaussian nature poses several challenges compared to the Brownian model. For instance, the
fluctuation scale N1/3 on intervals of length N2/3 does not appear in the above works on the
Brownian model: in a sense, diffusive scaling of the random walk model has already occurred to
obtain the Brownian model. Our main theorem, stated in Section 1.2, resolves the question of
[CIW19b]. We make a detailed comparison of our work and past works in Section 1.3.

1.2. Main results. The goal of the present paper is to establish convergence to the measure
µa,b, described in Section 1.1.5, under 1:2:3 scaling for the area-tilted random walk ensemble for
a wide range of boundary conditions and number of curves. We comment on the precise range of
parameters and their significance in Remark 1.3.
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We give a slightly simplified version of our main result here, with a more general statement
given in Theorem 2.13 below. The result applies to a broad class of both lattice and nonlattice
random walks satisfying certain technical conditions, detailed in Assumptions 2.1 and 2.2. In short,
we require the increment distribution to have a log-concave probability mass/density function,
with mean 0 and finite exponential moments (in particular finite variance σ2). The log-concavity
condition (Assumption 2.1) is needed for the sole purpose that it implies a stochastic monotonicity
result (Lemma 3.2); that is, we could have assumed the conclusion of Lemma 3.2 and removed
Assumption 2.1. For instance, our results also apply to the simple random walk, which satisfies
monotonicity as shown in the proof of Lemma 3.2.

Below, we make the random walk trajectories of the line ensemble continuous functions by linear
interpolation. The topology of uniform convergence on compact sets means we require convergence
of the law of any finite number of top curves on any compact interval. We let Wn

0 := {x ∈ Rn :
x1 ≥ · · · ≥ xn ≥ 0} denote the nonnegative Weyl chamber in Rn.

Theorem 1. Fix a > 0, b > 1, and ε ∈ (0, 1). For N ∈ N, consider the line ensemble of n area-
tilted random walk bridges (X1, . . . , Xn) on J−N,NK with law Pa,b;u,vn,N ;0 as given by (1.2), satisfying
Assumptions 2.1 and 2.2, and with boundary conditions u,v ∈Wn

0 satisfying max(u1, v1) ≤ N1−ε.
There exists δ = δ(ε) > 0 such that for any sequence n = n(N) ∈ N satisfying n → ∞ as
N → ∞ and n ≤ N δ, the law of the rescaled line ensemble (xN1 , . . . , xNn ) given by xNi (t) :=
σ−2/3N−1/3Xi(tσ−2/3N2/3) converges weakly as N →∞ to the infinite-volume Gibbs state µa,b, in
the topology of uniform convergence on compact sets.

A crucial input for the proof of Theorem 1 is a quantitative estimate: an upper tail bound on
the top curves of the line ensemble away from N1/3 on intervals of size N2/3. This constitutes
our second main result, Theorem 2, which features the Tracy–Widom tail exponent 3/2. A more
general statement is given ahead as Theorem 2.14.

Theorem 2. Suppose the random walk increment distribution satisfies Assumptions 2.1 and 2.2.
Fix a0 > 0, b0 > 1, ε ∈ (0, 1), and t ∈ R. There exist positive constants δ = δ(ε), K0 =
K0(a0, b0, ε), and c = c(a0, b0) such that the following holds. For any a ≥ a0, b ≥ b0, there exists
N0 = N0(a, b, ε, t) ∈ N so that for all N ≥ N0, n ≤ N δ, u,v ∈ Wn

0 with max(u1, v1) ≤ N1−ε,
j ≤ min(n, ε10 logbN), and K ∈ [K0, N

2/3−ε],

Pa,b;u,vn,N ;0

(
Xj(tN2/3) > Ka−1/3b−(j−1)/3N1/3

)
≤ e−cK3/2

.

The proofs of Theorems 1 and 2 are given following the statement of Theorem 2.14.

Remark 1.1. Our arguments show that the same one-point tail bound in Theorem 2 holds for
Xj(x) at any x ∈ J−(1 − η)N, (1 − η)NK, for any η ∈ (0, 1). The bound for the top curve X1
is optimal up to the constant c: the matching lower bound follows from an estimate on a single
area-tilted walk, discussed in Remark 5.3. Furthermore, for each j, the fluctuation scale and 3/2
exponent in the tail decay match those obtained for the Brownian model in [CG25, Corollary
3.2] (they also obtain an explicit value for c in the exponent). Lastly, for each j, the fluctuation
scale a−1/3b−(j−1)/3 is also the optimal fluctuation scale for a single area-tilted random walk with
parameter abj−1, the same area tilt experienced by Xj ; see [HV04, Theorem 1.2] or Theorem 5.1.

Remark 1.2 (Parabolic decay of the random walks). Theorems 2.13 and 2.14 are the expanded
versions of Theorems 1 and 2. There, we state the results for line ensembles on intervals with
length as small as LN2/3, with L ≥ (logN)1/3+γ , and boundary conditions that may all be as
large as L2−κN1/3, for arbitrarily small γ, κ > 0. Modulo the κ factor, this implies that after 1:2:3
scaling, all curves of the line ensemble decay parabolically (on average) from high points before
reaching equilibrium (i.e., descend from L2−κ to O(1) in time L). This is expected to be the
truth: for an area-titled Brownian excursion, such parabolic decay follows quickly from a Girsanov
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transformation (see Remark 1.3). Because we do not have any analogue of Girsanov for our model,
a crucial step is to develop a more robust argument to establish this roughly parabolic decay.

Remark 1.3 (Range of parameters, relevance to SOS level lines). Here, we describe how the ranges
of our parameters in Theorems 2.13 and 2.14, discussed in Remark 1.2, were chosen sufficiently wide
so as to address various features of the SOS level lines.

First, we treat boundary conditions much larger than the typical scale N1/3 due to the afore-
mentioned existing upper bound on the fluctuation of the top SOS level line being N1/3+ε, for any
ε > 0 (see Section 1.1.2, [CLM+16, Theorem 3]). Moreover, near the corners of [−N,N ]2, the level
lines lie at distance O(N) from the boundary of the box. Because we handle boundary conditions
up to N1−ε on intervals of size � N , our random walk model can describe the behavior of the level
lines as soon as one looks away from the corners (i.e., as soon as the level lines become � N).

This range of boundary conditions is nearly optimal for establishing convergence to the time-
stationary Gibbs state µa,b, which is the result of Theorem 1. For the Brownian model on an interval
[−T, T ], the recent work [BRCCG23] shows that if one pushes to the parabolic scale, there is a
two-parameter family of limiting Gibbs states µL,Ra,b corresponding to boundary conditions T 2−LT
at −T and T 2 −RT at T , where L+R > 0. In our setup on the interval [−N,N ] this corresponds
to boundary conditions N − LN2/3 and N − RN2/3. Our bound of N1−ε shows that essentially
any boundary conditions below this scale will result in the stationary Gibbs state.

Second, the significance of considering the random walk model on intervals as small as scale1

N2/3 (as opposed to N , which is the size of the flat facets of the SOS level lines as mentioned
in Section 1.1.1, and would be easier to analyze due to the slower rate of descent required) is as
follows. With existing technology, a representation such as (1.1) for the SOS level lines as area-tilted
polymers is only valid in boxes of side length at most N2/3+η, where η ∈ (0, 1/10) (see [CLM+16,
Proposition A.1]). Therefore, currently, any hope of obtaining a 1:2:3 scaling limit of the SOS level
lines by coupling with area-tilted random walks (e.g., via the Ornstein–Zernike machinery) must
occur on intervals of size ≤ N2/3+η. It is therefore of interest to determine whether or not a 1:2:3
scaling limit (which we recall refers to vertical scaling by N1/3 and horizontal scaling by N2/3) for
the random walk model could be obtained on such small intervals, even with boundary conditions
reflecting the “worst-case scenario” of the known upper bound on the maximum deviation of the
top SOS level line (N1/3+ε, far above the size of the vertical scaling), and a diverging number of
walks (exceeding h � logbN). Theorems 2.13 and 2.14 answer this in the affirmative.

Lastly, we mention that the restriction n ≤ N δ on the number of random walks is a result of our
proof strategy. Since n ≤ N δ is already well beyond the h � logbN many SOS level lines, we do
not attempt to loosen this condition.

1.3. Related work. A number of works have considered idealized models of interfaces in terms of
non-crossing random walks with area tilts. The case of a single random walk conditioned to stay
above a floor at zero subject to an area tilt was considered in [HV04, ISV15] (including generalized
nonlinear area tilts). The work [HV04] established estimates on the upper tail, enclosed area,
decorrelation, and mixing. Under 1:2:3 scaling as above, [ISV15] showed weak convergence as
N → ∞ to a stationary diffusion on R called the Ferrari–Spohn (FS) diffusion, first constructed
in [FS05] as the scaling limit of the gap between a Brownian bridge and a parabolic floor. This
single area-tilted walk can be understood as a proxy for the interface in the 2D Ising model at
critical prewetting or in the SOS model above a hard wall with one level line. The Ising interface
was coupled with an area-tilted random walk and shown to converge under 1:2:3 scaling to the FS
diffusion in [IOSV22]; analogous results for the single SOS level line were shown in [CKL24].

A model of multiple interacting area-tilted walks as a proxy for SOS level lines was first analyzed
in [IVW18]. The model considered there consists of a fixed number n of non-intersecting random

1To be precise, we can handle intervals as small as N2/3(logN)1/3+γ , for any γ > 0, as laid out in (2.7).
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walks subject to a common area tilt, i.e., with b = 1 in (1.2); we refer to [IV18, FS23] for inter-
pretations of this model in terms of Ising-type interfaces without a hard wall. Weak convergence
was shown in [IVW18] to a determinantal process consisting of n non-intersecting copies of the
Ferrari–Spohn diffusion, known as the Dyson Ferrari–Spohn diffusion. It was recently shown in
[DS25] that as the number of curves n tends to∞, the Dyson FS diffusion converges after a vertical
shift to the Airy line ensemble, a fundamental object in the KPZ universality class first constructed
in [CH14]. A significant technical simplification arises from the adoption of a common area-tilt pa-
rameter (taking b = 1) in these works, as the marginal distribution of the curves (before imposing
non-intersection) is the same, which allows access to integrable tools such as the Karlin-McGregor
formula. This determinantal structure is not present in the case b > 1 considered here.

In [CIW19a, CIW19b] was proposed a model which considers geometrically growing area tilts,
albeit with Brownian motions instead of random walks, in a further idealization of the discrete
SOS level lines. Let us describe the model in more detail. Let n ∈ N, x1 ≥ · · · ≥ xn ≥ 0, and
y1 ≥ · · · ≥ yn ≥ 0, and fix parameters a > 0 and b > 1. Consider the probability measure given
by n independent Brownian bridges B1, . . . , Bn on an interval [−T, T ], with Bi having boundary
values xi and yi, reweighed by the Radon–Nikodym derivative proportional to

exp
(
− a

n∑
i=1

bi−1A(Bi)
)
1B1(t)>···>Bn(t)>0 ∀t∈(−T,T ), (1.3)

where A(Bi) =
∫ T
−T Xi(t) dt is the area enclosed between Bi and the floor at 0. These objects

are referred to in short as “Brownian polymers.” In [CIW19a], weak convergence of the Brownian
polymer law to a unique limit, namely the measure µa,b discussed above, was established as T, n→
∞ for the special case of zero boundary conditions. For the case of “free” boundary conditions,
tightness in T, n was established for the model in [CIW19b], and [DLZ24] established convergence
to the same law µa,b, albeit with the requirement that T → ∞ before n → ∞ (unlike in the SOS
model where n diverges with T ). The recent work [CG25] strengthened these results, in particular
proving convergence to µa,b for free boundary conditions as T, n→∞ in any order. We note that
each of these works rely in a significant way on Brownian tools, such as scaling invariance, exact
Gaussian formulas, and Girsanov transformations, which are not available in the random walk case.

Various important properties of the limit law µa,b were additionally proven in [CG25], including
Tracy–Widom-type upper tails with exponent 3/2, as well as strong mixing and ergodicity. That
work also proved a strong characterization of µa,b, showing in particular that it is the unique such
infinite-volume Gibbs state which is stationary in time (up to deterministic vertical shifts). We
also mention again the recent work [BRCCG23], which establishes a complete characterization of
the class of area-tilted Brownian Gibbs states; see Remark 1.3 above.

Returning to the discrete setting, the work [Ser23a] made progress on the scaling limit for
area-tilted walks, but like [DLZ24], required N → ∞ before n → ∞. This allowed the use of
rather strong mixing estimates adapted from [IVW18], which have complicated dependence on the
number of curves and are only effective for n fixed. By contrast, in Theorem 1 we allow n to
diverge simultaneously with N , as is expected in the SOS model, requiring a substantially more
delicate analysis. In particular, the mixing estimates used in [Ser23a] bypass the need for any other
quantitative estimates on the line ensemble with n diverging, such as our Theorem 2 here.

1.4. Proof ideas. In this section we give a brief overview of the ideas underlying the proof of
Theorem 1. Ultimately, we must establish the existence of weak subsequential limits of the ensemble
and that all such subsequential limits are µa,b. For the latter, we make use of [CG25, Theorem 3.7]
(Theorem 2.12 here), which roughly says that µa,b is the unique law on line ensembles of N-indexed
continuous curves with the above Brownian Gibbs property for which the jth curve converges to 0
as j →∞ and for which there is uniform one-point upper tail control on the top curve.
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Thus the main points to establish are (i) that the prelimiting rescaled line ensemble is tight, and
(ii) upper tail bounds on the jth curve. Of course, (ii) is needed to establish (i), so we begin there
and outline the proof of Theorem 2.

1.4.1. Reduction to single-curve estimates via stochastic monotonicity. The basic strategy is as
follows: construct a sequence of “ceiling” functions Clj such that, with high probability (w.h.p.),
Xj(x) ≤ Clj(x) for all j and x. We do this recursively, via a sequence of estimates for a single
area-tilted walk. Suppose we have already shown Xj+1 ≤ Clj+1 w.h.p. To show Xj(x) ≤ Clj(x)
for all x, we apply the Gibbs property and a stochastic monotonicity statement for area-tilted line
ensembles (Lemma 3.2 and Remark 3.3) to replace Xj+1 with a floor at Clj+1 and also remove
the top j − 1 curves, resulting in a single area-tilted walk. Thus, it suffices to prove the following:
letting λj denote the area-tilt parameter of Xj , a walk with area tilt λj conditioned to stay above
Clj+1 is pointwise dominated by Clj w.h.p. summable in j. This is Proposition 6.4. This stochastic
monotonicity property plays a central role in our arguments and has also been a common feature
of the majority of models of line ensembles considered in the past. The condition on the random
walk increments that we impose to ensure this property is Assumption 2.1.

The construction of the ceiling Clj on a random walk with area tilt λj given a floor at Clj+1 is
based on the following idea: at a typical point x in the “bulk” of the interval (away from the high
boundary conditions), the walk should stay at height ≈ Hj + Clj+1(x), where Hj := λ

−1/3
j N1/3 is

the fluctuation scale for a random walk with area tilt λj and floor at 0. Thanks to the geometric
relation

∑
i≥j Hi ≤ CHj , one can then hope to recursively construct each Clj on scale Hj . As the

interval is much longer than H2
j , atypically high fluctuations at random locations force an extra

logarithmic factor, and ultimately in the bulk we obtain Clj(x) ≈ Hj log(|x|/H2
j )2/3. In particular,

we choose our ceilings to be non-decreasing in |x|. We now explain how we construct these ceilings.

1.4.2. High boundary conditions and dropping estimates. It is a key result requiring several inputs
that, as a consequence of the area tilt, the walk Xj(x) drops as |x| → 0 just as Clj+1(x) does. This
is far from immediate due to the lack of a Girsanov transformation, which for Brownian models
converts the area tilt into a parabolic drift like −x2. Moreover, complications arise because we
consider very high boundary conditions (far above the usual fluctuation scaleHj) on relatively short
intervals, i.e., we need the dropping to occur at a certain speed. Allowing such boundary conditions
is motivated in Remark 1.2; however, it is in fact necessary to consider boundary conditions at scale
Hj(logN)2/3 � Hj , roughly because we must perform Gibbs resampling at many random points,
which may have atypically high fluctuations as mentioned above. Treating such high boundary
conditions precludes us from directly applying existing results on area-tilted random walks.

In Lemma 4.2, the “dropping lemma,” we manifest the area tilt in a dropping effect for random
walk bridges on intervals I above a floor at zero. The lemma constructs a “drop point” x such that
Xj(x) lies at scale CHj above the flat floor; however, the location of this point x is random inside
an interval of length C−1|I|, and also in our application the floor is not flat (it is Clj+1). Thus, there
is some delicacy in the application of the lemma. Using another recursive scheme, we produce a
mesh of appropriately spaced deterministic points along which the walk drops successively from its
high boundary conditions. At mesh points x(k) in the bulk, we show Xj(x(k)) ≈ Hj + Clj+1(x(k)).
A detailed outline of this procedure is given in Section 6.1.

We fill in the mesh using a bound on the maximum fluctuations of an area-tilted random walk
bridge (Corollary 5.2). Corollary 5.2 follows from a one-point upper tail bound of Tracy–Widom
exponent 3/2 (Theorem 5.1). Such an estimate appeared in [HV04] for a more general class of
area-tilted random walks; we adapt their proof strategy to handle the high boundary values and
short interval sizes we consider. Simplifications can be made thanks to stochastic monotonicity.

1.4.3. Partition function lower bound and ballot theorem. The key input for the proof of the drop-
ping lemma (Lemma 4.2) is a suitably precise lower bound on the partition function of a single
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area-tilted random walk on an interval I ⊆ J−N,NK with tilt parameter λ > 0 and boundary con-
ditions u, v ≥ 0 (Proposition 4.1). Here we allow u and v to be as large as H3

λ := λ−1N (the start
of the large deviations regime). Estimates for such partition functions appeared in [HV04, ISV15],
though with boundary conditions O(Hλ).

The proof relies on controlling the random walk bridge on carefully chosen subdiffusive scales so
as to force a parabolic descent. This in turn makes use of ballot theorems for random walk bridges,
i.e., upper and lower bounds on the probability that a bridge on J−N,NK with boundary values x
and y stays above 0 for its entire lifetime. In the case of the simple random walk, it is well known
that this probability behaves like xy/N . While such ballot theorems have been studied for a much
more general class of walks a number of times previously (e.g., see [ABR08] and references therein),
they have focused on the case of diffusive boundary conditions, i.e., x, y = O(N1/2). To handle our
high boundary conditions, we require a ballot theorem for general random walk bridges that also
covers the case max(x, y)� N1/2 but xy � N . We establish such a ballot theorem in Theorem 3.6
using monotonicity and again by analyzing the random walk bridge on a subdiffusive scale.

1.4.4. Tightness, limiting Gibbs property, and convergence. Once Theorem 2 has been proven, the
final ingredient to establish Theorem 1 is to show tightness of the rescaled line ensemble and that
all subsequential limits have the Brownian Gibbs property. Indeed, if we do so, then a result of
[CG25] (included in Theorem 2.12 here) characterizing µa,b guarantees that all weak subsequential
limits are µa,b, as the above upper tail control will imply the conditions of the characterization.

For tightness, given the upper tail control outlined above and the fact that the curves are
deterministically lower bounded by 0, we only need to show a uniform modulus of continuity
bound. Given the prelimiting Gibbs property, the idea (as has been used in many previous works
on tightness of line ensembles) is to transfer the modulus of continuity estimates known for the
base measure of independent random walk bridges by controlling the Radon–Nikodym derivative
appearing in the Gibbs property. Essentially, this comes down to controlling a partition function
of the form implicitly appearing in (1.2) (though on an interval on scale N2/3 rather than N).

There are by now many arguments establishing such statements for Brownian models (e.g.
[CIW19b, CH14]) and also discrete ones [DFF+21, DW21b, Ser23b]. The existing arguments in
discrete models generally have made use of a strong KMT coupling result for random walk bridges
[DW21a] (i.e., a quantitative coupling with Brownian bridge), which would require us to impose
stronger assumptions on the increment distribution (and would exclude distributions of the form
exp(−β|x|) as one might heuristically expect to arise in approximations to the SOS level lines).

Here we give a shorter, more streamlined proof of tightness that relies only on monotonicity
and an invariance principle for random walk bridges, requiring very minimal assumptions on the
increment distribution. Our argument is a simplification of an argument in [ACH24], which is
possible due to the full monotonicity property we have at our disposal (in contrast to [ACH24]).

Finally, showing that the prelimiting Gibbs property becomes the Brownian Gibbs property in
the limit is a standard application of an invariance principle for finitely many area-tilted random
walks on the diffusive scale, which we adapt from [Ser23a].

We now outline the remainder of the paper. In Section 2, we define the area-tilted line ensembles
we consider, specify the full range of parameters we address, and then state Theorems 2.13 and 2.14,
which are the expanded versions of Theorems 1 and 2, respectively. We then prove Theorem 2.13
given Theorem 2.14, tightness, and the Gibbs property for subsequential limits. In Section 3, we
develop basic results on random walks and bridges, stochastic monotonicity (Lemma 3.2), and the
ballot theorem for arbitrarily high boundary conditions (Theorem 3.6). Section 4 is devoted to the
partition function lower bound (Proposition 4.1), from which the dropping lemma (Lemma 4.2)
follows. In Section 5, we establish the one-point (Theorem 5.1) and maximum (Corollary 5.2)
upper tail bounds on the single area-tilted random walk bridge. In Sections 6 and 7, we prove
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Theorem 2.14 using the recursive scheme outlined above. In Section 8, we establish tightness
and the Gibbs property for subsequential limits. Lastly, in Appendix A we prove the stochastic
monotonicity statement Lemma 3.2.

Notational conventions. We lay out some notation that will be used throughout the paper. We
implicitly work on a fixed probability space (Ω,F ,P). We write E for expectation with respect
to P and 1E for the indicator of an event E ∈ F . The complement of E is denoted ¬E. For
a random variable X and a probability measure Q, we write X ∼ Q to mean that X has law
Q. For a topological space Y , we let C(Y ) denote the space of continuous functions Y → R,
which we endow with the topology of uniform convergence on compact sets and the induced Borel
σ-algebra. By N we mean the set of positive integers. For two real numbers ` < r, we write
J`, rK := {j ∈ Z : b`c ≤ j ≤ dre}. We denote the length of an interval I by |I|. We usually denote
vectors by boldface and their components by italics, e.g., x = (x1, . . . , xn). Lastly, we use C and
c to denote positive constants that may change from line to line and are universal in the following
sense: neither C nor c depend on N , the curve index j, a ≥ a0, or b ≥ b0 (though they may depend
on a0, b0, and other parameters).

Acknowledgments. We thank Yvan Velenik for a useful explanation of aspects of his related work.
C.S. thanks Amir Dembo for several helpful conversations about this project. M.H. was partially
supported by the NSF through grants DMS-1937254 and DMS-2348156. Y.H.K. acknowledges
the support of a Junior Fellowship at Institut Mittag-Leffler in Djursholm, Sweden, during the
Fall semester of 2024, funded by the Swedish Research Council under grant no. 2021-06594. C.S.
acknowledges fellowship support from the Northern California Chapter of the ARCS Foundation.
Part of this work was completed during the workshop “Universality and Integrability in KPZ” at
Columbia University, March 2024, supported by NSF grants DMS-2400990 and DMS-1664650.

2. Setup, Gibbs property, and main results

Here we define the line ensembles we consider and state detailed versions of Theorems 1 and 2.

2.1. Random walk setup. We work with random walk bridges X on an interval J`, rK with
boundary conditions u, v ∈ R. It will be convenient to describe the random walk increments as an
exponential of a random walk Hamiltonian. Fix a function HRW : R → R ∪ {+∞}. For a possible
random walk bridge trajectory X = (X(`), . . . , X(r)) ∈ Rr−`+1, define

p`,r(X) = exp
(
−
r−1∑
j=`

HRW(X(j + 1)−X(j))
)
. (2.1)

We consider random walk bridges of two types:
(1) (Lattice) Fix u, v ∈ Z. The random walk bridge is supported on integer-valued trajectories

X ∈ Zr−`+1 with X(`) = u, X(r) = v, and probability mass proportional to p`,r(X).
(2) (Nonlattice) The random walk bridge X has density proportional to δu(X(`)) · p`,r(X) ·

δv(X(r)) with respect to Lebesgue measure on Rr−`+1.
In the lattice case, HRW need only be defined on Z. We make the following additional assumptions:

Assumption 2.1. The function HRW : R→ R ∪ {+∞} is convex. (In the lattice case, this means
that the linear interpolation of HRW between integers is convex.)

Assumption 2.2. The random walk increment distribution has zero mean, finite variance σ2 > 0,
and finite moment generating function near zero. That is,
(Lattice) Let Zlat =

∑
k∈Z e

−HRW(k). Assume Zlat ∈ (0,∞), and for t in a neighborhood of 0,∑
k∈Z

ke−HRW(k) = 0 , Z−1
lat

∑
k∈Z

k2e−HRW(k) = σ2 ∈ (0,∞) , and
∑
k∈Z

etke−HRW(k) <∞ .
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(Nonlattice) Let Znl =
∫
R e
−HRW(x) dx. Assume Znl ∈ (0,∞), and for t in a neighborhood of 0,∫

R
xe−HRW(x) dx = 0 , Z−1

nl

∫
R
x2e−HRW(x) dx = σ2 ∈ (0,∞) , and

∫
R
etxe−HRW(x) dx <∞ .

Remark 2.3. Assumption 2.1 along with the zero mean condition in Assumption 2.2 force the
support of the increment distribution to be a contiguous interval (in Z or R) containing 0. In
particular the walks are aperiodic, so there will always exist C > 0 depending only on HRW so that
the bridge from (`, u) to (r, v) is well-defined as long as |u− v| ≤ C(r − `). Likewise, non-crossing
bridges with boundary conditions u,v are well-defined as long as |ui − vi| is not too large for each
i. We will always implicitly assume boundary conditions for which the bridges are well-defined.
2.2. Line ensembles and known results. Fix N ∈ N and an interval I = J`, rK ⊆ J−N,NK,
where `, r ∈ Z and ` < r. By a discrete line ensemble, we mean a collection X = (X1, . . . , Xn) of
paths Xi : I → R. For j ∈ I we write X(j) = (X1(j), . . . , Xn(j)). These can be identified with
elements of Rn|I| (or Zn|I| in the lattice case).

For n ∈ N and u,v ∈ Rn, we let Pu,v
n,I denote the law of X = (X1, . . . , Xn), where Xi are

independent random walk bridges on I with increments satisfying Assumptions 2.1 and 2.2, Xi(`) =
ui, and Xi(r) = vi. We now define the area-tilted line ensembles that are the focus of this paper.
For y ∈ R, define the closed Weyl chamber Wn

y by
Wn
y := {x ∈ Rn : x1 ≥ x2 ≥ · · · ≥ xn ≥ y} .

Definition 2.4. Fix two area tilt parameters a > 0 and b > 1 and a floor h : I → R. Let u ∈Wn
h(`)

and v ∈Wn
h(r), recalling I = J`, rK. Define the area under Xi by

A(Xi) :=
r−1∑
j=`

[Xi(j)− h(j)], (2.2)

and define the non-crossing event NC := {X(j) ∈Wn
h(j) for all j ∈ I}. We then define the measure

Pa,b;u,vn,I;h on discrete line ensembles by the Radon–Nikodym derivative

dPa,b;u,vn,I;h
dPu,v

n,I

(X) = 1
Za,b;u,vn,I;h

exp
(
− a

N

n∑
i=1

bi−1A(Xi)
)
1NC(X),

where the partition function Za,b;u,vn,I;h is the normalizing constant necessary to make Pa,b;u,vn,I;h a prob-
ability measure. We will use Ea,b;u,vn,I;h to denote expectation with respect to this measure.

Note the implicit dependence of these measures on the parameter N in the area tilt, which
we omit from the notation for brevity. As above, we implicitly assume that u,v, h are such that
Za,b;u,vn,I;h > 0, for which it suffices to assume Pu,v

n,I (NC) > 0. (Note that trivially Za,b;u,vn,I;h ≤ 1.)

Remark 2.5 (Notation for measures). We will simplify the above notation in various situations by
removing superfluous indices. When the interval I is symmetric, I = J−M,MK, we often write M
instead of I in the subscript, e.g., Pa,b;u,vn,M ;h . When n = 1, we drop the subscript of n. The parameter
b plays no role when n = 1, so we omit it from the superscript. We usually write λ instead of a
for the area tilt coefficient in this case. When λ = 0, i.e., a bridge with floor h and no area tilt, we
omit λ from the superscript. Finally, we sometimes consider random walks with no conditioning
at the endpoint; we let PuI denote the law of a random walk on I started at u. (Strictly speaking
only the left endpoint of I is relevant, but as we often convert between walks and bridges we will
write the whole interval for clarity.) We summarize the notation in the table below.

We will often abuse notation slightly by writing for instance Pu,v[`,r] to mean Pu,vJ`,rK in order to
slightly declutter notation. In all of these cases, we replace P with E to denote expectation and
with Z to denote the partition function.
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Notation Meaning
PuI random walk on interval I started at u
Pu,vI random walk bridge (RWB) on I from u to v
Pu,vI;h RWB on I from u to v with floor h
Pλ;u,v
I;h RWB X on I from u to v with floor h and area tilt exp(− λ

NA(X))
Pa,b;u,vn,I;h n non-crossing RWBs Xi on I from ui to vi with floor h and area tilt

exp(− a
N

∑n
i=1 b

i−1A(Xi))

Remark 2.6. In previous works, the area in (2.2) has usually been taken with respect to 0 instead
of the floor h, i.e.,

∑
j Xi(j) instead of

∑
j [Xi(j)−h(j)]. These two choices are of course equivalent,

because the exponent is a linear function and so the term
∑
j h(j) cancels in the normalization.

We choose to include this term as we will sometimes consider negative floors h in our arguments,
and it is convenient to keep the area term always positive so that the partition function remains
bounded above by 1 and can thus be ignored when lower bounding various probabilities.

Remark 2.7. We record here a simple observation about invariance of the line ensemble under
constant vertical shifts. If X ∼ Pa,b;u,vn,I;h and ζ is a constant, then the law of X+ζ := (X1+ζ, . . . , Xn+
ζ) is Pa,b;u+ζ,v+ζ

n,I;h+ζ , where u+ζ := (u1 +ζ, . . . , un+ζ) and v+ζ := (v1 +ζ, . . . , vn+ζ). This property
is immediate for non-crossing random walk bridges (i.e., a = b = 0). The identity then follows by
noting that A(Xi + ζ) = A(Xi) + ζ|I|, and the constant ζ|I| cancels in the normalization.

We will now discuss line ensembles on a continuum domain. By a line ensemble, we will now
mean a random variable x taking values in C(Σ× Λ), where Σ = J1, nK or Σ = N and Λ ⊂ R is an
interval or Λ = R. Equivalently we can write x = (xi)i∈Σ where xi ∈ C(Λ). Note that any discrete
line ensemble can naturally be viewed in this way by linearly interpolating between integer points
so as to create continuous paths, and in the remainder of the paper we will make this identification.

As discussed in Section 1.1, we aim to prove weak convergence as N →∞ of the rescaling xN of
X ∼ Pa,b;u,vn,N ;0 defined via

xNi (t) := σ−2/3N−1/3Xi(tσ−2/3N2/3), 1 ≤ i ≤ n, t ∈ [−σ2/3N1/3, σ2/3N1/3]. (2.3)
We define the following continuum analog of the measures in (2.4), formalizing (1.3).

Definition 2.8. For n ∈ N, an interval I = [`, r] ⊂ R, and u,v ∈ Rn, let Pu,v
n,I denote the law

of x = (x1, . . . , xn), where xi are independent standard Brownian bridges on I with xi(`) = ui,
xi(r) = vi. For h : I → R, u ∈ Wn

h(`), and v ∈ Wn
h(r), define the non-intersection event NI :=

{x(t) ∈Wn
h(t) for all t ∈ I}, and let Pa,b;u,v

n,I;h be the measure on line ensembles x specified by

dPa,b;u,v
n,I;h

dPu,v
n,I

(x) ∝ exp
(
− a

n∑
i=1

bi−1
∫
I
[xi(t)− h(t)] dt

)
1NI(x) .

We denote expectation with respect to this measure by Ea,b;u,v
n,I;h .

As above, when n = 1 we omit it from the subscript, and when I = [−T, T ] we write T in place
of I in the subscript. See Remark 2.6 above in relation to the h term in the integral.

The measures in Definition 2.4 possess an important Gibbs property, described as follows.

Definition 2.9. The Gibbs property of the area-tilted line ensembles is the following. Consider
X ∼ Pa,b;u,vn,I;h , and fix a positive integer k ≤ n and a subinterval J = J`′, r′K ⊆ I. Let Fk,J denote the
σ-algebra generated by {Xi(j) : i > k or j ∈ I \J`′+1, r′−1K}. Then the conditional law of X given
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Fk,J is Pa,b;w,zk,J ;g , where w = (X1(`′), . . . , Xk(`′)), z = (X1(r′), . . . , Xk(r′)), and g = Xk+1|J . This is
an immediate consequence of Definition 2.4, in particular, the linearity of the area-tilt functional.

More generally, we have the following strong Gibbs property. For two integer-valued random vari-
ables σ, τ with σ ≤ τ , we say the random interval J = Jσ, τK is a stopping domain for (X1, . . . , Xk)
if for all `, r ∈ Z, the event {σ ≤ `, τ ≥ r} lies in Fk,J`,rK. The strong Gibbs property says
that conditional on the σ-algebra generated by σ, τ , and Fk,J , the law of X is Pa,b;w,zk,J ;g where
w = (X1(σ), . . . , Xk(σ)), z = (X1(τ), . . . , Xk(τ)), and g = Xk+1|J .

The proof of the fact that X ∼ Pa,b;u,vn,N ;0 satisfies the strong Gibbs property is a straightforward
consequence of the usual Gibbs property; see [CH14, Lemma 2.5].

As discussed in Section 1.3, we should expect any limit point in C(N × R) of xN in (2.3) to
possess the following continuum Gibbs property.

Definition 2.10. Let x be a line ensemble on N×R. For intervals I = [`, r] ⊂ R and Σ = J1, kK ⊂ N,
let Fk,I denote the σ-algebra generated by {xi(j) : i /∈ Σ or j /∈ (`, r)}. We say that x satisfies the
Brownian Gibbs property with respect to (a, b)-area tilts, or more briefly that x is an (a, b)-tilted line
ensemble if for any bounded Borel-measurable functional F : C(Σ× I)→ R, we have P-a.s.

E[F (x|Σ×I) | Fk,I ] = Ea,b;u,v
k,I;h [F ], (2.4)

where u = (x1(`), . . . , xk(`)), v = (x1(r), . . . , xk(r)), and h = xk+1|I .

The existence of an (a, b)-tilted line ensemble on all of N× R was established in [CIW19b], and
its uniqueness in law was shown in [CG25] under natural conditions which we now define.

Definition 2.11. A line ensemble x on N × R is said to be uniformly tight if for any ε > 0 there
exists M > 0 such that

sup
t∈R

P(x1(t) > M) < ε. (2.5)

We say x is asymptotically pinned to zero if for all ε, T > 0 there exists j = j(T, ε) ∈ N such that

P
(

sup
t∈[−T,T ]

xj(t) < ε

)
> 1− ε. (2.6)

Theorem 2.12. [CIW19b, Theorems 1.4 and 1.5]; [CG25, Theorem 3.7]. Fix a > 0, b > 1. Then
there exists a unique probability measure µa,b on C(N × R) that is the law of a uniformly tight,
asymptotically pinned-to-zero, (a, b)-tilted line ensemble.

2.3. Main results. We now give a more precise statement of our main results, Theorems 1 and 2
from the Introduction. We establish the convergence of the rescaled line ensemble defined in (2.3)
to the infinite-volume Gibbs measure µa,b of Theorem 2.12.

The theorems will be stated for line ensembles on an interval I with boundary conditions u,v ∈
Wn

0 , satisfying various conditions. For parameters γ, κ > 0, we will require

I = [−LN2/3, LN2/3], where L ∈ [(logN)1/3+γ , N1/3], (2.7)
and

max(u1, v1) ≤ L2−κN1/3. (2.8)
Define κ0 := 6γ/(1 + 3γ) (so that (1/3 + γ)(2− κ0) = 2/3).

Theorem 2.13. Fix a > 0, b > 1, γ > 0, and κ ∈ (0, κ0). Let XN ∼ Pa,b;u,vn,I;0 with I as in (2.7),
n = n(N) a sequence tending to ∞ as N → ∞, and u,v ∈Wn

0 . Define the line ensemble xN on
N× R by

xNi (t) = σ−2/3N−1/3XN
i (tσ−2/3N2/3) , 1 ≤ i ≤ n , tσ−2/3N2/3 ∈ I , (2.9)
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and extend to all t ∈ R and i ∈ N as continuous functions in an arbitrary fashion. Let µN denote
the law of xN on C(N × R). There exist δ > 0 so that if n ≤ N δ and u,v satisfy (2.8), then µN
converges weakly as N →∞ to µa,b, in the topology of uniform convergence on compact sets.

Most of the work required to prove Theorem 2.13 lies in verifying tightness. A key input is
Theorem 2.14 below, which estimates the maximum of the jth curve of the line ensemble on intervals
of size N2/3. The proof occupies the largest portion of this paper: Sections 6 and 7. We note that
the restriction on κ < κ0 is simply to make the upper bound on K in Theorem 2.14 diverging.
Theorem 2.14. Fix a0 > 0, b0 > 1, γ > 0, κ ∈ (0, κ0), t ∈ R, and T > 0. There exist positive
constants δ = δ(κ), K0 = K0(a0, b0, κ), N0 = N0(a0, b0, γ, κ, t, T ) ∈ N, and c = c(a0, b0) such
that the following holds. For N ≥ N0, n ≤ N δ, a ∈ [a0, N

κ/30], b ∈ [b0, exp(κ6 (logN)1/3)], j ≤
min(n, κ20 logbN), I and L satisfying (2.7), u and v satisfying (2.8), and K ∈ [K0, L

2−κ(logN)−2/3],

Pa,b;u,vn,I;0

(
∃s ∈ [−T, T ] : xNj (s+ t) > Ka−1/3b−(j−1)/3

[
log

(
2 + a2/3b2(j−1)/3

cK1/2 |s|
)]2/3)

≤ e−cK3/2
.

The upper bounds on a and b in the hypotheses are not optimal and are only used in technical
estimates in the proof of Theorem 6.1; note in particular that a and b may diverge with N .

Proof of Theorems 1 and 2. Take L = N1/3 and κ < 3ε. Then I = [−N,N ] in (2.7), and the
condition max(u1, v1) ≤ N1−ε implies (2.8) (the parameter γ, and thus κ0, can be taken arbitrarily
large with this choice of L), so Theorem 1 follows immediately from Theorem 2.13. Moreover,
the condition K ≤ N2/3−ε in Theorem 2 implies K ≤ L2−κ(logN)−2/3 for N large, and as long
as κ ≥ 2ε, the condition j ≤ ε

10 logbN implies j ≤ κ
20 logbN . Taking N large enough so that

a ≤ Nκ/30 and b ≤ exp(κ6 (logN)1/3)), Theorem 2.14 applies to our situation, and taking s = 0
yields the result. �

Theorem 2.14 will follow from the more technical Theorem 6.1, showing that with high probability
the top curve is dominated by a deterministic “ceiling” function on the entire interval which is
roughly logarithmic in the bulk (a monotonicity argument immediately yields a similar ceiling on
the jth curve of the line ensemble, see Remark 6.2).

The proof of our main result Theorem 2.13 will follow quickly from the above along with the
following two propositions, which we prove in Section 8.
Proposition 2.15. The sequence {µN}N≥1 of laws on C(N× R) is tight.
Proposition 2.16. Any subsequential limit of {µN}N≥1 is the law of a line ensemble satisfying
the Brownian Gibbs property with respect to (a, b)-area tilts.
Proof of Theorem 2.13. It suffices to verify that the sequence {µN}N≥1 is tight with respect to the
topology of uniform convergence on compact sets on C(N × R), and that any weak subsequential
limit must be the measure µa,b of Theorem 2.12. Tightness is provided by Proposition 2.15.

Next we verify that any subsequential limit satisfies the two conditions of uniform tightness and
asymptotic pinning to zero in Definition 2.11. First, note from (2.8) that L → ∞ as N → ∞,
so that tN2/3 ∈ I for any t ∈ R for all large enough N . Next, note that due to the conditions
L ≥ (logN)1/3+γ in (2.7) and κ < κ0(γ), the upper bound of L2−κ(logN)−2/3 onK in Theorem 2.14
diverges as N →∞. Thus for any fixedM > 0, we can choose N large enough so that Theorem 2.14
with j = 1 (and s = 0) yields

lim
M→∞

sup
t∈R

lim sup
N→∞

Pa,b;u,vn,I;0

(
xN1 (t) > M

)
= 0 ,

which implies (2.5). To verify (2.6) we first take K ≥ K0 Theorem 2.14 large enough in de-
pending on ε so that e−cK3/2

< ε, and then take j large enough depending on T, ε so that
Ka−1/3b−(j−1)/3[log(2 + Ta2/3b2(j−1)/3

cK1/2 )]2/3 < ε.
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Proposition 2.16 now yields that any subsequential limit is the law of a uniformly tight, asymptot-
ically pinned-to-zero, (a, b)-tilted line ensemble. It follows from Theorem 2.12 that µa,b is the only
possible subsequential limit of {µN}N≥1, and so in view of tightness we in fact have µN → µa,b. �

3. Random walk bridge tools, monotonicity, and ballot theorems

In this section we state various basic results on weak convergence (Section 3.1), stochastic mono-
tonicity (Section 3.2), and tail bounds for random walk bridges (Section 3.3) that will be used
throughout the paper. Then, in Section 3.4, we state and prove a new ballot theorem estimat-
ing the probability that a random walk bridge remains nonnegative, which allows for boundary
conditions far beyond the diffusive scale.

3.1. Invariance principle. We first state a classical version of Donsker’s invariance principle that
applies to the random walk bridges that we consider in this paper. We will use this fact throughout
the paper to obtain various estimates on random walk bridges. The result is essentially proven in
[Lig68] in the lattice case and in [Bor78] in the nonlattice case. All of the conditions in Assumption
2.2 are used here, but Assumption 2.1 is not needed.

Lemma 3.1. Fix ` < r, u, v ∈ R, and α ∈ R. Assume u, v ∈ R and {uN}N≥1, {vN}N≥1 are
sequences such that σ−(1+α/2)N−1/2uN → u and σ−(1+α/2)N−1/2vN → v as N → ∞. For N ≥ 1,
let XN denote a random walk bridge from (b`Nc, uN ) to (drNe, vN ), i.e., XN ∼ Pu

N ,vN

[`N,rN ], satisfying
Assumption 2.2. Define xN (t) = σ−(1+α/2)N−1/2XN (σαNt) for t ∈ [`, r] ∩ σ−αN−1Z, and extend
to t ∈ [`, r] by linear interpolation. Then the process {xN (t) : t ∈ [`, r]} converges weakly as N →∞
to a standard Brownian bridge from (`, u) to (r, v) in the uniform topology on C([`, r]).

The exponent in the prefactor σ−(1+α/2) ensures the correct covariance, as follows from a simple
calculation. For the lattice case, weak convergence of the process follows from Theorem 1 of [Lig68],
while the limit is identified as the Brownian bridge by the conditional density specified in Theorem
2. For the nonlattice case, the result follows from Theorem 1 of [Bor78]. This result is only stated
in the case [`, r] = [0, 1] and u = v = 0, but straightforward modifications of the proof extend the
result to our setup. We refer the reader to these two papers for the details of the argument.

3.2. Stochastic monotonicity. We next state a crucial monotonicity result for area-tilted random
walk bridges that we will use throughout. It will be relevant here to consider line ensembles with
ceilings (in addition to the floors already discussed), so in this section only, we use the following
modified notation. With notation as in Definition 2.4, for a function g : I → R satisfying g(`) ≥ u1,
g(r) ≥ v1, and g(j) ≥ h(j) for all j ∈ I, we use Pa,b;u,vn,I;g,h to denote the measure Pa,b;u,vn,I;h further
conditioned on the event {X1(j) ≤ g(j) for all j ∈ I}. Thus Pa,b;u,vn,I;+∞,h = Pa,b;u,vn,I;h . The proof of
Lemma 3.2 is a standard Markov chain coupling argument and is deferred to Appendix A.

Lemma 3.2. Let n,N ∈ N and I ⊆ J−N,NK an interval. For ∗ ∈ {�, �}, let a∗, b∗ ∈ R, u∗,v∗ ∈ Rn≥
and g∗, h∗ : I → R be such that u�i ≥ u�i , v

�
i ≥ v�i for i ∈ J1, nK, g�(x) ≥ g�(x), h�(x) ≥ h�(x)

for all x ∈ I, and a� ≤ a�, b� ≤ b�. Then there exists a coupling Q of the random variables
X∗ = ((X∗i )ni=1) ∼ Pa

∗,b∗;u∗,v∗
n,I;g∗,h∗ for ∗ ∈ {�, �} such that, if (X�,X�) ∼ Q, then Q-a.s.,

X�
i (x) ≥ X�

i (x) for all i ∈ J1, nK, x ∈ I.

When such a coupling exists, we say that Pa
↓,b↓;u↓,v↓
n,I;g↓,h↓ is stochastically dominated by Pa

↑,b↑;u↑,v↑
n,I;g↑,h↑ .

Remark 3.3. We record here a simple but very useful consequence of Lemma 3.2 which will underlie
the argument in Section 6. For X ∼ Pa,b;u,vn,I;h and any j ∈ J1, nK, consider the conditional law of Xj

given all curves Xi with i < j. By the Gibbs property (a straightforward extension of Definition
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2.9), this conditional law is the measure Pλj ,b;u
≥j ,v≥j

n−j+1,I;Xj−1,0, where λj := abj−1, u≥j := (uj , . . . , un),
v≥j := (vj , . . . , vn) (and X0 := +∞). By Lemma 3.2, this (random) measure is stochastically
dominated by the no-ceiling measure Pλj ,b;u

≥j ,v≥j
n−j+1,I;0 . Thus, in order to upper bound the probability

of any increasing event for Xj , for instance the event in Theorem 2.14, we can simply remove all
curves above level j. Moreover, on the event that Xj+1 is dominated by a deterministic function f
on I, we can further condition on all curves Xi with i > j, and then use monotonicity with respect
to the floor to consider instead the simpler non-random measure Pλj ,uj ,vjI;f .

3.3. Subexponential tail bounds. In this section we establish subexponential tail bounds on
the maximum of random walks and random walk bridges, under Assumption 2.2. The first lemma
is a standard estimate for the maximum of a random walk. Recall that Pu[0,N ] denotes the law of a
random walk X on J0, NK started at u.

Lemma 3.4 (Doob’s maximal inequality). Under Assumption 2.2, there exists c > 0 independent
of N such that for all x > 0,

P0
[0,N ]

(
max

0≤j≤N
|X(j)| > xN1/2

)
≤ 2 exp

(
−c(x2 ∧ xN1/2)

)
. (3.1)

The same inequality without the prefactor of 2 holds for max1≤j≤N X(j).

Proof. By Doob’s maximal inequality applied to the exponential martingale eθX(N)/E0
[0,N ][e

θX(N)]
(see, e.g., [LL10, Theorem 12.2.5]),

P0
[0,N ]

(
max

1≤j≤N
X(j) > xN1/2

)
≤ exp(−θxN1/2)E0

[0,N ][exp(θX(N))].

Note E0
[0,N ][exp(θX(N))] = E[exp(θY )]N , where Y has the law of the increments of P0

[0,N ]. Under
the finite moment generating function assumption, there exist θ0,K > 0 such that for all |θ| < θ0,
E[exp(θY )] ≤ exp(Kθ2) (see, e.g., [Wai19, Theorem 2.13]). Taking θ = θ0 ∧ (2K)−1xN−1/2 and
adjusting the constants gives the inequality for maxX. For max |X|, we do the same argument for
−X and apply a union bound, giving the prefactor of 2 on the right-hand side of (3.1). �

The next lemma is an analogous estimate for random walk bridges. Recall that Pu,v[0,N ] denotes
the law of a random walk bridge on J0, NK from u to v.

Lemma 3.5. Under Assumptions 2.1 and 2.2, there exist c > 0 and N0 ∈ N such that for all u > 0
and N ≥ N0,

Pu,u[0,N ]

(
max

1≤j≤N−1
X(j) > 2u

)
≤ 4 exp

(
− c
(
u2

N
∧ u

))
.

Proof. Note that the event that maxX > 2u is increasing with respect to X. Then, by stochastic
monotonicity with respect to the boundary conditions (Lemma 3.2),

Pu,u[0,N ]

(
max

0≤j≤N
X(j) > 2u

)
≤ Pu[0,N ]

(
max

0≤j≤N
X(j) > 2u

∣∣∣∣ X(N) ≥ u
)

= P0
[0,N ]

(
max

0≤j≤N
X(j) > u

∣∣∣∣ X(N) ≥ 0
)
≤

P0
[0,N ](max0≤j≤N X(j) > u)

P0
[0,N ](X(N) ≥ 0)

.

By Lemma 3.4, the numerator in the last expression is bounded by exp(−c(u2N−1 ∧ u)). By the
central limit theorem, P0

[0,N ](X(N) ≥ 0)→ 1/2 as N →∞, so in particular we can choose N0 ∈ N
so that the denominator in the last expression is at least 1/4 for all N ≥ N0. Combining these two
estimates proves the desired bound. �
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3.4. Ballot theorems. In this section we state a ballot theorem for the class of random walk
bridges under consideration in this article, namely those satisfying Assumptions 2.1 and 2.2. The
lower and upper bounds will be proven separately in Sections 3.5 and 3.6, respectively.

Theorem 3.6 (Ballot theorem). There exist c, C > 0 such that, for all x, y > 0 and N ∈ N,

c ·min
(

1, xy
N

)
≤ Px,y[0,N ]

(
X(k) ≥ 0, k = 1, . . . , N − 1

)
≤ C ·min

(
1, xy
N

)
.

The proofs of both inequalities of the ballot theorem will use the following simple change of
measure lemma.

Lemma 3.7. Let N ∈ N, x > 0, and f : R → [0,∞) be continuous with Ex[0,N ][f(X(N))] < ∞.
Define P̃x[0,N ] and P̃x,y[0,N ] for y ∈ R by

dP̃x[0,N ]
dPx[0,N ]

(X(1), . . . , X(N)) ∝ f(X(N)), P̃x,y[0,N ] := P̃x[0,N ](· | X(N) = y). (3.2)

Then for any y ∈ R lying in the support of the law of X(N) under Px[0,N ], it holds that P
x,y
[0,N ] = P̃x,y[0,N ].

Proof. We may write P̃x,y[0,N ](·) = limε↓0 P̃x[0,N ](· | X(N) ∈ [y − ε, y + ε]) as a weak limit. Then the
conclusion follows from the definition of P̃x[0,N ] and the assumed continuity of f . �

Corollary 3.8. Let y ∈ R lie in the support of the law of X(N) under Px[0,N ]. Then P̃x,y[0,N ] = Px,y[0,N ],
where P̃x,y[0,N ] is defined as in (3.2)with f(x) = exp(θ∗yx), where θ∗y = θ∗y(N) is the unique real number
such that E0

[0,N ][X(1)eθ∗yX(1)]/E0
[0,N ][e

θ∗yX(1)] = y/N .

Proof. Given Lemma 3.7, this follows immediately from the existence and uniqueness of θ∗y; the
latter is standard and can be found, for instance, in [Dur10, Section 2.7]. �

In other words, Corollary 3.8 says that the random walk bridge of length N associated to the
random walk tilted to have drift y/N (and thus mean y after N steps) is the same as the original
random walk bridge. This is useful because, for instance, under the tilted random walk measure,
the probability of lying above y after N steps is of constant order even if y � N1/2.

Remark 3.9. Observe that the tilted random walk measure has increment distribution which
still satisfies Assumption 2.1 if the original increment distribution did. This is simply because the
density at z ∈ R of the tilted increment is the same as that of the original increment at z with
an additional factor of exp(θ∗yz), and a convex function plus a linear function remains convex. In
particular, the tilted random walk bridge measure also satisfies monotonicity by Lemma 3.2.

The argument for Theorem 3.6 will reduce the desired estimates to ballot theorems for random
walks, i.e., without the endpoint fixed. We record below some of the estimates needed for the latter
from [PP95]:

Lemma 3.10 (Ballot theorem for random walk, [PP95, Lemma 3.3]). Let the increment distribution
of the random walk under Px[0,N ] have mean zero and finite variance. Fix K > 0. Then there exist
constants C, c > 0 such that, for all N ∈ N,

(1) Px[0,N ](X(k) ≥ 0, k = 1, . . . , N) ≤ CxN−1/2 for all x > 0;
(2) Px[0,N ](X(k) ≥ 0, k = 1, . . . , N) ≥ cxN−1/2 for all x ∈ [0, N1/2]; and
(3) Ex[0,N ][X(N)2 | X(k) ≥ 0, k = 1, . . . , N ] ≤ CN for all x ∈ [0, N1/2].

The third estimate is proven in [PP95] only for x = 0, but the proof easily extends to x > 0, as
also noted in [ABR08, Lemma 3].
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3.5. Upper bound. The basic idea to establish the upper bound of the ballot theorem is to look
at a scale z = N2/y2 (where we assume without loss of generality that y � x), which is the one
where we expect the value of the random walk to be x + O(z1/2); one can check that z is chosen
such that the movement of the random walk due to the drift induced by the endpoint values (i.e.,
(y − x)/N) is of the same order as the diffusive fluctuations.

For the upper bound, one can ignore the probability contribution coming from the event that
the random walk bridge stays above zero after z (which we expect to be of constant order), and
consider only the event that it stays above 0 on [0, z]. On the latter interval the endpoint values
are x and of order z1/2. Since both values are at most of order the diffusive scale on the interval
(which is of size z), one can use the ballot theorem estimates for random walks from Lemma 3.10
to obtain a bound of order xz−1/2 = xz1/2/z = xy/N .

Proof of Theorem 3.6, upper bound. We may assume that xy ≤ N as otherwise the statement
is trivial. We assume without loss of generality that x ≤ y, so that x ≤ N1/2. Let z =
min(1

2N,N
2/y2). Note that then x ≤ 2z1/2. We observe that, by Bayes’ theorem,

Px,y[0,N ](X(k) ≥ 0, k = 1, . . . , N − 1) ≤
Px,y[0,N ](X(k) ≥ 0, k = 1, . . . , N − 1 | X(z) < Mz1/2)
Px,y[0,N ](X(z) < Mz1/2 | X(k) ≥ 0, k = 1, . . . , N − 1)

. (3.3)

We need to lower bound the denominator by a constant order quantity. Equivalently, we want to
show that Px,y[0,N ](X(z) > Mz1/2 | X(k) ≥ 0, k = 1, . . . , N − 1) is bounded away from 1 uniformly in
N . Recall from Corollary 3.8 that Px,y[0,N ] = P̃x,y[0,N ], where the latter corresponds to the underlying
random walk measure being tilted by exp(θ∗yX(N)), where θ∗y = θ∗y(N) is chosen such that X(N)
has mean y (when started at zero). Let Y (k) = X(k)− ky/N for all k, which is a mean x random
walk under P̃x[0,N ]. Note also that z1/2 ≥ zy/N , so Mz1/2 − zy/N ≥ 1

2Mz1/2 if M ≥ 2. We then
bound as follows:

Px,y[0,N ](X(z) > Mz1/2 | X(k) ≥ 0, k = 1, . . . , N − 1)

= P̃x[0,N ](X(z) > Mz1/2 | X(k) ≥ 0, k = 1, . . . , N − 1, X(N) = y)

≤ P̃x[0,N ]

(
Y (z) > 1

2Mz1/2 | Y (k) > −ky/N, k = 1, . . . , N − 1, Y (N) = 0
)

≤ P̃x[0,N ]

(
Y (z) > 1

2Mz1/2 | Y (k) ≥ 0, k = 1, . . . , N − 1
)
,

the final inequality using monotonicity (Lemma 3.2). Then, using the Gibbs property and mono-
tonicity again, the previous line can written as∑
t> 1

2Mz1/2

P̃x[0,N ] (Y (z) ∈ [t, t+ 1) | Y (k) ≥ 0, k = 1, . . . , N − 1)

=
∑

t> 1
2Mz1/2

P̃x[0,N ] (Y (z) ∈ [t, t+ 1), Y (k) ≥ 0, k = 1, . . . , N − 1)
P̃x[0,N ] (Y (k) ≥ 0, k = 1, . . . , N − 1)

(3.4)

≤
∑

t> 1
2Mz1/2

P̃x[0,z] (Y (z) ∈ [t, t+ 1), Y (k) ≥ 0, k = 1, . . . , z) · P̃t+1
[z,N ](Y (k) ≥ 0, k = z + 1 . . . , N − 1)

P̃x[0,N ] (Y (k) ≥ 0, k = 1, . . . , N − 1)
.

Consider the summand with index t in the last line. By Lemma 3.10 (1), the second factor in the
numerator is upper bounded by C(t+1)(N−z)−1/2 ≤ CtN−1/2 since z ≤ N/2. Since x ≤ N1/2, by
Lemma 3.10 (2), the denominator is lower bounded by cxN−1/2. The first factor in the numerator
can be written as

P̃x[0,z] (Y (z) ∈ [t, t+ 1) | Y (k) ≥ 0, k = 1, . . . , z) · P̃x[0,z] (Y (k) ≥ 0, k = 1, . . . , z) .
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The second factor here is upper bounded by Cxz−1/2 again by Lemma 3.10 (1). Thus we can bound
the last line of (3.4) above by

C
∑

t> 1
2Mz1/2

t

z1/2 P̃
x
[0,z] (Y (z) ∈ [t, t+ 1) | Y (k) ≥ 0, k = 1, . . . , z)

≤ C · Ẽx[0,z]
[
Y (z)
z1/2 1Y (z)> 1

2Mz1/2 | Y (k) ≥ 0, k = 1, . . . , z
]
.

Using that Ex[0,z][Y (z)2 | Y (k) ≥ 0, k = 1, . . . , z] ≤ Cz by Lemma 3.10 (3), it follows that there
exists M large enough, independent of x, y, z and N , such that the previous display is at most 1/2.
Thus the denominator of (3.3) is lower bounded by 1/2, so the right-hand side of (3.3) is at most

2 · Px,y[0,N ](X(k) ≥ 0, k = 1, . . . , N − 1 | X(z) < Mz1/2).

By the Gibbs property and monotonicity, this is upper bounded by

2 · Ex,y[0,N ]

[
Px,X(z)

[0,z] (X(k) ≥ 0, k = 1, . . . , z) · PX(z),y
[z,N ] (X(k) ≥ 0, k = z, . . . , N − 1)

∣∣∣ X(z) < Mz1/2
]

≤ 2 · Px,Mz1/2

[0,z] (X(k) ≥ 0, k = 1, . . . , z).

Again by monotonicity, this is upper bounded by

2 · Px[0,z](X(k) ≥ 0, k = 1, . . . , z | X(z) > Mz1/2) ≤ 2 ·
Px[0,z](X(k) ≥ 0, k = 1, . . . , z)

Px[0,z](X(z) > Mz1/2)
.

The denominator is lower bounded by c = c(M) uniformly in z by the central limit theorem and the
Portmanteau theorem, and the numerator is upper bounded by Cxz−1/2 = Cxy/N by Lemma 3.10
(1). This completes the proof. �

3.6. Lower bound. Here we prove the lower bound half of Theorem 3.6. The basic idea underlying
the argument is again to consider the scale z = N2/y2. However, unlike in the argument for the
upper bound, here we must lower bound the probability of the random walk bridge staying positive
on [0, z] as well as [z,N ], instead of just the former. We expect the random walk bridge to be
at height of order z1/2 at z, which means the endpoint values of Cz1/2 = CN/y and y on [z,N ]
satisfy the property that their product is equal to the interval length up to a constant. The ballot
theorem lower bound in this case is handled in Lemma 3.11, while the case that the endpoint values
are at most diffusive in the interval length (which is needed to control the probability on [0, z]) is
addressed in Lemma 3.12. Their proofs will be given after that of the lower bound of Theorem 3.6.

Lemma 3.11. Fix δ > 0. There exists ε > 0 such that for all N ∈ N and x, y > 0 such that
xy = δN ,

Px,y[0,N ] (X(k) ≥ 0, k = 1, . . . , N − 1) ≥ ε. (3.5)

Lemma 3.12. Let M > 0. There exists c > 0 such that for all N ∈ N and x, y ∈ [0,MN1/2],

Px,y[0,N ](X(k) ≥ 0, k = 1, . . . , N − 1) ≥ c ·min
(

1, xy
N

)
.

Proof of Theorem 3.6, lower bound. It suffices to assume that N ≥ N0 for any fixed N0. Indeed, for
1 ≤ N ≤ N0, the probability on the left-hand side is lower bounded by the case of x = y = 0 (again
by monotonicity) and the minimum over 1 ≤ N ≤ N0 of the same probability, and, further, this
probability is positive by demanding each increment to be positive. Thus the estimate is proven in
this range of N by adjusting c appropriately. We will take N0 to be a large constant whose value
will be specified later.

We may further assume that x, y ≥ 1. If not, there exist constants N ′ and δ > 0 (both depending
on the law of the underlying random walk’s increments) such that, with probability at least δ > 0,
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X(1), . . . , X(N ′) and X(N −N ′), . . . , X(N) all remain positive and X(N ′), X(N −N ′) ≥ 1 as long
as say N0 > 3N ′ (which we may assume as observed above). By the Gibbs property we can then
apply the below argument on the interval [N ′, N −N ′] which now has boundary conditions lower
bounded by 1.

By monotonicity (Lemma 3.2), we may assume y ≤ N . Next, let z = N2/y2; note that since
y ≤ N , z ≥ 1. It holds by the Gibbs property that, for any δ > 0,

Px,y[0,N ] (X(k) ≥ 0, k = 1, . . . , N − 1)

≥ Ex,y[0,N ]

[
Px,X(z)

[0,z] (X(k) ≥ 0, k = 1, . . . , z) · PX(z),y
[z,N ] (X(k) ≥ 0, k = z + 1, . . . , N − 1) · 1X(z)>δz1/2

]
.

By monotonicity (Lemma 3.2), this is lower bounded by

Px,y[0,N ]

(
X(z) > δz1/2

)
· Px,δz

1/2

[0,z] (X(k) ≥ 0, k = 1, . . . , z) · Pδz
1/2,y

[z,N ] (X(k) ≥ 0, k = z, . . . , N) . (3.6)

Now, again by monotonicity the first term is lower bounded by the same with x = y = 0, i.e.,
P0,0

[0,N ](X(z) > δz1/2). We wish to show that this is bounded away from zero uniformly. We upper
bound the complementary probability as follows, using monotonicity in the first inequality:

P0,0
[0,N ]

(
X(z) ≤ δz1/2

)
≤ P0

[0,N ]

(
X(z) ≤ δz1/2 | X(N) ≤ 0

)
≤

P0
[0,N ]

(
X(z) ≤ δz1/2

)
P0

[0,N ] (X(N) ≤ 0)
.

By the central limit theorem, the denominator is lower bounded by 1/4 for all large enough N .
Also by the central limit theorem, there exist δ > 0 and z0 such that the numerator is at most 1/8
(recalling that z ≥ z0). With this choice of δ, z0, and N0, it holds that the first factor in (3.6) is
lower bounded by 1/2 as long as N ≥ N0.

In the second factor of (3.6), we may replace x by min(x, z1/2) by monotonicity. Then by
Lemma 3.12, the second factor of (3.6) is lower bounded by cmin(x, z1/2)z−1/2. By monotonicity
and since z1/2 = N/y, the third factor of (3.6) is lower bounded by the same with δz1/2 replaced
by δN/y. Thus, by Lemma 3.11 that factor is lower bounded by some constant c > 0 since
δN/y · y = N ≥ N − z. Overall, (3.6) is lower bounded by cmin(1, xz−1/2) = cmin(1, xy/N), using
the definition of z. This completes the proof. �

Next we give the proof of Lemma 3.11 before turning to that of Lemma 3.12.

Proof of Lemma 3.11. We assume without loss of generality that x ≤ y. By monotonicity (Lemma 3.2),
it also suffices to assume that δ ∈ (0, 2] (where recall xy/N = δ).

Recall from Corollary 3.8 that Px,y[0,N ] = P̃x,y[0,N ], where the latter corresponds to the underlying
random walk measure being tilted by exp(θ∗yX(N)), where θ∗y = θ∗y(N) is chosen such that X(N)
has mean y. In particular, under P̃x[0,N ], (X(1), . . . , X(N)) is a random walk with drift y/N , so
(X(i)− iy/N)Ni=1 is a i.i.d. random walk with zero drift. Further, X(i)−X(i− 1) still has a finite
exponential moment under P̃x[0,N ].

Now, first by definition and then invoking Corollary 3.8, the probability from (3.5) that we must
lower bound equals

Px[0,N ] (X(k) ≥ 0, k = 1, . . . , N − 1 | X(N) = y) = P̃x[0,N ] (X(k) ≥ 0, k = 1, . . . , N − 1 | X(N) = y) .

By rearranging some terms inside the probability and invoking monotonicity (Lemma 3.2), this is
lower bounded by

P̃x[0,N ] (X(k)− ky/N > −ky/N, k = 1, . . . , N − 1 | X(N)− y ≤ 0)

≥ P̃x[0,N ] (X(k)− ky/N > −ky/N, k = 1, . . . , N − 1, X(N)− y ≤ 0) . (3.7)
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Let us adopt the notation Y (k) = X(k) − ky/N , so that, under P̃x[0,N ], k 7→ Y (k) is a drift
zero random walk started at x, and let Yk,` = Y (`) − Y (k) denote its increment and Y k,` :=
maxk≤j≤` |Yk,j | denote its maximum increment between k and `. Let J = log2(N1/2x−1 + 1) − 1.
Then the previous display equals P̃x[0,N ](Y (k) > −ky/N, k = 1, . . . , N − 1, Y (N) ≤ 0), which we
claim is lower bounded by

P̃x[0,N ]

(
Y (2j−1)x2,(2j+1−1)x2 < ρδ23j/4x, j = 0, . . . , J and

YxN1/2,n < −4N1/2 and maxxN1/2≤j≤N YxN1/2,j ≤ 8N1/2

)
, (3.8)

where ρ = 1
2(23/4 − 1). To see that this lower bound holds, observe that on the above event, for

any j = 1, . . . , J and k ∈ [(2j − 1)x2, (2j+1 − 1)x2],

Y (k) ≥ x−
j∑
i=0

Y (2i−1)x2,(2i+1−1)x2 ≥ x− ρδ
j∑
i=0

23i/4x ≥ (−23j/4δ + 1
2δ + 1)x,

while ky/N ≥ (2j − 1)x2y/N = (2j − 1)δ · x, i.e., −ky/N ≤ (−2jδ + δ)x. Similarly YxN1/2 ≤
x + 1

2δ(2
J+1 − 1)x = x + 1

2δN
1/2 ≤ (δ1/2 + 1

2δ)N
1/2 (the last inequality using that xy = δN and

x ≤ y implies x ≤ δ1/2N1/2). Since δ ≤ 2 and 21/2 + 1 ≤ 4 it follows that the event in (3.8) implies
that in (3.7).

Now, Y (2j−1)x2,(2j+1−1)x2 are independent across j under P̃x[0,N ]. By Lemma 3.4 (Doob’s maximal
inequality), for all j,

P
(
Y (2j−1)x2,(2j+1−1)x2 > ρδ23j/4x

)
≤ 2 exp(−cδ22j/2). (3.9)

There is some absolute constant j0 below which the right-hand side in the previous display is larger
than 1. However, it follows from Donsker’s invariance principle that infN≥1 P(maxk≤N |Y (k)| <
ρN1/2) > 0: this uses the fact that since Y (k)−Y (k−1) are mean zero and have contiguous support
by Remark 2.3, they each have positive probability of lying in a small neighborhood around zero.
Combining this fact with (3.9) yields that (3.8) and thus (3.7) is lower bounded by

c ·
J∏
j=0

(
1−min(c, exp(−cδ22j/2)

)
,

where c > 0. This expression is lower bounded by an absolute constant, completing the proof. �

Proof of Lemma 3.12. As in the proof of Proposition 4.1, we may assume N ≥ N0 for a constant
N0 that will be set later and that x, y ≥ 1. We may also assume x, y ≤ N1/2 using monotonicity
(Lemma 3.2) to reduce them if they are higher and adjusting the constant c at the end.

Next, let K > 0 be a large constant whose value will be set later, and assume for notational
convenience that N is even so that N/2 is an integer. We observe from the Gibbs property (in the
first line) and Lemma 3.2 (monotonicity, in the second line) that
Px,y[0,N ] (X(k) ≥ 0, k = 1, . . . , N − 1)

= Ex,y[0,N ]

[
Px,X(N/2)

[0,N/2] (X(k) ≥ 0, k = 1, . . . , N/2) · PX(N/2),y
[0,N/2] (X(k) ≥ 0, k = 1, . . . , N/2)

]
≥ Ex,y[0,N ]

[
Px,KN

1/2

[0,N/2] (X(k) ≥ 0, k = 1, . . . , N/2) · PKN
1/2,y

[0,N/2] (X(k) ≥ 0, k = 1, . . . , N/2)1X(N/2)≥KN1/2

]
= Px,KN

1/2

[0,N/2] (X(k) ≥ 0, k = 1, . . . , N/2) · PKN
1/2,y

[0,N/2] (X(k) ≥ 0, k = 1, . . . , N/2)

× Px,y[0,N ]

(
X(N/2) ≥ KN1/2

)
.

By monotonicity, the last line is lower bounded by the same with x and y set to zero, and, by
the invariance principle Lemma 3.1, the latter is lower bounded by some η = η(K) > 0 for all
N > N0, for some N0 = N0(K). We will show that for an appropriate choice of K (which will
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be done independent of x and y), the first factor in the second to last line of the last display is
lower bounded by cxN−1/2 for some absolute constant c > 0; the same argument will show that
the second factor is lower bounded by cyN−1/2. This will complete the proof.

By monotonicity again,

Px,KN
1/2

[0,N/2] (X(k) ≥ 0, k = 1, . . . , N/2)

≥ Px[0,N/2]

(
X(k) ≥ 0, k = 1, . . . , N/2 | X(N/2) ≤ KN1/2

)
=

Px[0,N/2]

(
X(N/2) ≤ KN1/2 | X(k) ≥ 0, k = 1, . . . , N/2

)
· Px[0,N/2] (X(k) ≥ 0, k = 1, . . . , N/2)

Px[0,N/2](X(N/2) ≤ KN1/2)
.

The denominator of the last line is trivially upper bounded by 1. By Lemma 3.10 (2), the second
factor in the numerator is lower bounded by cxN−1/2. By considering the complement and applying
the Markov inequality using the bound on the second moment from Lemma 3.10 (3), the first factor
in the numerator is lower bounded by 1/2 for large enough K (chosen independently of x, since C
in Lemma 3.10 is independent of x). Thus the previous display is lower bounded by cxN−1/2. �

4. Partition function lower bound and dropping lemma

In this section, we prove a lower bound on the partition function for a single random walk
bridge above a wall with area tilt. This will be used throughout the paper to upper bound various
probabilities by removing the area tilt. Recall that we use λ to denote the area tilt coefficient.
Define the scale parameter

Hλ := λ−1/3N1/3. (4.1)

The role of this parameter is that a λ-area-tilted walk X on an interval with size of order H2
λ has

typical height of order Hλ, i.e., behaves diffusively. This can be seen heuristically by noting that
the area tilt λ

NA(X) becomes order 1 on this scale, as Hλ ·H2
λ = λ−1N .

Recall the notation laid out in Remark 2.5. In particular, Pu,vI;0 denotes the untilted (i.e., λ = 0)
random walk bridge on an interval I from u to v with floor at 0. When the floor is removed we
omit the 0 subscript, and when the right boundary condition is removed (i.e., a random walk) we
omit the second superscript.

Proposition 4.1. There exist c∗ > 0 and N0 ∈ N such that the following holds for all λ ∈ (0, N)
and N ≥ N0. For any A,B > 0 such that max(A,B) ≤ H2

λ and |I| ≥ 2 max(A1/2, B1/2)H2
λ,

Zλ;AHλ,BHλ
I;0 := EAHλ,BHλI;0

[
e−

λ
N
A(X)] ≥ (c∗)−1 exp

(
− c∗

(
A3/2 +B3/2 + |I|

H2
λ

))
.

This is a generalization of a similar lower bound obtained in [ISV15, (3.3)], which only considered
a walk with boundary condition fixed on the Hλ scale. It is essential here that we may take A and
B in principle growing with N , as we will apply this bound on intervals with random boundary
conditions that may be much larger than H2

λ. In particular, when I = J−N,NK and λ = O(1),
we may take boundary conditions as high as O(N), much larger than the typical N1/3 scale. The
ballot theorems in Section 3 are needed to prove the proposition in this full range of parameters.

Before giving the proof of Proposition 4.1, we state the “dropping lemma,” which follows as an
immediate consequence and is an essential tool in the proof of Theorem 2.14. The lemma states
that an area tilt of coefficient λ quickly pulls the random walk down to a typical height Hλ.

Lemma 4.2 (Dropping lemma). Recall c∗ > 0 and N0 ∈ N from Proposition 4.1. For any ε > 0,
λ ∈ (0, N), N ≥ N0, A > 0, u, v ≥ 0, and interval I satisfying max(u, v) ≤ H3

λ and |I| ≥
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2 max(u1/2, v1/2)H3/2
λ , and for any Iε ⊂ I such that |Iε| ≥ ε|I|,

Pλ;u,v
I;0

(
∃x ∈ Iε : X(x) ≤ AHλ

)
> 1− (c∗)−1 exp

(
− (Aε− c∗) |I|

H2
λ

+ c∗
u3/2 + v3/2

H
3/2
λ

)
. (4.2)

Proof. If X(x) > AHλ for all x ∈ Iε, then the area A(X) exceeds Aε|I|Hλ. By Proposition 4.1,

Pλ;u,v
I;0

(
A(X) > Aε|I|Hλ

)
≤ (c∗)−1 exp

(
c∗
|I|
H2
λ

+ c∗
u3/2 + v3/2

H
3/2
λ

)
Eu,vI;0

[
e−

λ
N
A(X)

1A(X)>Aε|I|Hλ

]

≤ (c∗)−1 exp
(
− (Aε− c∗) |I|

H2
λ

+ c∗
u3/2 + v3/2

H
3/2
λ

)
.

Here we used λ/N = H−3
λ . �

Proof of Proposition 4.1. We may assume without loss of generality that the interval I is of the
form [−J, J ] for some J > 0. We can also assume A = B, by raising the smaller one to equal
the other and using stochastic monotonicity, Lemma 3.2. By increasing c∗ appropriately and using
monotonicity again, we may assume A ≥ 10. Let JA = A1/2H2

λ, and define the events

Left :=
{

max
i∈[−J,−J+JA]

X(i) ≤ 2AHλ, X(−J + JA) ∈ [0, Hλ]
}

Mid :=
{

max
i∈[−J+JA,J−JA]

X(i) ≤ 2Hλ

}

Right :=
{

max
i∈[J−JA,J ]

X(i) ≤ 2AHλ, X(J − JA) ∈ [0, Hλ]
}
.

Finally let Drop = Left ∩Mid ∩ Right. It is immediate that on the event Drop,

A(X) ≤
(
4A3/2 + (JH−2

λ − 2A1/2)
)
H3
λ.

Recall H3
λ = λ−1N . With this we see that

EAHλ,AHλI;0
[
e−

λ
N
A(X)] ≥ exp

(
−
[
4A3/2 + (JH−2

λ − 2A1/2)
])
· PAHλ,AHλI;0 (Drop).

So it remains to lower bound PAHλ,AHλI;0 (Drop), in particular to show that there exists c > 0 such that
PAHλ,AHλI;0 (Drop) ≥ exp(−c(A3/2 + JH−2

λ )). First we note that Left, Mid, and Right are decreasing
events since, X(i) ≥ 0 due to the floor. Let FA be the σ-algebra generated by X(−J + JA), X(J −
JA). Then by the Gibbs property along with monotonicity,

PAHλ,AHλI;0 (Drop) = EAHλ,AHλI;0

[
PAHλ,AHλI;0

(
Left ∩Mid ∩ Right | FA

)]
= EAHλ,AHλI;0

[
PAHλ,AHλI;0

(
Left | FA

)
· PAHλ,AHλI;0

(
Mid | FA

)
· PAHλ,AHλI;0

(
Right | FA

)]
= EAHλ,AHλI;0

[
PAHλ,X(−J+JA)

[−J,−J+JA];0

(
max

i∈[−J,−J+JA]
X(i) ≤ 2AHλ

)
· PX(−J+JA),X(J−JA)

[−J+JA,J−JA];0 (Mid)

× PX(J−JA),AHλ
[J−JA,J ];0

(
max

i∈[J−JA,J ]
X(i) ≤ 2AHλ

)
1X(−J+JA),X(J−JA)≤Hλ

]

≥ EAHλ,AHλI;0

[
PAHλ,Hλ[−J,−J+JA];0

(
max

i∈[−J,−J+JA]
X(i) ≤ 2AHλ

)
· PHλ,Hλ[−J+JA,J−JA];0(Mid)

× PHλ,AHλ[J−JA,J ];0

(
max

i∈[J−JA,J ]
X(i) ≤ 2AHλ

)
1X(−J+JA),X(J−JA)≤Hλ

]
, (4.3)
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Now, observe that the three probabilities inside the expectation are deterministic. Taking them out
of the expectation shows that the remaining term is PAHλ,AHλI;0 (X(−J+JA) ≤ Hλ, X(J−JA) ≤ Hλ),
which, by the Gibbs property, monotonicity, and the Harris inequality (which together can be
interpreted as a special case of the FKG inequality, though we do not establish this in full), is lower
bounded by the product of PAHλ,AHλI;0 (X(−J + JA) ≤ Hλ) and PAHλ,AHλI;0 (X(J − JA) ≤ Hλ):

PAHλ,AHλI;0 (X(−J + JA) ≤ Hλ, X(J − JA) ≤ Hλ)

= EAHλ,AHλI;0

[
PAHλ,AHλI;0 (X(J − JA) ≤ Hλ | X(−J + JA))1X(−J+JA)≤Hλ

]
= EAHλ,AHλI;0

[
PX(−J+JA),AHλ

[−J+JA,J ];0 (X(J − JA) ≤ Hλ)1X(−J+JA)≤Hλ

]
≥ EAHλ,AHλI;0

[
PX(−J+JA),AHλ

[−J+JA,J ];0 (X(J − JA) ≤ Hλ)
]
PAHλ,AHλI;0 (X(−J + JA) ≤ Hλ)

= PAHλ,AHλI;0 (X(−J + JA) ≤ Hλ) · PAHλ,AHλI;0 (X(J − JA) ≤ Hλ),

where the last line follows again from the Gibbs property. Thus we have so far shown that

PAHλ,AHλI;0 (Drop) ≥ PAHλ,Hλ[−J,−J+JA];0

(
max

i∈[−J,−J+JA]
X(i) ≤ 2AHλ

)
· PHλ,Hλ[−J+JA,J−JA];0(Mid)

× PHλ,AHλ[J−JA,J ];0

(
max

i∈[J−JA,J ]
X(i) ≤ 2AHλ

)
· PAHλ,AHλI;0

(
X(−J + JA) ≤ Hλ

)
× PAHλ,AHλI;0

(
X(J − JA) ≤ Hλ

)
(4.4)

The first and third probabilities on the right-hand side of (4.4) are lower bounded by some absolute
constant δ > 0 by monotonicity and an invariance principle for random walk bridges conditioned to
stay positive [CC13] (which assumes no more than what we have assumed already on our random
walk bridge distributions). In more detail, the first probability is lower bounded by the same with
the second endpoint raised to AHλ and the floor raised to AHλ − J

1/2
A = (A − A1/4)Hλ, which is

in turn lower bounded by a constant using the mentioned invariance principle (the floor was raised
so that the endpoints were above the floor by an amount on the diffusive scale). An analogous
argument applies to the third probability in (4.4).

Lower bounding PHλ,Hλ[−J+JA,J−JA];0(Mid): The second probability in (4.4) is lower bounded by exp(−cJH−2
λ ).

To see this, first let F ′A be the σ-algebra generated by {X(−J + JA + jH2
λ) : 1 ≤ j ≤ 2H−2

λ (J −
JA)− 1}. By the Gibbs property and monotonicity,

PHλ,Hλ[−J+JA,J−JA];0(Mid)

≥ EHλ,Hλ[−J+JA,J−JA];0

[
PHλ,Hλ[−J+JA,J−JA];0(Mid | F ′u) · 1

{
max

1≤j≤2H−2
λ

(J−JA)−1
X(−J + JA + jH2

λ) ≤ Hλ

}]

≥ PHλ,Hλ[0,H2
λ

];0

(
max

1≤i≤H2
λ

X(i) ≤ 2AHλ

)2H−2
λ

(J−JA)

× PHλ,Hλ[−J+JA,J−JA];0

(
max

1≤j≤2H−2
λ

(J−JA)−1
X(−J + JA + jH2

λ) ≤ Hλ

)
. (4.5)

The first factor is lower bounded by exp(−cJH−2
λ ) using an invariance principle for random walk

bridges conditioned to remain positive [CC13] to obtain that PHλ,Hλ
H2
λ

;0 (max1≤i≤H2
λ
X(i) ≤ 2AHλ) is

lower bounded by an absolute constant (here we use that Hλ ≥ 1 since λ < N and H3
λ = λ−1N).



SCALING LIMIT & TAIL BOUNDS FOR A RANDOM WALK MODEL OF SOS LEVEL LINES 25

Next we turn to the second factor. Using the Gibbs property and monotonicity again, we see that

PHλ,Hλ[−J+JA,J−JA];0

(
max

1≤j≤2H−2
λ

(J−JA)−1
X(−J + JA + jH2

λ) ≤ Hλ

)

≥
2H−2

λ
(J−JA)−1∏
j=1

PHλ,Hλ[−J+JA+(j−1)H2
λ
,J−JA];0

(
X(−J + JA + jH2

λ) ≤ Hλ

)
. (4.6)

For notational simplicity we write Ij = [−J +JA+ (j−1)H2
λ, J −JA]. Now, again by monotonicity

followed by the definition of conditional probability,

PHλ,HλIj ;0

(
X(−J + JA + jH2

λ) ≤ Hλ

)
≥ PHλIj ;0

(
X(−J + JA + jH2

λ) ≤ Hλ

∣∣∣ X(J − JA) ≥ Hλ

)
≥ PHλIj ;0

(
X(J − JA) ≥ Hλ

∣∣∣ X(−J + JA + jH2
λ) ≤ Hλ

)
(4.7)

× PHλIj ;0
(
X(−J + JA + jH2

λ) ≤ Hλ

)
.

Using monotonicity, we can lower bound the first factor of (4.7) by the same without a floor at 0,
i.e., X becomes a standard random walk. Then the Markov property and the central limit theorem
guarantee that the first factor of (4.7) is lower bounded by an absolute constant. Now we turn to
the second factor of (4.7). This is lower bounded by

PHλIj ;0
(
X(−J + JA + jH2

λ) ∈ [1
2Hλ, Hλ]

)
=

PHλIj
(
X(−J + JA + jH2

λ) ∈ [1
2Hλ, Hλ], X(i) ≥ 0 ∀i ∈ Ij

)
PHλIj (X(i) ≥ 0 ∀i ∈ Ij)

. (4.8)

Using Lemma 3.10, the denominator is upper bounded by CHλ/|Ij |1/2 Conditioning on X(−J +
JA + jH2

λ) and using the Gibbs property yields that the numerator equals

EHλIj

[
PHλ,X(−J+JA+jH2

λ)
[−J+JA+(j−1)H2

λ
,−J+JA+jH2

λ
]

(
X(i) ≥ 0 ∀i ∈ [−J + JA + (j − 1)H2

λ,−J + JA + jH2
λ]
)

× PX(−J+JA+jH2
λ)

Ij+1
(Xi ≥ 0 ∀i ∈ Ij+1)1 1

2Hλ≤X(−J+JA+jH2
λ

)≤Hλ

]
.

Using Lemma 3.10 again, on the event that X(−J + JA + jH2
λ) ≥ 1

2Hλ, the first factor is lower
bounded by an absolute constant and the second factor by cHλ/|Ij+1|1/2. The probability that
1
2Hλ ≤ X(−J + JA + jH2

λ) ≤ Hλ is also lower bounded by an absolute constant using the central
limit theorem along with the portmanteau theorem. Overall, since |Ij+1|/|Ij | is bounded away from
zero, we obtain that the left-hand side of (4.8), and in turn the left-hand side of (4.7), is lower
bounded by an absolute constant.

Returning to (4.6) and (4.5) yields that

PHλ,Hλ[−J+JA,J−JA];0 (Mid) ≥ exp(−cJH−2
λ )

for some absolute constant c > 0.

Lower bounding PAHλ,AHλI;0 (X(J−JA) ≤ Hλ): To establish the desired lower bound on PAHλ,AHλI;0 (Drop),
it remains to lower bound the last two probabilities in (4.4). We will show that the fourth proba-
bility is lower bounded by exp(−cA3/2); a symmetric argument applied to the fifth factor will then
yield the same lower bound and complete the proof.

To prove the lower bound on PAHλ,AHλI;0
(
X(−J + JA) ≤ Hλ

)
, we will consider the event that on

each subinterval of [−J,−J + JA] of length A−1H2
λ, X falls by an amount of order A−1/2Hλ. Note

that A−1/2Hλ is the fluctuation scale of a random walk bridge on an interval of size A−1H2
λ, so this
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(−J,AHλ)

(−J + JA, Hλ)

−J −J + JA

A−1H2
λ

A−1/2Hλ

Figure 2. To lower bound PAHλ,AHλI;0 (X(J−JA) ≤ Hλ), we force the path to fall linearly as
depicted above. Note that across the interval of size JA = A1/2H2

λ, the path then falls by an
amount AHλ, which is not diffusive with respect to the interval length. However, the path
does fall by an on-scale amount on the smaller scale subintervals of length A−1/2Hλ, which
allows us to make use of invariance principles. We expect that in the true behavior, the
path would fall according to a parabola with curvature λ, but we do not care about getting
the sharp coefficient in the exponent in the lower bound for the overall partition function
Zλ;AHλ,BHλ
I;0 , and the above prescription is simpler to analyze and achieves the correct order.

event can be expected to have uniformly positive probability. Recall also that by our assumptions
on A, A−1H2

λ ≥ 9. Since there are A3/2 many subintervals of size A−1H2
λ within the interval

[−J,−J + JA] (which has length JA = A1/2H2
λ), and since the total amount fallen will be AHλ

(after adjusting the last fall appropriately), this will complete the proof.
Now we proceed to give the details. Let σA = A−3/2(A − 1), so that A3/2σA = A − 1, and let

Aj = A− (j − 1)σA and xj = −J + (j − 1)A−1H2
λ. Then we have that

PAHλ,AHλI;0
(
X(−J + JA) ≤ Hλ

)
≥ PAHλ,AHλI;0

A3/2⋂
j=1
{X(xj+1) ≤ Aj+1Hλ}

 . (4.9)

Now by a similar argument using the Gibbs property and monotonicity as in (4.3), the probability
on the right side of (4.9) is bounded below by

A3/2∏
j=1

PAjHλ,AHλ[xj ,J ];0 (X(xj+1) ≤ Aj+1Hλ) . (4.10)

The jth factor in (4.10) is lower bounded by

PAjHλ,AHλ[xj ,J ]

(
X(xj+1) ∈ [Aj+3/2Hλ, Aj+1Hλ]

∣∣∣ min
i∈[xj ,J ]

X(i) ≥ 0
)

= PAjHλ,AHλ[xj ,J ]

(
X(xj+1) ∈ [Aj+3/2Hλ, Aj+1Hλ]

)
×

PAjHλ,AHλ[xj ,J ]

(
mini∈[xj ,J ]X(i) ≥ 0

∣∣∣ X(xj+1) ∈ [Aj+3/2Hλ, Aj+1Hλ]
)

PAjHλ,AHλ[xj ,J ]

(
mini∈[xj ,J ]X(i) ≥ 0

) (4.11)

We first lower bound the last line of (4.11) by an absolute positive constant first before returning
to the second line. First we observe that by the Gibbs property and monotonicity, the numerator
of the last line is lower bounded by

PAjHλ,Aj+3/2Hλ
[xj ,xj+1]

(
min

i∈[xj ,xj+1]
X(i) ≥ 0

)
· PAj+3/2Hλ,AHλ

[xj+1,J ]

(
min

i∈[xj+1,J ]
X(i) ≥ 0

)
(4.12)

By the invariance principle Lemma 3.1, the first factor of (4.12) is lower bounded by an absolute
positive constant independent of j. By the lower bound of the ballot theorem (Theorem 3.6), the
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second factor in (4.12) is lower bounded by

cmin
(

1,
Aj+3/2AH

2
λ

J − xj+1

)
.

By Theorem 3.6, the denominator of the last line of (4.11) is bounded above by

C min
(

1, AjAH
2
λ

J − xj

)
.

Under the assumptions on I that 2J = |I| ≥ 2(A1/2 + B1/2)H2
λ and since xj ≤ A1/2H2

λ and
Aj ≥ Aj+3/2 for every j, we see that the last line of (4.11) is lower bounded by an absolute
constant.

Now we turn to the second line of (4.11). This requires a more detailed calculation which we
isolate as Lemma 4.3 ahead. Assuming that lemma, the proof is complete. �

Lemma 4.3. There exist δ, ρ > 0 such that, for all u and I = [−J, J ] such that 0 ≤ AHλ ≤
ρ(J −A1/2H2

λ), A ≤ 1
9H

2
λ, and |I| ≥ 2A1/2H2

λ, it holds for all 1 ≤ j ≤ A3/2 that

PAjHλ,AHλ[xj ,J ]

(
X(xj+1) ∈ [Aj+3/2Hλ, Aj+1Hλ]

)
> δ.

Proof. By definition,

PAjHλ,AHλ[xj ,J ]

(
X(xj+1) ∈ [Aj+3/2Hλ, Aj+1Hλ]

)
=

PAjHλ[xj ,J ]

(
X(xj+1) ∈ [Aj+3/2Hλ, Aj+1Hλ], X(J) = AHλ

)
PAjHλ[xj ,J ] (X(J) = AHλ)

= PAjHλ[xj ,J ]

(
X(xj+1) ∈ [Aj+3/2Hλ, Aj+1Hλ]

)
·
PAjHλ[xj ,J ]

(
X(J) = AHλ | X(xj+1) ∈ [Aj+3/2Hλ, Aj+1Hλ]

)
PAjHλ[xj ,J ] (X(J) = AHλ)

.

By Donsker’s invariance principle, i.e., weak convergence to Brownian motion, there exists δ′ > 0
such that the first factor in the last line is lower bounded by δ′ as long as A−1/2H ≥ 3 (as we have
assumed). So we must show that the second factor is also lower bounded by an absolute constant.
First, by the Gibbs property we can lower bound it by

inf
w∈[Aj+3/2,Aj+1]

PwHλ[xj+1,J ] (X(J) = AHλ)

PAjHλ[xj ,J ] (X(J) = AHλ)
= inf

w∈[Aj+3/2,Aj+1]

P0
[xj+1,J ] (X(J) = (A− w)Hλ)
P0

[xj ,J ] (X(J) = (A−Aj)Hλ)
.

To lower bound the expression on the right, we make use of a sharp local limit theorem for ran-
dom walks from [Ric57]. Let ϕ(x) = (2π)−1/2 exp(−x2/2) be the Gaussian density (recall we are
assuming for simplicity that the walk jumps have unit variance), and w ∈ [Aj+3/2, Aj+1]. Invoking
[Ric57, Theorems 2 and 3] respectively for continuous and discrete increment distributions (we
are able to do so because of the finite MGF condition in Assumption 2.2, along with Assumption
2.1 which forces a bounded increment density in the nonlattice case) tells us that there exists
ρ > 0 such that the following holds. Under the conditions 0 ≤ (A − w)Hλ ≤ 1

2ρ(J − xj+1) and
0 ≤ (A−Aj)Hλ ≤ 1

2ρ(J−xj),2 there exist R1, R2 ∈ [−1
2ρ
−1, 1

2ρ
−1] (which may depend on (A−w)Hλ

and (A−Aj)Hλ) such that
P0

[xj+1,J ] (X(J) = (A− w)Hλ)
P0

[xj ,J ] (X(J) = (A−Aj)Hλ)
(4.13)

2Applying [Ric57, Theorems 2 and 3] as stated would require assuming a lower bound of (J − xj+1)1/2 and
(J−xj)1/2 respectively on (A−w)Hλ and (A−Aj)Hλ, but an inspection of the proof shows that this can be dropped
at the cost of modifying the last factor in (4.13).
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= (J − xj)1/2

(J − xj+1)1/2 ·
ϕ
(

(A−w)Hλ
(J−xj+1)1/2

)
ϕ
(

(A−Aj)Hλ
(J−xj)1/2

) · exp
(

(A−w)3H3
λ

(J−xj+1)2 · Λ
(

(A−w)Hλ
J−xj+1

))
exp

(
(A−Aj)3H3

λ
(J−xj)2 · Λ

(
(A−Aj)Hλ
J−xj

)) · 1 +R1 · (A−w)Hλ
J−xj+1

1 +R2 · (A−Aj)Hλ
J−xj

,

where Λ is a power series with radius of convergence ρ. Since I ≥ 4A1/2H2
λ, xj ≤ A1/2H2

λ for all j,
and xj < xj+1, the first ratio in the last line is bounded below by 1. Similarly by the assumptions
adopted before the previous display, the final factor is lower bounded by a positive constant.

Next we focus on the second ratio in the second line of (4.13). Write w = Aj − w̃, so that
w̃ ∈ [A−1/2, 3

2A
−1/2]. Then, also using that (1− x)−1 = 1 +O(x), the second factor equals

exp
(
−(A−Aj)2 + w̃2 + 2w̃(A−Aj)

2(J − xj −A−1H2
λ)

H2
λ + (A−Aj)2

2(J − xj)
H2
λ

)

= exp
(
−(A−Aj)2 + w̃2 + 2w̃(A−Aj)

2(J − xj)
H2
λ

(
1 +O

(
A−1H2

λ

J − xj

))
+ (A−Aj)2

2(J − xj)
H2
λ

)

= exp
(
−O

(
(A−Aj)2A−1

(J − xj)2 H4
λ

)
−O

(
w̃(A−Aj)
J − xj

H2
λ

))
.

Since J − xj ≥ A1/2H2
λ for all j, and using that w̃ is of order A−1/2, each term in the exponent of

the last line is bounded above by an absolute constant.
It remains to lower bound the third ratio in the second line of (4.13). DefineM := sup|x|≤ 1

2ρ
|Λ′(x)| <

∞. We observe by Taylor’s theorem, and a calculation as in the previous display that, for some
C <∞,

Λ
(

(A− w)Hλ

J − xj+1

)
≥ Λ

(
(A−Aj)Hλ

J − xj

)
− CM

(
A−1/2Hλ

J − xj
+ A−1(A−Aj)H3

λ

(J − xj)2

)

≥ Λ
(

(A−Aj)Hλ

J − xj

)
− CMA−1H−1

λ . (4.14)

It is also easy to check that
(A− w)3H3

λ

(J − xj+1)2 ≥
(A−Aj)3H3

λ

(J − xj)2 − CA1/2H−1
λ ,

and the last term is lower bounded by a constant since A ≤ H2
λ. Let us raise M if needed so that

also sup|x|≤ 1
2ρ
|Λ(x)| ≤M . Then we see from the previous display and (4.14) that

(A− w)3H3
λ

(J − xj+1)2 · Λ
(

(A− w)Hλ

J − xj+1

)
≥ (A−Aj)3H3

λ

(J − xj)2 · Λ
(

(A−Aj)Hλ

J − xj

)

− CMA1/2H−1
λ − CMA−1H−1

λ

(A−Aj)3H3
λ

(J − xj)2

Since A ≤ H2
λ, A1/2H−1

λ ≤ 1. Since J−xj ≥ A1/2H2
λ for all j, A−1H−1

λ
(A−Aj)3H3

λ
(J−xj)2 ≤ A−2 ·A3 ·H−2

λ =
AH−2

λ ≤ 1. Substituting this into the third factor in (4.13) yields that the latter is lower bounded
by an absolute constant as well. This completes the proof after relabeling ρ. �

5. Upper tail bounds for a single curve

The goal of this section is to prove upper tail bounds for a single random walk above a wall with
area tilt. We begin with the following one-point bound with characteristic Tracy–Widom-type
exponent. Recall the parameter Hλ from (4.1).
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Theorem 5.1. There exist universal constants c, C,N0 > 0 such that for any N ≥ N0, λ ∈ (0, N),
R ∈ [0, H2

λ], interval I ⊆ J−N,NK with |I| ≥ H2
λ, u, v ≤ AHλ with A > 0, and t ∈ I, we have

Pλ;u,v
I;0 (X(t) > (R+A)Hλ) ≤ Ce−cR3/2

.

A result of this type originally appeared in [HV04, Theorem 1.2], but with less explicit restrictions
on the ranges of the parameters λ and t. We will require the result for essentially the full range
of parameters in the statement of the theorem, and the stochastic monotonicity statement Lemma
3.2 allows us to give a somewhat shorter argument. Moreover, it is noted in [ISV15] that there is
an error in the proof of [HV04, Theorem 1.2], and although [ISV15, Lemma 2] for a related ground-
state chain is intended as a substitute, it is not immediately suited to our setup. We therefore give
a self-contained proof of this result, following the same overall strategy as in [HV04]. A matching
lower tail bound is also given in [HV04], and a straightforward argument yields it here as well (see
Remark 5.3), though we do not need it and so we do not give the details here. We also mention
here the work [GG21], which proves analogous tail bounds for the 2D Ising interface.

As a corollary, by including an extra logarithmic factor, we obtain an upper tail bound on the
maximum of a single curve that crucially decays with the length of the interval beyond scale R1/2H2

λ.

Corollary 5.2. Under the same assumptions as Theorem 5.1, if in addition |I| ≥ R1/2H2
λ, R ≥

(2/c)2/3, and R1/2(log |I|
R1/2H2

λ

)2/3 ≤ Hλ, then

Pλ;u,v
I;0

(
max
t∈I

X(t) >
(
R

(
log |I|

R1/2H2
λ

)2/3
+A

)
Hλ

)
≤ C exp

(
−cR3/2 log |I|

R1/2H2
λ

)
.

Remark 5.3. A simpler argument than the one below would prove matching lower bounds on
the right-tail probabilities in Theorem 5.1 (with t far enough from the boundary, say t = 0) and
Corollary 5.2. The basic observation is that by monotonicity, one can obtain a lower bound by
pinning the curve to zero on the boundary of the interval I := [−R1/2H2

λ, R
1/2H2

λ] ∩ I, and it
then suffices to lower bound Pλ;0,0

R1/2Hλ;0(X(0) > RHλ). For this, one can first ignore the partition
function (since it is at most 1), and then restrict to configurations with maxt∈I X(t) < 2RHλ, so
that the area tilt is bounded below by e−4R3/2 . By monotonicity one can also remove the floor at
zero. It then remains to lower bound the probability of {X(0) > RHλ, maxt∈I X(t) < 2RHλ} by
exp(−cR3/2), for an untilted random walk bridge X on I. This can be done by the methods of
Section 4; see Figure 2, where one can instead consider a subdiffusive mesh of points ascending
from 0 at the boundary to RHλ at time 0. To obtain the lower bound in Corollary 5.2, one can
divide the interval I into segments of length R1/2H2

λ, pin the curve to zero at the boundary points,
and apply the previous lower bound with independence.

The idea to prove Theorem 5.1 is to consider the largest interval J around the point t on which
the curve X remains uniformly above height 1

2RHλ. Either this interval J is large, which will incur
a large penalty from the area tilt, or J is small, in which case the curve has to fluctuate by at least
1
2RHλ over a short distance. The critical scale at which these two effects balance one another leads
to the R3/2 exponent in the bound.

In order to make this argument precise, we need the following generalization of the Gibbs property
for conditioning on a random interval. For X ∼ Pλ;0,0

I;0 and R > 0, define the two random times

σ := max{s ∈ I ∩ Z, s ≤ t : X(s) < 1
2RHλ},

τ := min{s ∈ I ∩ Z, s ≥ t : X(s) < 1
2RHλ}.

(5.1)

The zero boundary conditions ensure that σ, τ are well-defined. In the following we let J denote
the random interval Jσ, τK. Let Fσ,τ denote the σ-algebra generated by events of the form A∩{σ =
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`} ∩ {τ = r}, where `, r ∈ I, ` < t < r, and A lies in the σ-algebra F`,r generated by X(j) for
j /∈ (`, r). Lastly, define the domain Υ := {(f, `, r) : `, r ∈ I, ` ≤ t ≤ r, f : J`, rK→ R}.

Lemma 5.4. For any bounded measurable functional F : Υ→ R,

Eλ;0,0
I;0 [F (X|J , σ, τ) | Fσ,τ ] = Eλ;X(σ),X(τ)

J ; 1
2RHλ

[F (X,σ, τ)].

Here we are abusing notation slightly on the right-hand side, as the boundary conditionsX(σ), X(τ)
in general lie below the floor at 1

2RHλ, i.e., the floor constraint is applied only in the interior. It is
easy to see that the monotonicity properties of Lemma 3.2 still hold in this case.

Proof of Lemma 5.4. Let us abbreviate Pλ;0,0
I;0 by PI and likewise for expectations. By definition of

Fσ,τ , we must show that for any `, r ∈ I with ` ≤ t ≤ r and any event A ∈ F`,r,

EI
[
F (X|J , σ, τ)1A∩{σ=`}∩{τ=r}

]
= EI

[
Eλ;X(σ),X(τ)
J ; 1

2RHλ
[F (X,σ, τ)]1A∩{σ=`}∩{τ=r}

]
. (5.2)

First note that if either ` = t or r = t, then X(t) < 1
2RHλ and in fact ` = r = t. In this case, both

sides of (5.2) are simply equal to EI [F (X(t), t, t)1A∩{X(t)< 1
2RHλ}

]. It therefore suffices to prove
(5.2) for ` < t < r. Define the events

Int(`, r) :=
{

min
s∈J`+1,r−1K

X(s) ≥ 1
2RHλ

}
, Bd(`, r) :=

{
X(`), X(r) < 1

2RHλ

}
. (5.3)

Then {σ = `} ∩ {τ = r} = Int(`, r)∩Bd(`, r). So in order to prove (5.2) it suffices to show that for
each `, r ∈ I with ` < t < r and A ∈ F`,r,

EI
[
F (X|[`,r], `, r)1A1Int(`,r)1Bd(`,r)

]
= EI

[
Eλ;X(`),X(r)

[`,r]; 1
2RHλ

[F (X, `, r)]1A1Int(`,r)1Bd(`,r)

]
. (5.4)

Note that Bd(`, r) ∈ F`,r. We condition on F`,r and apply the tower property, followed by the
Gibbs property, followed by the tower property in reverse, to see that

EI
[
F (X|[`,r], `, r)1A1Int(`,r)1Bd(`,r)

]
= EI

[
EI
[
F (X|[`,r], `, r)1A1Int(`,r) | F`,r

]
1Bd(`,r)

]
= EI

[
Eλ;X(`),X(r)

[`,r];0

[
F (X, `, r)1Int(`,r)

]
1A1Bd(`,r)

]
= EI

[
Eλ;X(`),X(r)

[`,r];0 [F (X, `, r) | Int(`, r)]PI (Int(`, r) | F`,r)1A1Bd(`,r)
]

= EI
[
Eλ;X(`),X(r)

[`,r]; 1
2RHλ

[F (X, `, r)]1A1Int(`,r)1Bd(`,r)

]
.

This proves (5.4). �

With this lemma, we can prove the one point bound using the strategy outlined above.

Proof of Theorem 5.1. First observe that it suffices to prove the theorem and corollary when u =
v = 0, since if u, v ≤ AHλ thenX ∼ Pλ;u,v

I is stochastically dominated by Y +AHλ where Y ∼ Pλ;0,0
I .

In this case we can take A = 0 in the desired bound. We can also of course assume R ≥ 1 by taking
C ≥ e and c ≤ 1. Using Lemma 5.4 we write

Pλ;0,0
I;0 (X(t) > RHλ) = Eλ;0,0

I;0

[
Eλ;0,0
I;0

[
1X(t)>RHλ | Fσ,τ

]]
= Eλ;0,0

I;0

[
Pλ;X(σ),X(τ)
J ; 1

2RHλ
(X(t) > RHλ)

]
.

We now split into cases depending on the length of the interval J . Define ∆ := K
√
RH2

λ, where
K > 0 is a sufficiently large constant. The reason for this choice of ∆ will become apparent in the
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argument. We then use the above along with stochastic monotonicity to bound

Pλ;0,0
I;0 (X(t) > RHλ) = Eλ;0,0

I;0

[
1|J |≤∆ Pλ;X(σ),X(τ)

J ; 1
2RHλ

(X(t) > RHλ)
]

+ Eλ;0,0
I;0

[
1|J |>∆ Pλ;X(σ),X(τ)

J ; 1
2RHλ

(X(t) > RHλ)
]

≤ Eλ;0,0
I;0

[
1|J |≤∆ Pλ; 3

4RHλ,
3
4RHλ

J ; 1
2RHλ

(X(t) > RHλ)
]

+ Pλ;0,0
I;0 (|J | > ∆).

(5.5)

In the last line we used the fact that X(σ), X(τ) ≤ 1
2RHλ ≤ 3

4RHλ by definition of σ and τ .
In the remainder of the proof, we will show that there are constants c, C > 0 and N0 ∈ N

depending on K so that for all N ≥ N0, 0 < λ < N , and 0 ≤ R ≤ 2H2
λ, it holds that

Pλ;0,0
I;0 (|J | > ∆) ≤ Ce−cR3/2

, (5.6)

and
1|J |≤∆ Pλ; 3

4RHλ,
3
4RHλ

J ; 1
2RHλ

(X(t) > RHλ) ≤ Ce−cR3/2
. (5.7)

Applying these bounds in (5.5) completes the proof. We will prove these estimates in two separate
steps.

Step 1: Bounding the size of J . We first prove (5.6). We will decompose the probability as
follows. Define

A∆ := {(`, r) ∈ I × I : ` < t < r, r − ` > ∆}.
Recall the events Int(`, r) and Bd(`, r) from (5.3), and note that {|J | > ∆} is the disjoint union over
(`, r) ∈ A∆ of Int(`, r) ∩ Bd(`, r). Therefore, conditioning on F`,r and applying the Gibbs property
followed by monotonicity,

Pλ;0,0
I;0 (|J | > ∆) =

∑
(`,r)∈A∆

Eλ;0,0
I;0

[
Pλ;0,0
I;0 (Int(`, r) ∩ Bd(`, r) | F`,r)

]
=

∑
(`,r)∈A∆

Eλ;0,0
I;0

[
1Bd(`,r)P

λ;X(`),X(r)
[`,r];0 (Int(`, r))

]
≤

∑
(`,r)∈A∆

Pλ; 1
2RHλ,

1
2RHλ

[`,r];0 (Int(`, r)).

(5.8)

We will now bound the summands in the last line of (5.8). Note that on the event Int(`, r), the
area tilt is bounded above by exp(− λ

N ·
1
2RHλ(r− `)) = exp(−1

2R(r− `)H−2
λ ). Therefore, bounding

above the indicator for the walk remaining nonnegative by 1,

Pλ; 1
2RHλ,

1
2RHλ

[`,r];0 (Int(`, r)) ≤ (Zλ; 1
2RHλ,

1
2RHλ

[`,r];0 )−1

× exp
(
−1

2R(r − `)H−2
λ

)
P

1
2RHλ,

1
2RHλ

[`,r] (Int(`, r)).
(5.9)

Here we recall that Pu,v[`,r] denotes the law of a random walk bridge with no floor or area tilt. By
monotonicity and the ballot theorem (Theorem 3.6), there is a universal constant C so that

P
1
2RHλ,

1
2RHλ

[`,r] (Int(`, r)) ≤ P0,0
[`,r]

(
min
j∈(`,r)

X(j) > 0
)
≤ C

r − `
, (5.10)

uniformly in r − ` > ∆. By Proposition 4.1,

Z
λ; 1

2RHλ,
1
2RHλ

[`,r];0 ≥ c exp
(
−C(R3/2 + (r − `)H−2

λ )
)
. (5.11)
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Indeed, the proposition applies as long as K is large enough since since r− ` > ∆ = K
√
RH2

λ, and
1
2RHλ ≤ H2

λ since we have assumed R ≤ 1
2Hλ. Altogether, choosing K large enough depending on

c, C, using r − ` > K
√
RH2

λ, and applying (5.10) and (5.11) in (5.9) implies that

Pλ; 1
2RHλ,

1
2RHλ

[`,r];0 (Int(`, r)) ≤ C

r − `
exp

(
−1

4R(r − `)H−2
λ

)
.

Now returning to (5.8), we change variables via r = `+ k where k > ∆, to obtain

Pλ;0,0
I;0 (|J | > ∆) ≤

∑
(`,r)∈A∆

C

r − `
exp

(
−1

4R(r − `)H−2
λ

)
=
∑
k>∆

∑
`<t<`+k

C

k
exp

(
−1

4RkH
−2
λ

)
≤
∑
k>∆

C exp
(
−1

4RkH
−2
λ

)
≤ C exp

(
−cR∆H−2

λ

)
≤ C exp(−cR3/2).

For the first inequality in the second line, we noted that the number of ` with ` < t < ` + k is at
most k. For the subsequent inequality we used a straightforward geometric sum estimate, and for
the final inequality we recalled ∆ = K

√
RH2

λ. This proves (5.6).

Step 2: Upper tail bound for small J . We now prove (5.7). This is a straightforward applica-
tion of random walk bridge estimates from Section 2. By stochastic monotonicity, we can remove
the area tilt and shift vertically down by 1

2RHλ to estimate

Pλ; 3
4RHλ,

3
4RHλ

J ; 1
2RHλ

(X(t) > RHλ) ≤ P
1
4RHλ,

1
4RHλ

J ;0 (X(t) > 1
2RHλ)

≤
P

1
4RHλ,

1
4RHλ

J (X(t) > 1
2RHλ)

P
1
4RHλ,

1
4RHλ

J (mins∈J X(s) > 0)
.

(5.12)

For the numerator, Lemma 3.5 implies for |J | ≤ ∆ = K
√
RH2

λ that

P
1
4RHλ,

1
4RHλ

J (X(t) > 1
2RHλ) ≤ 4 exp

(
− c
(
R2H2

λ

t− σ
∧RHλ

))
≤ 4e−cR3/2

. (5.13)

In the last inequality, we used t − σ ≤ K
√
RH2

λ to bound R2H2
λ/(t − σ) ≥ K−1R3/2, as well

as the hypothesis R ≤ H2
λ to bound RHλ ≥ K−1R3/2. On the other hand, the ballot theorem

(Theorem 3.6) implies that the denominator in (5.12) is bounded below by the minimum of c > 0
and c(1

4RHλ)2/|J | ≥ 1
8cK

−1R3/2 ≥ 1
8cK

−1 > 0. In combination with (5.12) and (5.13), this
proves (5.7). �

We now give the proof of the maximum bound.

Proof of Corollary 5.2. This is a direct consequence of Theorem 5.1 and a union bound. As before
we can assume u = v = 0 and A = 0. If I = Ja, bK, let L = b |I|

R1/2H2
λ

c, ti = ba + iR1/2H2
λc for

0 ≤ i < L, and tL = b. Write M = R(log |I|
R1/2H2

λ

)2/3Hλ. Then by a union bound, applying the
Gibbs property and monotonicity,

Pλ;0,0
I;0

(
max
t∈I

X(t) > M

)
≤

L−1∑
i=1

[
Pλ;0,0
I;0

(
X(ti) >

M

2

)
+ Pλ;M2 ,

M
2

[ti,ti+1];0

(
max

t∈[ti,ti+1]
X(t) > M

)]
. (5.14)

By Theorem 5.1, for each i we have for the first term in the summand

Pλ;0,0
I;0

(
X(ti) >

M

2

)
≤ C exp

(
− cR3/2 log |I|

R1/2H2
λ

)
. (5.15)
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For the second term in the ith summand in (5.14), we use monotonicity to remove the area tilt,
followed by Lemma 3.5 and the ballot theorem (Theorem 3.6) with ti+1 − ti ≤ R1/2H2

λ to estimate

Pλ;M2 ,
M
2

[ti,ti+1];0

(
max

t∈[ti,ti+1]
X(t) > M

)
≤

P
M
2 ,

M
2

[ti,ti+1]

(
maxt∈[ti,ti+1]X(t) > M

)
P
M
2 ,

M
2

[ti,ti+1]

(
mint∈[ti,ti+1]X(t) > 0

)
≤ C exp

(
− c
(

M2

R1/2H2
λ

∧M
))

= C exp
(
−cR3/2

(
log |I|

R1/2H2
λ

)4/3)
.

In the last line we used the assumption R1/2(log |I|
R1/2H2

λ

)2/3 ≤ Hλ, and the condition |I| ≥ R1/2H2
λ

implies the last expression is no larger than the right-hand side of (5.15) (after possibly enlarging
C). Therefore each summand in (5.14) is bounded by the same factor on the right of (5.15). The
number of terms in the sum is L − 1 ≤ |I|/R1/2H2

λ, and since R3/2 ≥ 2/c, this factor can be
absorbed into the exponent by replacing c with c/2. This proves the desired bound. �

6. Global ceilings for the line ensemble

This section is dedicated to the proof of Theorem 2.14, which follows from Theorem 6.1 below.
We begin by setting up and stating Theorem 6.1, followed by the proof of Theorem 2.14. We give
an outline of the proof of Theorem 6.1 in Section 6.1, followed by the proof in Section 6.2.

We start with some notation, used throughout this section and Section 7. Fix a0 > 0 and b0 > 1.
All results in the next two sections are stated for a ≥ a0 and b ≥ b0, where (a, b) are the area-tilt
parameters from Definition 2.4. Define

λj := abj−1, Hj := λ
−1/3
j N1/3, j ∈ N . (6.1)

That is, compared to our notation for single curves in (4.1), we write Hj instead of Hλj for brevity.
This will provide the fluctuation scale for the jth curve in the line ensemble. For real numbers
p < q, r ∈ R, and s > 0, we will sometimes write r + s[p, q] or r + [p, q]s to denote the interval
[r + ps, r + qs] for brevity. We sometimes write x ∨ y := max(x, y).

Next, choose a constant C = C(b0) > 1 large enough so that
(j + 1 + C)2Hj+1

(j + C)2Hj
≤ b−1/6 for all j ≥ 1 and b ≥ b0. (6.2)

Note the above is implied by (2 + C)2/(1 + C)2 ≤ b1/60 . Define

εj := (j + C)−2 . (6.3)

Recall the choices of parameters from (2.7)–(2.8) in Theorem 2.14. There, the parameter L relat-
ing to the interval size was fixed, and restrictions on the maximum size of the boundary conditions
max(u1, v1) and the tail-depth parameter K were given in terms of L. While this parametrization
was natural for the theorem statement, it will be convenient for the proof to reparametrize by
imposing restrictions on L in terms of the largest allowed size B of N−1/3 max(u1, v1).

We consider n curves on an interval I defined by

n = bN δc, I = [−LN2/3, LN2/3] . (6.4)

Fix r ∈ (0, 2/3) and η > 0. For a constant K0 > 0 to be chosen sufficiently large, we consider
parameters K,B,L satisfying

K ∈ [K0, N
r(logN)−2/3] , B ∈ [K(logN)2/3, N r] , L ∈ [B1/2+η, N1/3] , (6.5)

and boundary conditions u = (uj)nj=1 and v = (vj)nj=1 in the Weyl chamber Wn
0 satisfying
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max(u1, v1) +Kε−1
1 H1

(
log |I|

K1/2H2
1

)2/3
≤ BN1/3 and

min(uj−1, vj−1) ≥ max(uj , vj) +Kε−1
j Hj

(
log |I|

K1/2H2
j

)2/3
for all j ∈ J2,m+ 1K, (6.6)

where we define the threshold
m = b(2/3− r) logbN − logb ac, so that Hm+1 ∈ N1/9+r/3[1, b1/3] . (6.7)

The choice of the above parameters, as well as the objects appearing in (6.8)–(6.11) below, are
motivated in the proof outline of Theorem 6.1 in Section 6.1. Define the intervals

Ij = [xL
j , x

R
j ] :=

[
− 1

2

m∏
i=j

(1− εi)LN2/3,
1
2

m∏
i=j

(1− εi)LN2/3
]

and Im+1 := 1
2I . (6.8)

Note that Ij = (1− εj)Ij+1 for j ∈ J1,mK. Since
m∏
i=1

(1− εi) =
m∏
i=1

(i+ C − 1)(i+ C + 1)
(i+ C)2 = C

C + 1

(
1 + 1
C +m

)
> 1/2 , (6.9)

we have for all j ∈ J1,m+ 1K and C > 0,

Ij ⊃ 1
4I , so |Ij | ≥ 1

4B
1/2+ηN2/3 ≥ CK1/2ε

−1/2
j H2

j , (6.10)
where the last inequality holds for all N large enough depending on a0, b0, and C. Let T > 0
denote a large constant depending only on a0 and b0, to be specified in the course of the argument.
For j ∈ J1,m+ 1K, define the jth “ceiling function” Clj(x) = Clj(x;K, a, b,u,v) by

Clj(x) :=


Kε−1

j Hj

(
log(2T ε−1/2

j )
)2/3

, |x| ≤ 2TK1/2ε
−1/2
j H2

j ,

Kε−1
j Hj

(
log |x|

K1/2H2
j

)2/3
, x ∈ Ij , |x| > 2TK1/2ε

−1/2
j H2

j ,

max(uj , vj) +Kε−1
j Hj

(
log |I|

K1/2H2
j

)2/3
, x ∈ I \ Ij .

(6.11)

Note Clj is continuous on Ij and, by (6.6), non-decreasing in |x|. Eq. (6.6) also gives

min(uj , vj) ≥ max
x∈I

Clj+1(x) = max(uj+1, vj+1) +Kε−1
j Hj

(
log |I|

K1/2H2
j

)2/3
∀j ∈ J1,mK . (6.12)

The above is convenient because it will allow us to use monotonicity in the floor (Lemma 3.2) to
stochastically dominate a walk with boundary conditions uj and vj and floor at Clj+1 by a walk
with the same boundary conditions but floor at maxx∈I Clj+1(x) without having to worry about
issues such as this raised floor being higher than the boundary conditions.

We derive Theorem 2.14 from Theorem 6.1 below, whose proof is in Section 6.2.

Theorem 6.1. Fix a0 > 0, b0 > 1, r ∈ (0, 2/3), and η > 0. There exist positive constants
K0(a0, b0, η), δ = δ(r), c = c(a0, b0), and C = C(a0, b0, η) such that the following holds. There exists
N0 = N0(a0, b0, r, η) ∈ N so that for all N ≥ N0, a ∈ [a0, N

1/3−r/2], b ∈ [b0, exp((2
3 −r)(logN)1/3)],

n and I as in (6.4), (K,B,L) as in (6.5), and u,v ∈Wn
0 satisfying (6.6),

Pa,b;u,vn,I;0

(
∃x ∈ I : X1(x) > 2Cl1(x)

)
≤ Ce−cK3/2

. (6.13)

Although Theorem 6.1 is only stated for the top curve X1, in the proof of Theorem 2.14 below,
we show that allowing a to be as large as a power of N allows us to get bounds on the jth curve
Xj of the ensemble. In Remark 6.2, we explain that the same idea gives a global ceiling for Xj

analogous to (6.13) for X1.
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Proof of Theorem 2.14. We apply Theorem 6.1 to prove Theorem 2.14 for t = 0, as our ceiling
functions Clj are defined to be non-decreasing in |x|. In light of (6.10), which implies ∩jIj ⊃ 1

4I,
we could instead use the ceilings Clj(· − t), which are non-decreasing away from t, once N is large
enough so that (T + |t|)σ−2/3N2/3 ∈ 1

4I. The same argument below would yield Theorem 6.1 with
these ceilings (in particular, C and c do not depend on t), Theorem 2.14 with that t follows in
exactly the same way as below. We give the proof in two steps, for j = 1 and for j ∈ J2, κ20 logbNK.
Step 1: j = 1. Starting from the setup of Theorem 2.14, we will use monotonicity (Lemma 3.2)
to raise the boundary conditions so that Theorem 6.1 can be applied. By similar reasoning as in
Remark 3.3, monotonicity in the floor allows us to increase n in Theorem 2.14 to n = bN δc, with,
say, zero boundary conditions for the additional curves. Next, for u,v ∈ Wn

0 satisfying (2.8), we
raise each ui and vi by the smallest amount such that the second condition in (6.6) is satisfied.
Call these new boundary conditions u∗ := (u∗1, . . . , u∗n),v∗ := (v∗1, . . . , v∗n). Then

max(u∗1, v∗1) ≤ max(u1, v1) +
m∑
j=1

Kε−1
j Hj

(
log |I|

K1/2H2
j

)2/3

≤
(
L2−κ +K(logN)2/3

∞∑
j=1

(j + C)2λ
−1/3
j

)
N1/3 ≤ CL2−κN1/3 , (6.14)

where in the first inequality, we used (2.8), Hj ≥ 1 for j ∈ J1,mK from (6.7), and |I| ≤ 2N from
(2.7); in the second inequality, we used the upper bound on K in the statement of Theorem 2.14.
Note C above depends only on a0 and b0. Take B := CL2−κ and r := 2

3 −
κ
6 in Theorem 6.1.

Recalling the bounds on L from (2.7), we see that B satisfies (6.5) for N large. The assumed upper
bound on K in the statement of Theorem 2.14 implies K satisfies (6.5) as well. Moreover, η can
be chosen sufficiently small with respect to κ so that for all N sufficiently large, B1/2+η ≤ L. In
particular, L satisfies (6.5) as well.

Thus, we see that the law Pa,b;u,vn,I;0 is stochastically dominated by Pa,b;u
∗,v∗

n,I;0 , and the latter law
satisfies the conditions of Theorem 6.1. Fixing T > 0 and assuming a ≤ N1/3−r/2 = Nκ/12 and
b ≤ exp((2

3 − r)(logN)1/3) = exp(κ6 (logN)1/3), we may apply Theorem 6.1 (recalling the definition
of Cl1 from (6.11) and ε1 from (6.3)) to obtain

Pa,b;u,vn,I;0

(
∃x ∈ [−Tσ−2/3N2/3, Tσ−2/3N2/3] : X1(x) > 2K(1 + C)2H2

1 Υ(x)2/3
)
≤ Ce−cK3/2

, (6.15)

where

Υ(x) := log
(

a2/3|x|
K1/2N2/3 ∨ 2T (1 + C)

)
≤ C log

(
2 + a2/3|x|

K1/2N2/3

)
,

with C depending only on T , C (which in turn depend only on a0, b0). Substituting the above into
(6.15), recalling (2.9), and setting x = sσ−2/3N2/3 and C̃ = C̃(a0, b0) = 2(1 + C)2C2/3σ−2/3 gives

Pa,b;u,vn,I;0

(
∃s ∈ [−T, T ] : xN1 (s) > C̃Ka−1/3N1/3

[
log

(
2 + a2/3σ−2/3|s|

K1/2

)]2/3)
≤ Ce−cK3/2

.

Take K0 = K0(a0, b0) large so that C above can be absorbed into c. Replacing K with K/C̃, and
then modifying c = c(a0, b0) so as to replace the K1/2 in the denominator with cK1/2, we are done.
Step 2: j ∈ J2, κ20 logbNK. Using monotonicity to remove the top j−1 curves as in Remark 3.3, we

stochastically dominate Xj by the top curve of the line ensemble with law Pλj ,b;u
≥j ,v≥j

n−j+1,I;0 (recalling
u≥j , v≥j from Remark 3.3). It therefore suffices to establish the bound

Pλj ,b;u
≥j ,v≥j

n−j+1,I;0

(
∃s ∈ [−T, T ] : xN1 (s+ t) > Kλ

−1/3
j

[
log

(
2 +

λ
2/3
j |s|
cK1/2

)]2/3)
≤ e−cK3/2

. (6.16)
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Eq. (6.16) will follow from applying the result we just proved in Step 1 (Theorem 2.14 for xN1 ) to
the above line ensemble. Observe that, compared to the line ensemble considered in Step 1, the
number of curves has been reduced from n to n − j + 1, the highest boundary conditions have
been lowered from (u1, v1) to (uj , vj), and the area-tilt parameter a has been replaced by λj . The
first two differences affect nothing; therefore, we just need to verify that the Step 1 result still
applies upon replacing a with λj . The only hypothesis on a used in Step 1 was the condition
a ≤ N1/3−r/2 = Nκ/12 from Theorem 6.1, so for any j such that λj = abj−1 ≤ Nκ/12, the Step 1
result applies. Since we assumed in Theorem 2.14 that a ≤ Nκ/30 and j ≤ κ

20 logbN , this condition
on λj is satisfied, and taking a = λj in the Step 1 result (Theorem 2.14 for xN1 ) yields (6.16). �

Remark 6.2. In the above proof, the j = 1 version of Theorem 2.14 led to the full result for
N = N(a, b, κ) large by considering the top curve of a line ensemble with area-tilt parameters
(λj , b). In exactly the same way, for all N = N(a, b, r) large and for all j ≤ 1+(1

3−
r
2) logbN− logb a

(so λj ≤ N1/3−r/2), Theorem 6.1 can be applied to the top curve of Pλj ,b;u
≥j ,v≥j

n−j+1,I;0 , yielding

Pa,b;u,vn,I;0

(
∃x ∈ I : Xj(x) > 2Cl1

(
x;K,λj , b,u≥j ,v≥j

))
≤ Ce−cK3/2

, (6.17)

where, to clarify, Cl1(·;K,λj , b,u≥j ,v≥j) is the right-hand side of (6.11) with j = 1, (u1, v1) =
(uj , vj), and H1 = Hj (since λ−1/3

j N1/3 = Hj). Thus, we have a ceiling on the jth curve Xj .

6.1. Outline of the proof of Theorem 6.1. We now outline the main ideas underlying the proof
of Theorem 6.1. This expands on the discussion in Sections 1.4.1 and 1.4.2, where it was explained
that a recursive argument reduces the problem to showing that, w.h.p. summable in j, a single
curve X with area-tilt coefficient λj and floor at Clj+1 lies uniformly below Clj . For curves of index
j ≤ m, this is Proposition 6.4, depicted in Figure 3.

For curves of index j > m, the area tilt is too large for the single-curve tail bounds or dropping
lemma to be applied, as these require Hλ to not be too small (see, e.g., the hypotheses of Lemma 4.2
and Theorem 5.1, as well as Remark 7.1 below). On the other hand, the strong area tilt has the
effect of pushing these curves very low, and a crude strategy will show that they are negligible. By
monotonicity, we can bound these curves by decreasing all of their area-tilt parameters to λm+1
and applying a similar recursive strategy. This allows us to show, in Proposition 6.3, that Xm+1 is
w.h.p. dominated by a piecewise constant ceiling F, which itself is dominated by Cl1.

We prove Proposition 6.4 in Section 7 by creating a ceiling on the random walk starting from
the boundary points of I and working our way inwards. First, as depicted in Figure 3, note that
Clj features a high, flat portion on I \ Ij ; inside of Ij , it resembles Hj(log |x|/H2

j )2/3, which is the
equilbrium behavior of the λj-tilted walk. This structure can be understood as follows. Because
we allow our boundary values (uj , vj) to be as large as BN1/3 (see (6.6), (6.5)), the walk fluctuates
around this height for some time. Moreover, since the walk must stay above Clj+1, which features
an anomalously high portion on I \ Ij+1, the walk cannot drop down to its equilbrium height until
after it moves inside of Ij+1. Hence, we have the nesting of the intervals Ij ⊂ Ij+1 as in (6.8).

This equilibration is proved in Lemma 7.3, where we construct random “drop points” within
distance εj |Ij+1| of ∂Ij+1 (in particular, inside of Ij+1 \Ij) where the walk has fallen to ≈ ε−1

j Hj +
Clj+1; that is, the walk has dropped to approximately equilbrium height above the floor. This is
depicted in Figure 4. Recall from (6.3) that εj := (j + C)−2.

The choice of εj comes from the proof of Lemma 7.3, which uses an iterative scheme driven by
the dropping lemma (Lemma 4.2). For a λ-tilted random walk and for any ε ∈ (0, 1), the dropping
lemma constructs, inside any ε-fraction of the interval, a random point where that the walk lies
below height ε−1Hλ. Essentially any sequence εj summable in j would suffice; the relevant point
is that

∏
j(1− εj) > 0 (as noted in (6.9)), so that, iterating down to j = 1, all curves drop to their

equilibrium height within a constant fraction of the interval I; in particular, the length of I1 is a
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vjuj

Clj+1

Clj

Ij

Ij+1

xL
j+1 xL

j xR
j xR

j+1
0

Figure 3. For j ≤ m, Clj+1 (red) features a very high portion outside Ij+1, coming from
a global max bound, and a portion that grows like ε−2

j Hj+1(log |x|
K1/2H2

j+1
)2/3 inside Ij+1.

The random walk bridge (orange) with area tilt λj , boundary conditions uj , vj ≤ BN1/3,
and floor at Clj+1 is shown in Proposition 6.4 to stay below Clj (blue) with high probability.

constant fraction of |I| = 2LN2/3 (see (6.10)). Thus, when L = B1/2+η, the top curve equilibriates
from its boundary values at BN1/3 in B1/2+ηN2/3 time, establishing the nearly parabolic rate of
descent mentioned in Remark 1.2. The Bη factor in the length of the interval is needed for the
aforementioned iterative scheme in the proof of Lemma 7.3: see Claim 7.5 and Figure 4. The
constant C in εj serves to maintain the ordering Clj+1(x) ≤ Clj(x) for all x ∈ I; see (6.2).

Once we have shown that the walk drops from its (potentially very high) boundary values, the
remainder of the proof of Proposition 6.4 proceeds in two steps. In Step 1, the dropping lemma
and the one-point bound Theorem 5.1 are used successively in Claim 7.6 to argue that the walk
drops to height ε−1

j Hj above Clj+1 at a deterministic mesh of points approaching the origin on
either side. The mesh stops upon crossing ±2TK1/2ε

−1/2
j H2

j , which are the boundary points of the
interval around 0 on which Clj is flat (6.11). The role of T is to serve as a large constant so that the
negative |I|/H2

λ term in the exponential in (4.2) dominates the positive terms there. In Step 2, we
“fill in” the ceiling on the random walk between mesh points using the max bound Corollary 5.2.

6.2. Proof of Theorem 6.1. The proof of Theorem 6.1 has two main inputs: Propositions 6.3
and 6.4. Before stating Proposition 6.3, we define (recalling n from (6.4) and m from (6.7))

F(x) = F(x;n,m,K) := 2n2KHm+1 log |I|
K1/2H2

m+1
+ max(um+1, vm+1)1I\Im+1(x), x ∈ I.

Proposition 6.3 below shows that F serves as the ceiling function for all curves below level m.

Proposition 6.3. Under the same hypotheses as Theorem 6.1,

Pλm+1,b;u>m,v>m
n−m,I;0

(
∃x ∈ I : X1(x) > F(x)

)
≤ Cne−cm3/2K3/2

, (6.18)

where u>m := (um+1, . . . , un) and v>m := (vm+1, . . . , vn).

For curves above level m, we have the following single-curve estimate.

Proposition 6.4. Under the same hypotheses as Theorem 6.1, for j ∈ J1,mK,

Pλj ;uj ,vjI;Clj+1

(
∃x ∈ I : X(x) > Clj(x)

)
≤ Ce−cK3/2 log(j+1) . (6.19)

Propositions 6.3 and 6.4 are proved in Section 7.
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Proof of Theorem 6.1. First observe that for all x ∈ I, we have the crude bound

F(x) ≤ Clm+1(x) + 2n2KHm+1 log |I|
K1/2H2

m+1
≤ Clm+1(x) + ζ , (6.20)

where ζ := 2N2δKHm+1 logN . Define the events
Ceilj := {∀x ∈ I : Xj(x) ≤ Clj(x) + ζ} , j ∈ J1,m+ 1K . (6.21)

Let Fj denote the σ-algebra generated by Xi for i 6= j. Applying the Gibbs property and mono-
tonicity as in Remark 3.3 to remove the top curves, for j ∈ J1,mK we can write

Pa,b;u,vn,I;0 (¬Ceilj) = Ea,b;u,vn,I;0

[
Pa,b;u,vn,I;0 (¬Ceilj | Fj)

]
≤ Ea,b;u,vn,I;0

[
Pλj ;uj ,vjI;Xj+1

(∃x ∈ I : X(x) > Clj(x) + ζ)
]

≤ Pa,b;u,vn,I;0 (¬Ceilj+1) + Pλj ;uj+ζ,vj+ζI;Clj+1+ζ (∃x ∈ I : X(x) > Clj(x) + ζ)

= Pa,b;u,vn,I;0 (¬Ceilj+1) + Pλj ;uj ,vjI;Clj+1
(∃x ∈ I : X(x) > Clj(x)) .

In the second line, we used monotonicity first to raise the boundary conditions from (uj , vj) to
(uj + ζ, vj + ζ), and then, on the event Ceilj+1, to raise the floor from Xj+1 to Clj+1 + ζ. In the
last line we used vertical shift invariance, see Remark 2.7. Iterating over j ∈ J1,mK, we obtain

Pa,b;u,vn,I;0 (¬Ceil1) ≤ Pa,b;u,vn,I;0 (¬Ceilm+1) +
m∑
j=1

Pλj ;uj ,vjI;Clj+1
(∃x ∈ I : X(x) > Clj(x)). (6.22)

For the first term, monotonicity to remove the top m curves, Proposition 6.3, and (6.20) yield

Pa,b;u,vn,I;0 (¬Ceilm+1) ≤ Pλm+1,b;u>m,v>m
n−m,I;0

(
∃x ∈ I : X1(x) > Clm+1(x) + ζ

)
≤ Cne−cm3/2K3/2

. (6.23)

Since n = N δ, we can absorb the n pre-factor on the right-hand side of (6.23) into c as follows.
Note from (6.7) that the conditions a ≤ N1/3−r/2 and b ≤ exp((2

3 − r)(logN)1/3) imply m3/2 ≥
[1
2(2

3 − r) logbN − 1]3/2 ≥ (2
3 − r) logN for N = N(r) large enough. Taking K0 ≥ c−2/3 and

δ < 1/3− r/2 then implies logn ≤ (c/2)m3/2K3/2, and replacing c with c/2 gives an upper bound
in (6.20) of Ce−cmK3/2 . Then applying Proposition 6.4 to (6.22) and recalling (6.21) yields

Pa,b;u,vn,I;0

(
∃x ∈ I : X1(x) > Cl1(x) + ζ

)
≤ Ce−cmK3/2 +

m∑
j=1

Ce−cK
3/2 log(j+1) ≤ Ce−cK3/2

.

Finally, note that as long as δ < 1
2(1

9 −
r
6), for all N large depending only on r, and all x ∈ R (using

r < 2
3 , (6.7), and our assumed upper bounds on a and b), we have

ζ ≤ 2KN2δ logN · b−m/3H1 ≤ 2KN2δ logN · b1/3N−(1/9−r/6)H1 ≤ KH1 ≤ Cl1(x) .
The desired bound (6.13) now follows from the last two displays. �

7. Near-parabolic dropping and construction of ceilings

This section is dedicated to the proofs of Propositions 6.3 and 6.4. Throughout this section,
we use the setup and notation laid out at the start of Section 6. In particular, we fix a0 > 0,
b0 > 1 and recall from the hypotheses of Theorem 6.1 (recall Propositions 6.3 and 6.4 share these
hypotheses) the constants c = c(a0, b0) > 0 and C = C(a0, b0, η) > 0. Below, we allow them to
change line-to-line while maintaining the same dependencies. Lastly, fix a ≥ a0, b ≥ b0 as in the
hypotheses of Theorem 6.1 (the upper bounds on a and b there do not play a role in this section).

As in previous sections, we will repeatedly invoke the (strong) Gibbs property (Definition 2.9),
monotonicity (Lemma 3.2, Remark 3.3), and invariance under constant vertical shifts of the floor
and walk (Remark 2.7).
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The proof of Proposition 6.4 is given in the next three subsections. The proof of Proposition 6.3
is given in the last subsection, Section 7.4, as it is similar but much simpler.
Remark 7.1. In this section, we will only deal with area tilts λj = abj−1 for j ≤ m + 1. From
(6.5)–(6.7), our boundary conditions lie below BN1/3 ≤ N1/3+r ≤ H3

j . This ensures that in every
application of Lemma 4.2 that follows, the condition max(u, v) ≤ H3

λ will be satisfied.
7.1. Proof of Proposition 6.4. We prove Proposition 6.4 using three inputs: Lemmas 7.2, 7.3,
and 7.4. Lemma 7.2 is a bound on the maximum height of the walk on all of I. This immediately
gives the x 6∈ Ij portion of Clj in Proposition 6.4. Lemma 7.3 allows us to get away from our
potentially very high boundary conditions. Lemma 7.4 considers a random walk with area tilt
λj and “more reasonable” boundary conditions (in our proof of Proposition 6.4, such boundary
conditions will be given to us by Lemma 7.3, see Figure 4) and states that such a random walk,
with floor at Clj+1, is bounded by Clj everywhere with high probability.
Lemma 7.2. Under the hypotheses of Proposition 6.4, there exists K0 > 0 such that for any
j ∈ J1,mK,

Pλj ;uj ,vjI;Clj+1

(
max
x∈I

X(x) > max(uj , vj) +KHj

(
log |I|

K1/2H2
j

)2/3)
≤ Ce−cjK3/2

. (7.1)

The proof of Lemma 7.2 is short, so we give it before proceeding.

Proof of Lemma 7.2. Eq. (6.6) implies max(uj , vj) ≥ maxx∈I Clj+1. Monotonicity (Lemma 3.2)
allows us to increase the boundary conditions to max(uj , vj) and then raise the floor from Clj+1 to
max(uj , vj). Lowering the floor and the walk by max(uj , vj) via shift invariance (Remark 2.7) then
yields that the left-hand side of (7.1) is bounded by

Pλj ;0,0I;0

(
max
x∈I

X(x) > KHj

(
log |I|

K1/2H2
j

)2/3)
≤ C exp

(
− cK3/2 log |I|

K1/2H2
j

)
,

where the final inequality follows from taking R = K and A = 0 in Corollary 5.2 and K0 large; the
conditions of Corollary 5.2 are satisfied because (6.10) implies |I| ≥ K1/2H2

j , and (6.5), (6.7), and
r < 2/3 imply K < N r ≤ H2

m+1 ≤ H2
j for N = N(r) large. The bound (7.1) follows because (6.1)

and (6.10) give log(|I|/(K1/2H2
j )) ≥ log(2b2(j−1)/3

0 ) ≥ cj for c > 0 depending only on b0. �

The next two lemmas are proved in Sections 7.2 and 7.3, respectively. For Lemma 7.3, recall η
and B from (6.5).
Lemma 7.3. Fix c0 ∈ (0, 1). Under the hypotheses of Proposition 6.4, there exists D0 > 0 such that
for all j ∈ J1,m+ 1K, D ∈ [D0, B], ε′ ≥ c0λ

−1/6
j , and all yL ≤ yR such that yR− yL ≥ B1/2+ηN2/3,

Pλj ;BN
1/3,BN1/3

[yL,yR];0

(
∃x ∈ [yL, yL + ε′(yR − yL)], x′ ∈ [yR − ε′(yR − yL), yR] :

max
(
X(x), X(x′)

)
≤ D

ε′
Hj

)
≥ 1− C exp

(
− cD3/2λ

2/3
j

)
. (7.2)

The value of the exponent 1/6 in the lower bound on ε′ is insignificant; it arises from Lemma 4.2.
Lemma 7.4. Recall Ij = [xL

j , x
R
j ] from (6.8), and consider the hypotheses of Proposition 6.4.

There exists a constant C1 > 0 large depending only on a0 and b0 such that, letting
w∗j := K

C1
ε−1
j Hj + Clj+1(xL

j+1) = K
C1
ε−1
j Hj + Clj+1(xR

j+1) , (7.3)
the following holds for all K satisfying (6.5) with K0 > 0 large enough and for all j ∈ J1,mK:

P
λj ;w∗j ,w

∗
j

Ij ;Clj+1

(
∃x ∈ Ij : X(x) > Clj(x)

)
≤ C exp

(
− cK3/2 log(j + 1)

)
. (7.4)
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vjuj

Clj+1

Clj+1(x
L
j+1)

Ij

≈ ε−1
j Hj

xL
j+1 xL

j xR
j xR

j+1
0

Figure 4. An illustration of the application of Lemma 7.3 to Proposition 6.4 and the
proof of Lemma 7.3. The floor at Clj+1 features a potentially large gap at xL

j+1 and xR
j+1.

The first step is to show that, within [xL
j+1, x

L
j ] and [xR

j , x
R
j+1], the random walk drops to

≈ ε−1
j Hj above Clj+1(xR

j+1) = Clj+1(xL
j+1) = maxx∈Ij+1 Clj+1(x) (blue). The max bound

(Lemma 7.2) is used to show X(xL
j+1) ∨ X(xR

j+1) ≤ BN1/3, see (7.6). Lemma 7.3 then
gives random times xL, xR ∈ Ij+1 \ Ij where X lies roughly ε−1

j Hj above the floor (the
two innermost orange points in the figure). For the proof of Lemma 7.3, note the boundary
conditions at BN1/3 may be as large as N1−ε for any ε > 0, much higher than the blue
line at Clj+1(xRj+1); in particular, the dropping lemma estimate (4.2) is not sufficient to
immediately produce xL and xR. Thus, we apply the dropping lemma in an iterative manner
to the random walk on Ij+1 with floor at Clj+1(xL

j+1), yielding a sequence of random drop
points at decreasing heights (AiHj)i≥1 (orange, see Claim 7.5) until xL and xR are produced.

Now we may prove Proposition 6.4.

Proof of Proposition 6.4. First, Lemma 7.2 withK replaced byKε−1
j immediately yields the desired

bound on the probability that X(x) > Clj(x) for some x 6∈ Ij . It therefore suffices to show

Pλj ;uj ,vjI;Clj+1

(
∃x ∈ Ij : X(x) > Clj(x)

)
≤ Ce−cK3/2 log(j+1) . (7.5)

Note that Lemma 7.2 yields

Pλj ;uj ,vjI;Clj+1

(
max

(
X(xL

j+1), X(xR
j+1)

)
≤ BN1/3

)
≥ 1− Ce−cjK3/2

, (7.6)

where we have used also (6.6) to upper bound max(uj , vj) + Kε−1
j Hj(log |I|/(K1/2H2

j ))2/3 by
BN1/3. The Gibbs property (Definition 2.9) and monotonicity then yield that, with probability
exceeding 1−C exp(−cjK3/2), we can dominate the restriction to Ij+1 of the walk under Pλj ;uj ,vjI;Clj+1
by the walk on Ij+1 under Pλj ;BN

1/3,BN1/3

Ij+1;Clj+1
. In particular, defining the event

Ptj :=
{
∃xL ∈ [xL

j+1, x
L
j ], xR ∈ [xR

j , x
R
j+1] : X(xL) ≤ w∗∗j , X(xR) ≤ w∗∗j

}
,

where w∗∗j := w∗j − K
2C1

ε−1
j Hj (recall w∗j and C1 from Lemma 7.4), we find

Pλj ;uj ,vjI;Clj+1
(¬Ptj) ≤ Pλj ;BN

1/3,BN1/3

Ij+1;Clj+1
(¬Ptj) + Ce−cjK

3/2
.

Now, raising the floor to Clj+1(xL
j+1) (which equals Clj+1(xR

j+1) by symmetry of Clj+1), reducing
both the floor and the walk by Clj+1(xL

j+1) (so that the floor is now at 0), and then applying
Lemma 7.3 with ε′ := εj = (j + C)−2 (which is ≥ c0λ

−1/6
j for c0 small enough depending only on
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a0 and b0), D := K/2C1, yL := xL
j+1, and yR := xR

j+1, we find for c depending only on a0 and b0,

Pλj ;uj ,vjI;Clj+1
(¬Ptj) ≤ Ce−cK

3/2λ
2/3
j + Ce−cjK

3/2 ≤ Ce−cjK3/2
. (7.7)

Now, on the event Ptj , let xL
∗ denote the leftmost xL and xR

∗ the rightmost xR. Observe xL
j , x

R
j ∈

[xL
∗ , x

R
∗ ]. Applying the strong Gibbs property to the stopping domain [xL

∗ , x
R
∗ ], we find

Pλj ;uj ,vjI;Clj+1

(
Ptj ∩

{
max

(
X(xL

j ), X(xR
j )
)
> w∗j

})
≤ Eλj ;uj ,vjI;Clj+1

[
1Ptj P

λj ;w∗∗j ,w∗∗j
[xL
∗ ,x

R
∗ ];Clj+1(xL

j+1)

(
max

{
X(xL

j ), X(xR
j )
}
> w∗j

)]
≤ Ce−cj3K3/2

.

(7.8)

In the first inequality, we used monotonicity to raise X(xL
∗ ) and X(xR

∗ ) to w∗∗j as well as the floor
to Clj+1(xL

j+1) (since xL
j+1 < xL

∗ < 0 and 0 < xR
∗ ≤ xR

j+1, so Clj+1(xL
j+1) is indeed an upper bound

on Clj+1(·) on [xL
∗ , x

R
∗ ]); in the second inequality, we lowered the floor and the walk by Clj+1(xL

j+1)
inside of the expectation, and then applied Theorem 5.1 with R = A = (K/2C1)ε−1

j = w∗j − w∗∗j .
Combining (7.7), (7.8), and the Gibbs property, and using monotonicity to raise the boundary

conditions on Ij from X(xL
j ) and X(xR

j ) to w∗j yields

Pλj ;uj ,vjI;Clj+1

(
∃x ∈ Ij : X(x) > Clj(x)

)
≤ Eλj ;uj ,vjI;Clj+1

[
1X(xL

j )∨X(xR
j )≤w∗j

P
λj ;X(xL

j ),X(xR
j )

Ij ;Clj+1

(
∃x ∈ Ij : X(x) > Clj(x)

)]
+ Ce−cjK

3/2

≤ P
λj ;w∗j ,w

∗
j

Ij ;Clj+1

(
∃x ∈ Ij : X(x) > Clj(x)

)
+ Ce−cjK

3/2
.

Applying Lemma 7.4 to the probability in the last line above yields (7.5). �

7.2. Proof of Lemma 7.3. The proof of Lemma 7.3 follows by repeatedly applying the next claim.
(The parameter ε below is not to be confused with ε in Theorems 1 and 2.)

Claim 7.5. Fix any ν, c > 0. There exists C0 > 0 such that for all D ∈ [C0, B], ε ∈ [cλ−1/6
j , 1),

and all yL ≤ yR such that yR−yL ≥ C0B
1/2+νN2/3, the following holds. Define A0 := BN1/3, and

for each i ≥ 1 define fi := 2[(3/2)i − 1] and Ai := D/ε+ (B1−fiν ∨ 1). For all N large, i ≥ 0, and
j ∈ J1,m+ 1K,

Pλj ;AiHj ,AiHj[yL,yR];0

(
∃x ∈ [yL, yL + ε(yR − yL)] , x′ ∈ [yR − ε(yR − yL), yR] :

max
(
X(x), X(x′)

)
≤ Ai+1Hj

)
≥ 1− C exp

(
− cD3/2λ

2/3
j

)
. (7.9)

Proof. Recall the constant c∗ from Lemma 4.2. We assume, and use repeatedly, the following:

|yR − yL| ≥ C0B
1/2+νN2/3 and D ≥ C0 ≥ 2c∗ . (7.10)

We begin with the case i = 0. Take A = A1, I = [yL, yR], and u = v = BN1/3 in Lemma 4.2.
In light of Remark 7.1, the assumptions of Lemma 4.2 are satisfied. From (7.10), ε > cλ

−1/6
j , and

N2/3/H2
j = λ

2/3
j (from (6.1)), we have for any C0 > 0,

Aε
|I|
H2
j

≥ D |I|
H2
j

+ cC0B
3/2λ

1/2
j and u3/2 + v3/2

H
3/2
j

= 2
(BN1/3

Hj

)3/2
= 2B3/2λ

1/2
j .
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Taking C0 > 2/c, a union bound, Lemma 4.2, Eq. (7.10), and |I| ≥ C0B
1/2+νN2/3 ≥ D1/2N2/3

then bounds the left-hand side of (7.9) for i = 0 from below by

1− 2c∗ exp
(
− (D − c∗) |I|

H2
j

)
≥ 1− 2c∗ exp

(
− cD3/2λ

3/2
j

)
.

The proof for i ≥ 1 is almost identical. This time, take A = Ai+1 and u = v = AiHj in
Lemma 4.2. Note that fi+1 − 3

2fi = 1. This, (7.10), B ≥ D, and ε ≥ cλ
−1/6
j as before yields

Aε
|I|
H2
j

≥ D3/2Bνλ
2/3
j + cC0B

1/2+ν(B1−fi+1ν ∨ 1)λ1/2
j

and u3/2 + v3/2

H
3/2
j

≤ C
[(D

ε

)3/2
+
(
B3/2+(1−fi+1)ν ∨ 1

)]
≤ 1

2Aε
|I|
H2
j

,

where the last inequality comes from the first inequality in the display, the bound ε ≥ cλ
−1/6
j ,

taking C0 ≥ C/c, and taking N large (depending on ν, as we want to make Bν large). A union
bound and Lemma 4.2 then bounds the probability in (7.9) for i ≥ 1 by

1− 2c∗ exp
(
− c(Aε− c∗) |I|

H2
j

)
≥ 1− C exp

(
− cD3/2λ

2/3
j

)
.

The last inequality follows from (7.10) (so that Aε− c∗ ≥ D/2) and from |I|/H2
j ≥ D1/2λ

2/3
j . �

Proof of Lemma 7.3. Fix any ν ∈ (0, η), and recall Ai from Claim 7.5. Let rν := min{i ∈ N :
1 − fiν ≤ 0}, so that Arν+i = D/ε + 1 for all i ≥ 0. Let ε := r−1

ν ε′, σ0 := yL, τ0 := yR, and
recursively define the random times

σi+1 := inf{x ∈ [σi, σi + ε(τi − σi)] : X(x) ≤ Ai+1Hj} ,
τi+1 := sup{x′ ∈ [τi − ε(τi − σi), τi] : X(x′) ≤ Ai+1Hj} .

If σi+1 or τi+1 do not exist, set σi+1 := σi + ε(τi − σi) or τi+1 := τi − ε(τi − σi). Also define the
events Drop0 := Ω and

Dropi+1 :=
{
∃x ∈ [σi, σi + ε(τi − σi)], x′ ∈ [τi − ε(τi − σi), τi] : max(X(x), X(x′)) ≤ Ai+1Hj

}
.

Observe the probability on the left of (7.2) is bounded below by

Pλj ;A0Hj ,A0Hj
[yL,yR];0 (Droprν ) ≥ Pλj ;A0Hj ,A0Hj

[yL,yR];0 (Droprν
∣∣ Droprν−1) · Pλj ;A0Hj ,A0Hj

[yL,yR];0 (Droprν−1)

≥
rν−1∏
i=0

Pλj ;A0Hj ,A0Hj
[yL,yR];0 (Dropi+1 | Dropi). (7.11)

For the ith factor in the product, we condition further on the σ-algebra Fi generated by σi, τi, and
X(x) for x /∈ (σi, τi). Note that Dropi ∈ Fi, so the tower property, the strong Gibbs property, and
monotonicity yield

Pλj ;A0Hj ,A0Hj
[yL,yR];0 (Dropi+1 ∩ Dropi) = Eλj ;A0Hj ,A0Hj

[yL,yR];0

[
1DropiP

λj ;A0Hj ,A0Hj
[yL,yR];0 (Dropi+1 | Fi)

]
≥ Eλj ;A0Hj ,A0Hj

[yL,yR];0

[
1DropiP

λj ;AiHj ,AiHj
[σi,τi];0 (Dropi+1)

]
.

Now by Claim 7.5, the probability inside the expectation is bounded below by 1 − Ce−cD
3/2λ

2/3
j ,

uniformly over all possible values of σi, τi. Indeed, the claim applies for each i with c = c0r
−1
ν (so

that ε ∈ [cλ−1/6
j , 1)), since by assumption, τi − σi ≥ (1 − ε′)(yR − yL) ≥ (1 − ε′)B1/2+ηN2/3 for

all i ≤ rν , and for N large depending on η − ν we have (1 − ε′)Bη−ν ≥ C0. Rearranging the last
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display and applying Bayes’ rule, we then see that all of the conditional probabilities on the right
of (7.11) are bounded below by the same expression. Thus the left-hand side of (7.11) is at most(

1− Ce−cD
3/2λ

2/3
j

)rν
≥ 1− Crν exp

(
−cD3/2λ

2/3
j

)
.

Taking say ν = η/2 and absorbing the rν factor into C, we are done. �

7.3. Proof of Lemma 7.4. We fix j ∈ J1,mK throughout. Fix also a universal constant

ε ∈ (0, 1/8]

throughout (not to be confused with ε from Theorems 1 and 2). The only properties of the interval
Ij we use below are that its length exceeds 4TK1/2ε

−1/2
j H2

j for T fixed but large depending only
on a0 > 0 and b0 > 1, and that it is centered at 0. Recall from (6.11), (6.12) that each Clj is
symmetric about 0, non-decreasing in |x|, and continuous on Ik for all k ≤ j.

The proof of the lemma proceeds in two steps, which are depicted in Figure 5. In Step 1, we
iteratively construct a mesh of appropriately-spaced points at which the walk stays below a fraction
of Clj (Claim 7.6). The mechanism for accomplishing this is the dropping lemma (Lemma 4.2),
which can be used to construct random points x where the walk X(x) lies roughly ε−1

j Hj above the
floor Clj+1(x), w.h.p. (Claim 7.7). This way, X(x) falls down as x approaches 0, just as Clj+1(x)
does. Since the dropping lemma produces random points, we use the one-point bound and strong
Gibbs property to show that at deterministic locations x(k) in between these random points, the
walk also stays below a fraction of Clj , w.h.p. These x(k) are the aforementioned mesh points.
In Step 2, we use Corollary 5.2 to “fill in the mesh,” i.e., upper bound the walk in between mesh
points. The resulting upper bound is dominated by Clj , concluding the proof of Lemma 7.4.

Step 1: A mesh of good points. The first step is to prove Claim 7.6 below. For C1 ≥ 1, define

D := K/C1 .

Recall xL/R
j from (6.8) (we write L/R to indicate a statement holding for both L and R). Define

x(0) := xR
j (so that −x(0) = xL

j ) and I(0) := [−x(0), x(0)] = Ij ,

and for k ≥ 1, define

x(k) := x(k − 1)− ε|I(k − 1)| and I(k) := [−x(k), x(k)] . (7.12)

Observe for all k ≥ 0,

x(k) = 1
2 |I(k)| , x(k) = (1− 2ε)x(k − 1) = (1− 2ε)kx(0) , and |I(k)| = (1− 2ε)k|I(0)| . (7.13)

Define

k := min
{
k ∈ N : |I(k)| ≤ 4TK1/2ε

−1/2
j H2

j

}
. (7.14)

Combining (7.13), (7.14), and ε < 1/8, we have x(k) = (1− 2ε)−1x(k − 1) ≥ 4
3TK

1/2ε
−1/2
j H2

j , so

x(k) ∈ [TK1/2ε
−1/2
j H2

j , 2TK1/2ε
−1/2
j H2

j ] and |I(k)| ≥ TK1/2ε
−1/2
j H2

j . (7.15)

It is helpful to note (see (6.11) for the definition of Clj)

Clj(x) ≥ Kε−1
j Hj

(
log |x|

K1/2H2
j

)2/3
for all x ∈ I,

Clj
(
x(k)

)
= Kε−1

j Hj

(
log |x(k)|

K1/2H2
j

)2/3
for all k ∈ J1, k − 1K.

(7.16)
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Next, for all k ≥ 1, define (recalling D = K/C1)

Bj(k) = Bj(k,C1) := Dε−1
j Hj + Clj+1

(
x(k − 1)

)
+Dε−1

j Hj

(
log x(k)

D1/2H2
j

)2/3
. (7.17)

Claim 7.6 states that the walk with floor Clj+1 is bounded by Bj(k) at each x(k). Going back to the
proof outline given at the start of the subsection (c.f., Figure 5), the first two terms in (7.17) will
come from applying dropping lemma over the floor raised to Clj+1(x(k−1)) (recall x(k−1) > x(k)
and Clj+1(x) is non-decreasing in |x|); the last term will follow from applying Theorem 5.1 in
between the dropped points. The following inequality shows that Bj(k) is a fraction of Clj(x(k)):
for any C1 > 1, we may take T large enough (depending on a0, b0, C1) so that for all k ∈ J1, kK,

Bj(k) = Dε−1
j Hj

[
1 + C1

ε−1
j+1Hj+1

ε−1
j Hj

(
log x(k − 1)

K1/2H2
j+1

)2/3
+
(

log x(k)
D1/2H2

j

)2/3]

≤ Dε−1
j Hj

[
1 + C1b

−1/6
(

log x(k)
K1/2H2

j

+ log b2/3

1− 2ε

)2/3
+
(

log x(k)
K1/2H2

j

+ logC1/2
1

)2/3]

≤ b−2/15
0 Kε−1

j Hj

(
log x(k)

K1/2H2
j

)2/3
≤ b−2/15

0 Clj
(
x(k)

)
. (7.18)

In the equality, we used (7.16). In the first inequality, we used (6.2), (6.1) to replace H2
j+1 in the

denominator with H2
j , and (7.12). In the second inequality, we bounded the second bracketed term

by using x(k)/(K1/2H2
j ) ≥ T a2/3

0 , so that taking T large enough with respect to a0 and b0 yields

b−1/4 log x(k)
K1/2H2

j

+ b−1/4 log b2/3

1− 2ε ≤ b
−2/9 log x(k)

K1/2H2
j

(
1 + C̃

log(T a2/3
0 )

)
≤ b−1/5

0 log x(k)
K1/2H2

j

,

where C̃ := maxz>1 z
−1/4+2/9 log z2/3

1−2ε is an absolute constant. We bounded the third bracketed
term similarly, taking T large with respect to C1. In the third inequality, we used (7.16). We are
now ready to state Claim 7.6, the main result of “Step 1.”

Claim 7.6. Under the assumptions of Lemma 7.4, the following holds for any C1 ≥ 1:

P
λj ;w∗j ,w

∗
j

Ij ;Clj+1

(
∃k ∈ J1, kK : max

(
X(−x(k)), X(x(k))

)
> Bj(k)

)
≤ C exp

(
− cK3/2 log(j + 1)

)
.

Proof. The proof proceeds via the following inductive scheme. For k ≥ 0, suppose we have already
shown X(−x(k)) ∨X(x(k)) ≤ Bj(k) with high probability. Recall Figure 5, and define the event

Drop(k + 1) :=
{
∃zL

1 ∈ −x(k) + [0, ε]|I(k)| , zL
2 ∈ −x(k) + [2ε, 3ε]|I(k)| ,

zR
1 ∈ x(k)− [2ε, 3ε]|I(k)| , zR

2 ∈ x(k)− [0, ε]|I(k)| :

max
i∈{1,2}, θ∈{L,R}

X(zθi ) ≤ Dε−1
j Hj + Clj+1

(
x(k)

)}
. (7.19)

Claim 7.7. Recall w∗j and I(k) from (7.3) and (7.12). Define Bj(0) := w∗j . For all k ∈ J0, k− 1K,

Pλj ;Bj(k),Bj(k)
I(k);Clj+1

(
Drop(k + 1)

)
≥ 1− C exp

(
− cKj2 |I(k)|

H2
j

)
for all k ∈ J1, k − 1K. (7.20)

Proof of Claim 7.7. Recalling (1− εj)xR
j+1 = xR

j = x(0) from (6.8),

w∗j − Clj+1
(
x(0)

)
= Dε−1

j Hj +Kε−1
j+1Hj+1

[(
log x(0)

K1/2H2
j+1

+ log 1
1− εj

)2/3
−
(

log x(0)
K1/2H2

j+1

)2/3]
≤ 2Kε−1

j Hj =: w̃j ,
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Clj+1(x(k))

Clj+1

X(−x(k)) ≤ Bj(k) X(x(k)) ≤ Bj(k)

X(x(k + 1)) ≤ Bj(k + 1)

≤ Dε−1
j Hj

x(k)x(k + 1)−x(k) −x(k + 1) 0

zR2 (k + 1)zR1 (k + 1)

Figure 5. Step 1 involves bounding the walk X at a sequence of mesh points x(0) >
x(1) > · · · and −x(0) < −x(1) < · · · by a quantity Bj(k) at ±x(k). Suppose we have
already shown X(−x(k)) ∨ X(x(k)) ≤ Bj(k), for some k (outermost red dots). Restrict
the walk to I(k) = [−x(k), x(k)] and raise the floor from Clj+1 (black curve) to Clj+1(x(k))
(blue). Use the dropping lemma to produce points zR

1 (k + 1) and zR
2 (k + 1) to the left and

right of x(k + 1), where the walk has dropped to ≤ Dε−1
j Hj above the blue floor (orange

dots). Restrict the walk to [zR
2 (k + 1), zR

1 (k + 1)] (orange, dashed), raise the boundary
conditions to Dε−1

j Hj + Clj+1(x(k)), and use the one-point bound (Theorem 5.1) to show
X(x(k + 1)) ≤ Bj(k + 1) with high probability. Step 2 of the proof involves restricting
the walk to [x(k + 1), x(k)] (red, dashed), raising the boundary conditions to Bj(k) (which
exceeds Bj(k + 1), red dots), and then using the max bound Corollary 5.2 to show that,
w.h.p., maxx∈[x(k+1),x(k)] X(x) is bounded by a quantity which is less than Clj(x(k + 1)) =
minx∈[x(k+1),x(k)] Clj(x). By symmetry, the same argument applies on the left side of 0.

where in the inequality we used (6.2), as well as (7.15) to deduce x(0)/K1/2H2
j+1 ≥ T and took T

large compared to 1/(1− εj) ≤ 2. Raising the floor to Clj+1(x(0)), lowering the walk and floor by
Clj+1(x(0)), a union bound, and Lemma 4.2 with A := Dε−1

j and u = v := w∗j give

P
λj ;w∗j ;w∗j
I(0);Clj+1

(
Drop(1)

)
≥ P

λj ;w∗j ;w∗j
I(0);Clj+1(x(0))

(
Drop(1)

)
≥ 1− 4c∗ exp

(
−
(
Dε−1

j ε− c∗
) |I(0)|
H2
j

+ 2c∗ · 23/2K3/2ε
−3/2
j

)
. (7.21)

Take K0 large so that Dε−1
j ε − c∗ > cKε−1

j for K ≥ K0 and some c > 0. Eq. (7.15) gives
|I(0)|/H2

j ≥ TK1/2ε
−1/2
j , so the first term in the exponential dominates the second term for T

large with respect to c and c∗. This yields (7.20) for k = 0.
The proof for k ∈ J1, k−1K is similar: we use monotonicity to raise the floor on I(k) to Clj+1(x(k)),

and then lower the walk and the floor by Clj+1(x(k)). A union bound and Lemma 4.2 again yield

Pλj ;Bj(k),Bj(k)
I(k);Clj+1

(
Drop(k + 1)

)
≥ 1− 4c∗ exp

(
−
(
Dε−1

j ε− c∗
) |I(k)|
H2
j

+ 2c∗
(
Bj(k)− Clj+1(x(k))

Hj

)3/2)
.

We use Bj(k) − Clj+1(x(k)) ≤ Bj(k) ≤ Clj(x(k)) by (7.18), so that the second term in the ex-
ponential is at most CK3/2ε

−3/2
j log(x(k)/(K1/2H2

j )). Using x(k) = |I(k)|/2 and log(p/2) ≤ p for
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p ≥ 1, we see that the second term in the exponential is dominated by the first term for T large,
just as below (7.21). This yields (7.20). �

On Drop(k+1), let zL/R
1 (k+1) be the leftmost such zL/R

1 ; similarly, let zL/R
2 (k+1) be the rightmost

such z
L/R
2 . Note [zL/R

1 (k + 1), zL/R
2 (k + 1)] each define stopping domains. Recall Bj(0) := w∗j .

Below, we will have X(±x(0)) = Bj(0) deterministically from the boundary conditions. For each
k ∈ J0, k− 1K, a union bound, symmetry of the random walk bridge, monotonicity in the boundary
conditions, and the strong Gibbs property on [zR

1 (i+ 1), zR
2 (i+ 1)] yield

P
λj ;w∗j ,w

∗
j

Ij ;Clj+1

(
X
(
− x(k + 1)

)
∨X

(
x(k + 1)

)
> Bj(k + 1)

)
≤

k∑
i=0

P
λj ;w∗j ,w

∗
j

Ij ;Clj+1

(
X
(
− x(i+ 1)

)
∨X

(
x(i+ 1)

)
> Bj(i+ 1) , Drop(i+ 1)

)
+ P

λj ;w∗j ,w
∗
j

Ij ;Clj+1

(
¬Drop(i+ 1) , X

(
− x(i)

)
∨X

(
x(i)

)
≤ Bj(i)

)
≤

k∑
i=0

2 · E
λj ;w∗j ,w

∗
j

Ij ;Clj+1

[
P
λj ;Dε−1

j Hj+Clj+1(x(i));Dε−1
j Hj+Clj+1(x(i))

[zR
1 (i+1),zR

2 (i+1)];Clj+1

(
X
(
x(i+ 1)

)
> Bj(i+ 1)

)]
+ Pλj ;Bj(i),Bj(i)I(i);Clj+1

(
¬Drop(i+ 1)

)
.

For each i, the inner probability in the first term in the ith summand above can be bounded by
raising Clj+1 to Clj+1(x(i)) (since x(i) ≥ zR

2 (i + 1)), lowering both the floor and the walk by
Clj+1(x(i)), and then applying Theorem 5.1 with A = Dε−1

j and I := [zR
1 (i+ 1), zR

2 (i+ 1)] (which
satisfies |I| ≥ ε|I(k)| by construction, so |I| ≥ H2

j by (7.15)). Altogether, this shows

2 · E
λj ;w∗j ,w

∗
j

Ij ;Clj+1

[
P
λj ;Dε−1

j Hj ,Dε
−1
j Hj

[zR
1 (i+1),zR

2 (i+1)];0

(
X
(
x(i+ 1)

)
> Dε−1

j Hj +Dε−1
j Hj

(
log x(i+ 1)

D1/2H2
j

)2/3)]

≤ C exp
(
− cK3/2 log x(i+ 1)

D1/2H2
j

)
.

Combined with Claim 7.7 and (7.13), the previous two displays yield

P
λj ;w∗j ,w

∗
j

Ij ;Clj+1

(
X
(
− x(k + 1)

)
∨X

(
x(k + 1)

)
> Bj(k + 1)

)
≤ C

k∑
i=0

exp
(
− cK3/2 log x(i+ 1)

D1/2H2
j

)
≤ C exp

(
− cK3/2 log x(k + 1)

D1/2H2
j

)
.

A union bound over k ∈ J0, k − 1K and again recalling (7.13) then yields

P
λj ;w∗j ,w

∗
j

Ij ;Clj+1

(
∃k ∈ J1, kK : max

(
X(−x(k)), X(x(k))

)
> Bj(k)

)
≤ C exp

(
− cK3/2 log x(k)

D1/2H2
j

)
.

Claim 7.6 now follows from the last display and (7.15). �

Step 2: Filling in the mesh. After Claim 7.6 and the upper bound (7.18), we have constructed
a ceiling on the walk at a mesh of points {x(k)}kk=0. The max bound Corollary 5.2 will allow us to
“fill in” the ceiling between the mesh points, completing the proof of Lemma 7.4.
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Proof of Lemma 7.4. A union bound, the Gibbs property, and monotonicity in the boundary values
yield the following:

P
λj ;w∗j ,w

∗
j

Ij ;Clj+1

(
∃x ∈ Ij : X(x) > Clj(x) , ∀k ∈ J1, kK : X

(
− x(k)

)
∨X

(
x(k)

)
≤ Bj(k)

)
≤

k−1∑
k=0

[
Pλj ;Bj(k+1),Bj(k)

[x(k+1),x(k)];Clj+1

(
∃x ∈ [x(k + 1), x(k)] : X(x) > Clj(x)

)
+ Pλj ;Bj(k),Bj(k+1)

[−x(k),−x(k+1)];Clj+1

(
∃x ∈ [−x(k),−x(k + 1)] : X(x) > Clj(x)

)]

+ Pλj ;Bj(k),Bj(k)
I(k);Clj+1

(
∃x ∈ [−x(k), x(k)] : X(x) > Clj(x)

)
=:

k−1∑
k=0

[
(I)k + (II)k

]
+ (III)k.

(7.22)

Note by symmetry,
(I)k = (II)k for each k ∈ J0, k − 1K . (7.23)

We proceed by bounding (I)k. Recall Bj(k) ≥ Bj(k + 1) and Clj+1 is increasing in |x|. By mono-
tonicity, we raise both boundary conditions to Bj(k) and raise the floor to Clj+1(x(k)); decreasing
both the floor and the walk by Clj+1(x(k)) and using minx∈[x(k+1),x(k)] Clj(x) = Clj(x(k+ 1)) yields

(I)k ≤ Pλj ;,Bj(k)−Clj+1(x(k))
[x(k+1),x(k)];0

(
∃x ∈ [x(k + 1), x(k)] : X(x) > Clj(x)− Clj+1

(
x(k)

))
(7.24)

≤ Pλj ;Bj(k)−Clj+1(x(k)),Bj(k)−Clj+1(x(k))
[x(k+1),x(k)];0

(
max

x∈[x(k+1),x(k)]
X(x) > Clj

(
x(k + 1)

)
− Clj+1

(
x(k)

))
.

Recalling (7.16), k ≤ k − 1, x(k + 1) = (1− 2ε)x(k), and (7.15), we can take T large so that

Clj
(
x(k + 1)

)
≥ Kε−1

j Hj

(
log x(k)

K1/2H2
j

+ log(1− 2ε)
)2/3

≥ b−1/8
0 Kε−1

j Hj

(
log x(k)

K1/2H2
j

)2/3
= b
−1/8
0 Clj

(
x(k)

)
.

From (7.18) and the above, we have the following for T and C1 sufficiently large:

Clj
(
x(k + 1)

)
−Bj(k) ≥ (b−1/8

0 − b−2/15
0 )Clj(x(k)) ≥ DHj

(
log x(k)− x(k + 1)

K1/2H2
j

)2/3
.

Substituting into (7.24) and applying Corollary 5.2 with I = [x(k + 1), x(k)] and R = D, we find

(I)k ≤ C exp
(
− cD3/2 log x(k)− x(k + 1)

K1/2H2
j

)
≤ C exp

(
− cK3/2 log |I(k)|

K1/2H2
j

)
. (7.25)

The term (III)k is bounded similarly. Following the steps leading to (7.24), raise the floor to
Clj+1(x(k)), then lower the walk and the floor by Clj+1(x(k)):

(III)k ≤ Pλj ;Bj(k)−Clj+1(x(k)),Bj(k)−Clj+1(x(k))
I(k);0

(
max
x∈I(k)

X(x) > Clj
(
x(k)

)
− Clj+1

(
x(k)

))
.

From (7.18), (7.16), and x(k) = |I(k)|/2, we find the following for T and C1 large depending on b0:

Clj
(
x(k)

)
−Bj(k) ≥ (1− b−2/15

0 )Clj
(
x(k)

)
≥ (1− b−2/15

0 )Kε−1
j Hj

(
log x(k)

K1/2H2
j

)2/3
≥ DHj

(
log |I(k)|

D1/2H2
j

)2/3
.
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The last two displays and Corollary 5.2 with I = I(k) and R = D yield

(III)k ≤ C exp
(
− cK3/2 log |I(k)|

K1/2H2
j

)
. (7.26)

Substituting (7.23), (7.25), and (7.26) into (7.22), we find

P
λj ;w∗j ,w

∗
j

Ij ;Clj+1

(
∃x ∈ Ij : X(x) > Clj(x) , ∀k ∈ J1, kK : X

(
− x(k)

)
∨X

(
x(k)

)
≤ Bj(k)

)
≤ C

k∑
k=0

exp
(
−cK3/2 log |I(k)|

K1/2H2
j

)
≤ C exp

(
−cK3/2 log |I(k)|

K1/2H2
j

)
≤ C exp

(
−cK3/2 log ε−1/2

j

)
,

where the last inequality follows from (7.15). Lemma 7.4 follows from the above and Claim 7.6. �

7.4. Proof of Proposition 6.3. The proof follows a recursive strategy as in the proof of Theo-
rem 6.1: we start from the bottom curve, remove all curves above it (see Remark 3.3), produce a
ceiling on this curve with high probability, and then iterate upwards using this ceiling as the floor
for the next curve. However, these curves experience extremely large area tilts for which our results
do not apply (e.g., Corollary 5.2 and Lemma 4.2, see Remark 7.1). We begin by decreasing the tilt
parameters from (λm+1, b) to (λm+1, 1) so that all curves experience the same area tilt. Next, we
raise both boundary conditions from u>m and v>m to w = (w1, . . . , wn−m), where

wj := max(um+1, vm+1) + zj , zj := 2n(n−m− j)KHm+1 log |I|
K1/2H2

m+1
.

Altogether, we have

Pλm+1,b;u>m,v>m
n−m,I;0

(
∃x ∈ I : X1(x) > F(x)

)
≤ Pλm+1,1;w,w

n−m,I;0

(
∃x ∈ I : X1(x) > F(x)

)
. (7.27)

We define, for j ∈ J1, n−mK, the intervals

Ĩj = [yL
j , y

R
j ] :=

(
1− 1

2n

)n−m−j+1
I

and the piecewise constant functions Fj on I given by
Fj := zj−1 + max(um+1, vm+1)1I\Ĩj , j ∈ J1, n−mK, (7.28)

and Fn−m+1 := 0. Note that each Fj is increasing in |x|, and we have trivially

Fj(x)− Fj+1(x) ≥ KHm+1 log |I|
K1/2H2

m+1
for all x ∈ I. (7.29)

Observe in particular that F1 ≤ F for large N . This is clear from the definitions inside of Ĩ1∩Im+1
and outside of Ĩ1∪Im+1. Since (1− 1

2n)n−m ≥ (1− 1
2n)n → e−1/2 > 1/2 as N →∞, we in fact have

Ĩ1 ⊃ 1
2I = Im+1 for large N (depending only on r, as n = bN δc where δ = δ(r)), which verifies

that F1 ≤ F on all of I. It follows from (7.27) and an iterative Gibbs argument with monotonicity,
similar to the one leading to (6.22), that

Pλm+1,b;u>m,v>m
n−m,I;0

(
∃x ∈ I : X1(x) > F(x)

)
≤

n−m∑
j=1

Pλm+1;wj ,wj
I;Fj+1

(
∃x ∈ I : X(x) > Fj(x)

)
. (7.30)

Proposition 6.3 follows from (7.30) and Claim 7.8 below, which plays the role of Proposition 6.4. �

Claim 7.8. There exist K0, N0 > 0 such that under the assumptions of Proposition 6.3, for j ∈
J1, n−mK,

Pλm+1;wj ,wj
I;Fj+1

(
∃x ∈ I : X(x) > Fj(x)

)
≤ Ce−c(m+1)3/2K3/2

.
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Proof. The argument follows the proof of Proposition 6.4; however, after applying Lemma 7.3, all
that needs to be done is a max bound. Indeed, as in the proof of Lemma 7.2, Corollary 5.2 and
(7.29) yield X(x) ≤ Fj(x) for all x ∈ I \ Ĩj with probability exceeding

1− Ce−cK3/2(log(|I|/K1/2H2
m+1))3/2

≥ 1− Ce−c(m+1)3/2K3/2
.

If the minimum in the definition of Fj on Ĩj in (7.28) is wj−1, then we are done.
Otherwise, one may now apply Lemma 7.3 with yL := yL

j+1, yR := yR
j+1, j := m + 1, ε′ := 1/n

(which from (6.7) satisfies the condition ε′ > c0λ
−1/6
m+1 for δ and c0 sufficiently small), D = K, and

boundary conditions wj−1, to produce a leftmost random point xL ∈ (Ĩj+1 \ Ĩj) ∩ (−∞, 0) and a
rightmost xR ∈ (Ĩj+1 \ Ĩj) ∩ (0,∞) such that with probability exceeding 1− Ce−cλ

2/3
m+1K

3/2
,

X(xL/R) ≤ nKHm+1 + n(n−m− j)KHm+1

(
log |I|

K1/2H2
m+1

)2/3
=: w′j .

(Although Lemma 7.3 is for walks with floor at 0, note Fj+1 is constant on Ĩj , and we can shift
the floor and the walk down by this value to apply the lemma.) For large N = N(b0, r), (6.7) gives
λ

2/3
m+1 > (m + 1)3/2, so this error probability can be absorbed into the previous one. The proof is

finished by applying the strong Gibbs property on [xL, xR], monotonicity, and Corollary 5.2 for the
walk with law P

λm+1;w′j ,w
′
j

[xL,xR];0 , noting w′j +KHm+1 log(|I|/K1/2H2
m+1) ≤ Fj(x) for all x ∈ Ĩj . �

8. Tightness and Gibbs property

In this section we prove Propositions 2.15 and 2.16. The large majority of the work is required to
prove tightness, which will occupy the first three subsections below. The proof strategy is similar
to that of numerous previous works on Gibbsian line ensembles, in particular [ACH24]. In Section
8.4, we briefly prove the Gibbs property for subsequential limits; this is the only point where the
scaling factors of σ−2/3 in (2.9) are relevant.

8.1. Tightness. In this subsection and the two following, we assume that the walk increments
have variance σ2 = 1. This causes no loss in generality, as clearly rescaling by a constant does not
affect tightness of the process. Thus we will use the notation xN = (xN1 , . . . , xNn ),

xNi (t) := N−1/3Xi(tN2/3),
where the law of the line ensemble X = (X1, . . . , Xn) will be clear from context. (The domain of
definition and number of curves may change throughout.) We will be working with the usual law
Pa,b;u,vn,N ;0 , with n,u,v as in the statement of Theorem 2.13. As the parameters in this law are fixed
throughout, for brevity we will just write

PN := Pa,b;u,vn,N ;0 ,

and EN for the corresponding expectation.
The proof of tightness will proceed by a standard Gibbs argument using the following lower

bound on the partition function.

Proposition 8.1. Let X ∼ PN . Then for any ε > 0, there exists η > 0 such that

PN
(
Za,b;z,w
k,TN2/3;Xk+1

> η
)
> 1− ε,

where z = (X1(−TN2/3), . . . , Xk(−TN2/3)), w = (X1(TN2/3), . . . , Xk(TN2/3)), and in the sub-
script Xk+1 is implicitly restricted to [−TN2/3, TN2/3].

With this result, we are equipped to prove Proposition 2.15 on tightness.
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Proof of Proposition 2.15. We first show that the sequence {µN}N≥1 of laws of xN , where X ∼ PN ,
is tight. For k ∈ N, T > 0, a function f = (f1, . . . , fk) : J1, kK× [−T, T ]→ R, and δ > 0, define the
modulus of continuity

w(f , δ) := sup
s,t∈[−T,T ]
|s−t|<δ

max
1≤i≤k

|fi(s)− fi(t)|.

By a standard Arzelà–Ascoli type argument, see e.g. [DFF+21, Lemma 2.4], (and the fact that Xn

is nonnegative), it suffices to prove the following two statements:
(1) For all ε > 0, there exists M > 0 so that

lim sup
N→∞

PN
(
xN1 (0) > M

)
< ε.

(2) For all k ∈ N, T, ε, ρ > 0, there exists δ > 0 so that

lim sup
N→∞

PN
(
w(xN |J1,kK×[−T,T ], δ) > ε

)
< ρ.

Statement (1) follows immediately from Theorem 2.14. In the remainder we prove (2). We adopt
the notation of Proposition 8.1. We will use the shorthand Pk,TN for Pa,b;z,w

k,TN2/3;Xk+1
, and Zk,TN for the

corresponding partition function. For δ, ε, η,M > 0, define the events

BadMod(δ, ε) :=
{
w(xN |J1,kK×[−T,T ], δ) > ε

}
, Fav(η,M) :=

{
Zk,TN > η

}
∩
{
z1, w1 ≤MN1/3

}
.

By Proposition 8.1 and Theorem 2.14, we can choose η,M so that

lim sup
N→∞

Pa,b;u,vn,N ;0 (Fav(η,M)) > 1− ρ/2. (8.1)

Let Fk,T denote the σ-algebra generated by z, w, and XN
k+1|[−TN2/3,TN2/3]. By the Gibbs property,

PN (BadMod(δ, ε) ∩ Fav(η,M)) = EN
[
1Fav(η,M) EN

[
1BadMod(δ,ε) | Fk,T

]]
= EN

[
1Fav(η,M) P

k,T
N (BadMod(δ, ε))

]
.

(8.2)

On the event {Zk,TN > η} ⊃ Fav(η,M), we have

Pk,TN (BadMod(δ, ε)) ≤ η−1
k∏
i=1

Pzi,wi
TN2/3

(
w(yNi , δ) > ε

)
, (8.3)

where Yi ∼ Pzi,wi
TN2/3 are random walk bridges with no area tilt or floor, and yNi (t) = N−1/3Yi(tN2/3).

We claim that uniformly over the event {z1, w1 ≤MN1/3} ⊃ Fav(η,M), each factor on the right of
(8.3) can be made less than ν := (ηρ/2)1/k by choosing δ small and N large enough. Combining this
with (8.2), (8.3), and a union bound with (8.1) implies (2). After shifting vertically and replacing
M with 2M , we can assume zi = 0. The proof is then concluded by Lemma 8.2 below. �

Lemma 8.2. For any ν, ε, T,M > 0, we can find N0 ∈ N and δ > 0 such that for all N ≥ N0,

sup
|z|≤MN1/3

P0,z
TN2/3

(
w(yN , δ) ≥ ε

)
< ν. (8.4)

Proof. For each z ∈ [−M,M ], let Bz denote a Brownian bridge on [−T, T ] from 0 to z. We can
choose δ > 0 so that P(w(Bz, δ) ≥ ε) < ν/2 for all z ∈ [−M,M ]. To see this, note that Bz is equal in
law to B0+`z, where `z is the line segment from (−T, 0) to (T, z), and w(B0+`z, δ) ≤ w(B0, δ)+ δM

2T .
Then take δ < εT

M small enough so that P(w(B0, δ) ≥ ε/2) < ν/2. This is possible because B0 is
a.s. uniformly continuous, so that w(B0, δ)→ 0 a.s. and hence in probability as δ ↓ 0.

Next, for each fixed N , choose zN ∈ [−MN1/3,MN1/3] so that PN := P0,zN
TN2/3(w(yN , δ) ≥ ε)

is within ν/2 of the supremum on the left-hand side of (8.4). Then it suffices to show that any
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subsequential limit as N →∞ of the sequence {PN}N≥1 is less than ν/2. Indeed, if the statement
of the lemma were to fail then we could find a subsequence of {PN} with all elements at least ν/2,
and as the sequence is bounded by 1 this would imply a further subsequential limit of at least ν/2.

Suppose P is a subsequential limit of {PN}. Since zNN−1/3 ∈ [−M,M ], we can pass to a further
subsequence {N`}`≥1 such that {zN`N

−1/3
` }`≥1 converges as `→∞ to some z ∈ [−M,M ], and still

PN` → P . Then by the invariance principle Lemma 3.1, the law of yN` under P0,zN`
TN

2/3
`

converges as
` → ∞ to that of Bz above. It is easy to see that the set {f ∈ C([−T, T ]) : w(f, δ) ≥ ε} is closed
in the uniform topology, so the portmanteau theorem implies

P = lim sup
`→∞

PN` ≤ P (w(Bz, δ) ≥ ε) < ν/2.

Since P was arbitrary, we are done. �

8.2. Partition function lower bound. In this section we prove Proposition 8.1. The proof strat-
egy follows that of [ACH24, Section 11], although we modify some of the arguments to avoid using
KMT coupling, which would require stronger assumptions on our walk distributions. Throughout
this subsection the area tilt parameters a and b will be fixed, so we will omit them from the notation.

We first introduce a family of auxiliary measures to be used in the proof, a trick known as
“size-biasing.” Fix k ∈ N, T > 0, an interval I = [`N2/3, rN2/3] with [−3

2TN
2/3, 3

2TN
2/3] ⊂ I ⊂

[−2TN2/3, 2TN2/3], x,y ∈ A+
k , and a function h : I → R+. Let IT := Z ∩ I \ [−TN2/3, TN2/3].

We define a measure P̃x,y
k,I;h by taking k independent random walk bridges X̃1, . . . , X̃k on I from x

to y, with Radon–Nikodym derivative proportional to

exp

− a

N

k∑
i=1

bi−1 ∑
j∈IT

X̃i(j)

1
X̃1(j)>···>X̃k(j)>h(j) for j∈IT .

This is the usual measure but with the interaction and area tilt “turned off” on [−TN2/3, TN2/3].
It is straightforward to observe that the Radon–Nikodym derivative between these two measures
takes the form

dPx,y
k,I;h

dP̃x,y
k,I;h

=
Z
X̃(−TN2/3),X̃(TN2/3)
k,TN2/3;h

Ẽx,y
k,I;h

[
Z
X̃(−TN2/3),X̃(TN2/3)
k,TN2/3;h

] . (8.5)

If it can be shown that the denominator on the righthand side of (8.5) is uniformly positive for all N ,
then the identity (8.5) effectively “biases” the measure Px,y

k,I;h away from events where the partition
function is very small, as the Radon–Nikodym derivative is small on such events. Combined with
a simple Gibbs argument, this will be sufficient to prove the high-probability lower bound on Zk,TN
of Proposition 8.1.

The following technical lemma, an analogue of [ACH24, Lemma 11.1], will provide the neces-
sary lower bound on the normalization in (8.5) under some natural separation conditions between
neighboring curves and the floor h at the boundary. The proof is illustrated in Figure 6.

Lemma 8.3. Fix k, T, I as above, and P,M, η > 0. Suppose h : I → R satisfies
h(tN2/3) ≤ h(`N2/3) + (t− `)PN1/3 for t ∈ [`, `+ 1],

h(tN2/3) ≤ h(rN2/3) + (r − t)PN1/3 for t ∈ [r − 1, r].

Assume supI h ≤ MN1/3, and x,y ∈ Wn
0 are such that min(xi − xi+1, yi − yi+1) ≥ ηN1/3 for

1 ≤ i ≤ k where xk+1 = h(`N2/3), yk+1 = h(rN2/3). Then there exist δ, ε > 0 and N0 ∈ N such
that for all N ≥ N0,

P̃x,y
k,I;h

(
Z
X̃(−TN2/3),X̃(TN2/3)
k,TN2/3;h > δ

)
> ε. (8.6)
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ℓN2/3 rN2/3

x
y

h

1

Figure 6. An illustration of the proof of Lemma 8.3. The two dashed lines at `N2/3 and
rN2/3 have slope PN1/3 and −PN1/3 respectively. The rectangular corridors have width
ηN1/3, and Corr(η) is the event that the curves remain within these corridors. The partition
function is bounded below on this event. Assuming the slope condition and a global bound
on the bottom curve, Corr(η) occurs with positive probability by Brownian estimates.

Proof. The proof is essentially the same as in [ACH24]. For 1 ≤ i ≤ k define the piecewise linear
functions Corri : [`, r]→ R to have Corri(`) = xi, Corri(r) = yi, slope Qi := (max(2M,P ) + 2(k −
i))N1/3 on [a, a + 1] and −Q on [b − 1, b], and constant on [a + 1, b − 1]. Let Corr(η) denote the
event that |Xi(tN2/3) − Corri(t)| ≤ 1

2ηN
1/3 for all t ∈ [`, r]. Note in particular this implies that

the curves Xi are uniformly pairwise separated by at least 1
2ηN

1/3, hence are non-intersecting. It
is not hard to see that P̃a,b;u,vk,I;h (Corr(η)) > ε > 0 for all N . The normalization constant for this
measure is clearly less than 1, so it can be ignored for a lower bound. Note that on Corr(η), the
top curve X1 is uniformly bounded by Q1N

2/3 = (max(2M,P ) + 2k − 2)N1/3, so the area tilt is
bounded below on this event by exp(−abk · 2T (max(2M,P ) + 2k − 2)). It remains to lower bound
the probability of independent random walk bridges satisfying the conditions of Corr(η), and this
follows from the invariance principle and straightforward Brownian tube estimates.

It is also easy to see that the partition function in (8.6) is bounded below by some δ > 0 on the
event Corr(η). As already noted, the area tilt is bounded below on this event. The conditions above
imply that at ±TN2/3 the curves Xi are pairwise separated by at least N1/3, and again by the
invariance principle there is a positive probability that k independent random walk bridges with
such boundary conditions stay in horizontal tubes of width 1

2N
1/3. This yields a δ > 0 in (8.6). �

The next lemma will establish that the conditions in Lemma 8.3 hold for some random interval
I with high probability. Fix k ∈ N and P > 0, and define U ∈ [−2T,−3

2T ] to be the first time and
V ∈ [3

2T, 2T ] the last time such that

Xk+1(tN2/3) ≤ Xk+1(UN2/3) + (t− U)PN1/3 for t ∈ [U,U + 1],

Xk+1(tN2/3) ≤ Xk+1(V N2/3) + (V − t)PN1/3 for t ∈ [V − 1, V ].
(8.7)

If such a U does not exist we set it to −2T , and if such a V does not exist we set it to 2T . Note
the interval [UN2/3, V N2/3] defines a stopping domain. For η > 0 define

Sepk(η) :=
{

min
t∈{U,V }

min
1≤i≤k−1

(Xi(tN2/3)−Xi+1(tN2/3)) > ηN1/3
}
.

Lemma 8.4. Fix k ∈ N. For any ε > 0, there exist η, P > 0 such that
PN ({−2T < U < V < 2T} ∩ Sepk(η)) > 1− ε/4.

Assuming this lemma, we can prove the high-probability lower bound on the partition function.
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Proof of Proposition 8.1. For M > 0, define the event

Favk(η,M) := {−2T < U < V < 2T} ∩ Sepk(η) ∩
{

sup
t∈[−2T,2T ]

Xk+1(tN2/3) ≤MN1/3
}
.

Combining Lemma 8.4 with Theorem 2.14 shows that for suitable η, P,M we have
PN (Favk(η,M)) > 1− ε/2. (8.8)

Define the interval J := [UN2/3, V N2/3], and let Fk,J denote the σ-algebra generated by X1, . . . , Xk

outside of J and by Xj for j > k. Write x := X(UN2/3), y := X(V N2/3). By the strong Gibbs
property and (8.8),

PN
(
Zk,TN ≤ η

)
≤ EN

[
1Favk(η,M)PN

(
Zk,TN ≤ η | Fk,J

)]
+ ε/2

= EN
[
1Favk(η,M)P

a,b;x,y
k,J ;Xk+1

(
Zk,TN ≤ η

)]
+ ε/2.

(8.9)

Now recall the measures P̃x,y
k,J ;Xk+1

defined at the beginning of this section. With X̃ ∼ P̃x,y
k,J ;Xk+1

,

we adopt the shorthand Z̃k,TN := Z
X̃(−TN2/3),X̃(TN2/3)
k,TN2/3;h . Using (8.5), the probability inside the last

expectation can be rewritten as

Px,y
k,J ;Xk+1

(
Z̃k,TN ≤ η

)
=

Ẽx,y
k,J ;Xk+1

[
1
Z̃k,TN ≤ηZ̃

k,T
N

]
Ẽx,y
k,J ;Xk+1

[Z̃k,TN ]
. (8.10)

On the event Favk(η,M), the conditions in Lemma 8.3 are satisfied with ` = U , r = V , h = Xk+1,
which implies that there exists ρ > 0 (namely ρ = δε from the statement of the lemma) such that

Ẽx,y
k,J ;Xk+1

[Z̃k,TN ] ≥ ρ.

Inserting this into (8.10) gives an upper bound of ρ−1η, and so choosing η = 1
2ρε and combining

with (8.9) completes the proof. �

8.3. Proof of Lemma 8.4. We follow a similar strategy to that in [ACH24, Section 11]. The
proof of separation will proceed by induction on k. We will use the fact, proven in the previous
subsection, that if the statement of Lemma 8.3 is known for index k, then the partition function
lower bound Proposition 8.1 for index k follows. The existence of the random times U and V will
follow from a deterministic statement about continuous functions, Lemma 10.1 in [ACH24], which
we record here for reference.

Lemma 8.5. [ACH24, Lemma 10.1] Let T > 0, δ ∈ (0, 1
30T ), and f : [0, T ] → R continuous.

Suppose M > 0 is such that supx,y∈[0,T ] |f(x) − f(y)| ≤ M . Then with P = 3MT−1, there exists
U ∈ [0, 1

2T ] such that
f(x) ≤ f(U) + P (x− U) for x ∈ [U,U + δ].

Proof of Lemma 8.4. See Figure 7 for an illustration of the proof. The existence of the random
times U, V satisfying the conditions of (8.7) (for any fixed k ≥ 0 and T > 30, which causes no loss
of generality) follows from Lemma 8.5. Namely, we apply this lemma with the random continuous
function f = xNk+1. By Theorem 2.14, there existsM > 0 such that with probability at least 1−ε/2
we have sups,t∈[−2T,2T ] |xNk+1(s)−xNk+1(t)| ≤M . The lemma then guarantees, for P = 3MT−1, that

PN (−2T < U < V < 2T ) ≥ 1− ε/2. (8.11)
We will now show by induction on k that the event Sepk(η) holds for some η > 0 with probability

at least 1 − ε/2. In fact, we will only use the measurability of the times U, V with respect to
σ(Xj : j ≥ k + 1), so this argument will prove high probability separation at any such time.
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Xk+1(UN2/3) + νN1/3

UN2/3(U − δ)N2/3 (U + δ)N2/3

νN1/3

νN1/3

ηN1/3 Xk+1

Xk

Xk−1

Figure 7. An illustration of the proof of Lemma 8.4. We have conditioned on the blue
ceiling Xk−1, the green floor Xk+1, and the boundary conditions of the yellow curve Xk.
The proof amounts to arguing that for a sufficiently small η > 0, at time UN2/3 the yellow
curve will remain at least some positive distance ηN1/3 above the green floor. On the high-
probability event Favk(ν, δ,M), the blue curve lies uniformly above the red dashed line at
distance νN1/3 above Xk+1(UN2/3). Monotonicity allows us to decrease the blue ceiling to
the red dashed line, decrease the green floor to height −N1/3 on the whole interval except
at UN2/3, and decrease the boundary conditions of Xk to 0.

We may take the base case to be k = 0, in which case Sep0(η) holds trivially. Assume for some
k ≥ 1 that we have a ν > 0 such that for large N ,

PN
(
Sepk−1(2ν)

)
≥ 1− ε/4. (8.12)

Then it suffices to prove separation between Xk and Xk+1 at U with probability at least 1 − ε/8;
the proof of separation at V is analogous. Namely, for j < k and η > 0 define the event

Sepkj (η) :=
{
Xj(UN2/3)−Xk(UN2/3) > ηN1/3

}
.

We will show that there exists η > 0 such that for large enough N ,

PN
(
¬Sepkk+1(η)

)
< ε/8. (8.13)

For δ, ρ > 0, define the event

Contk−1(ρ, δ) :=
{

sup
|t−U |<δ

(
Xk−1(tN2/3)−Xk−1(UN2/3)

)
> −ρN1/3

}
.

By the inductive hypothesis, the partition function lower bound of Proposition 8.1 holds for index
k − 1. Therefore, we can bound below the probability of Contk−1(ρ, δ) for any ρ using the same
argument as in (8.3) with Lemma 8.2. In addition, the inductive hypothesis (8.12) implies a lower
bound on Sepk−1

k+1(2ν). Thus, defining

Favk(ν, δ,M) := Contk−1(ν, δ) ∩ Sepk−1
k+1(2ν) ∩

{
sup

t∈[−2T,2T ]
Xk−1(tN2/3) ≤MN1/3

}
,

we can find ν, δ,M > 0 so that

lim sup
N→∞

PN (Favk(ν, δ,M)) ≥ 1− ε/16. (8.14)
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We will work on this event. Define Fk,U,δ to be the σ-algebra generated by Xj for j 6= k, and by
Xk outside of the interval IU,δ := ((U − δ)N2/3, (U + δ)N2/3). By the strong Gibbs property,

PN
(
¬Sepkk+1(η) ∩ Favk(ν, δ,M)

)
= EN

[
1Favk(ν,δ,M)EN

[
1¬Sepkk+1(η) | Fk,U,δ

]]
= EN

[
1Favk(ν,δ,M)P

abk−1;w,z
IU,δ ;Xk−1,Xk+1

(
yN (U)− xNk+1(U) ≤ η

)]
,

(8.15)

where w := Xk((U − δ)N2/3), z := Xk((U + δ)N2/3), and yN (t) := N−1/3Y (tN2/3) for Y ∼
Pab

k−1;w,z
IU,δ ;Xk−1,Xk+1

, the single-curve law with floor Xk+1 and ceiling Xk−1 as defined in Section 3.2.
We now upper bound the probability inside the last expectation using monotonicity. Note that

if we decrease w and z to height 0, and replace the floor Xk+1 with a floor at −N1/3 except at the
point UN2/3 where we leave the floor at height Xk+1(UN2/3), then the above probability increases.
In order to prove (8.14), it suffices to show that any subsequential limit of the left-hand side satisfies
the desired lower bound. Since xNk+1(U) ≤M on the event Favk(ν, δ,M), we can pass to a further
subsequence and assume that xNk+1(U)→ x ∈ [0,M ] as N →∞. Furthermore, on Favk(ν, δ,M) we
have xNk−1(U) > xNk+1(U) + 2ν and xNk−1(t) > xk−1(U)− ν for all t ∈ [U − δ, U + δ], which implies
that xk−1(t) > xNk+1(U) + ν for all t ∈ [U − δ, U + δ]. Thus applying monotonicity again, we can
replace the ceiling of xNk−1 in the last line of (8.16) with a ceiling of xNk+1(U) + ν. Altogether, the
probability inside the expectation in the last line of (8.15) is bounded above by

Pab
k−1;0,0

IU,δ ;−N1/3

(
yN (U)− xNk+1(U) ≤ η

∣∣∣∣ yN (U) > xNk+1(U), sup
IU,δ

yN < xNk−1(U) + ν

)

≤
Pab

k−1;0,0
IU,δ ;−N1/3

(
xNk+1(U) < yN (U) ≤ xNk+1(U) + η

)
Pab

k−1;0,0
IU,δ ;−N1/3

(
yN (U) > xNk+1(U), supIU,δ yN < xNk−1(U) + ν

) . (8.16)

We now apply the invariance principle to bound the last expression. Recall from Definition 2.8
that Pabk−1;0,0

δ;−1 denotes the law of a Brownian bridge B on [−δ, δ] from 0 to 0 with floor at −1 and
area tilt exp(−abk−1 ∫ δ

−δ(B(t) + 1) dt). Then it is not hard to check using the invariance principle
(see Lemma 8.6 below) that the last line of (8.16) converges as N →∞ to

Pabk−1;0,0
δ;−1 (x < B(0) ≤ x+ η)

Pabk−1;0,0
δ;−1

(
B(0) > x, sup|t|<δ B(t) < x+ ν

) . (8.17)

It is straightforward to see that for η > 0 sufficiently small depending on ν, the ratio in (8.17) can
be made arbitrarily small uniformly over x ∈ [0,M ]. Indeed, note that we can ignore the partition
function in both numerator and denominator since it cancels. We then bound the unnormalized
denominator below by

e−2abk−1δ(x+ν+1) ·P0,0
δ (W (0) > x and − 1 < W (t) < x+ ν for all t ∈ [−δ, δ]) ,

where we recall P0,0
δ is the law of a Brownian bridge W on [−δ, δ] from 0 to 0 with no floor or

area tilt. This expression is strictly positive by straightforward Brownian estimates, and is clearly
continuous as a function of x ∈ [0,M ], so it is bounded below by a positive constant for all such x.
On the other hand, the numerator in (8.17) can be bounded above by P0,0

δ (x < W (0) ≤ x+η) since
the area tilt is at most 1. Under this law, W (0) is a Gaussian with mean 0 and some variance σ2

depending only on δ, so this probability is bounded by Cη for C > 0 independent of x. This allows
us to choose η > 0 such that the last line of (8.16) is less than ε/16 for large N uniformly over the
event Favk(ν, δ,M), and combining with (8.15) and (8.14) implies (8.13). Along with (8.12) this
completes the induction, and finally combining with (8.11) finishes the proof. �
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8.4. Gibbs property for subsequential limits. In this subsection we prove Proposition 2.16.
The argument is standard, so we will be brief. The idea is to exploit the discrete Gibbs property
(see Remark 2.9) along with the following invariance principle for area-tilted random walk bridges
on the diffusive scale. Recall the area-tilted Brownian Gibbs measures Pa,b;u,v

k,I;g,h of Definition 2.8.

Lemma 8.6. Fix I = [`, r], h : I → R, u ∈ W k
h(`), v ∈ W k

h(r). Let IN = σ−2/3J`N2/3, rN2/3K, and
suppose hN : IN → R, uN ∈W k

hN (`), vN ∈W k
hN (r) satisfy σ−2/3N−1/3hN (tN2/3)→ h(t) uniformly

in t ∈ I, σ−2/3N−1/3uN → u, and σ−2/3N−1/3vN → v as N → ∞. Let YN ∼ Pa,b;u
N ,vN

k,IN ;hN and
yN (t) := σ−2/3N−1/3YN (tσ−2/3N2/3) for t ∈ I. Then yN converges in law as N →∞ to Pa,b;u,v

k,I;h .

This is essentially the content of Lemma 2.1 of [Ser23a]. That lemma is stated for lattice walks
with σ = 1, but the proof only uses the invariance principle for lattice random walk bridges from
[Lig68], and this can be directly adapted to the non-lattice case using the result of [Bor78]; see
Lemma 3.1 with α = −2/3. [Ser23a, Lemma 2.1] is also stated only for hN = 0, but the adaptation
to the more general case here is trivial. To deal with σ 6= 1, the analogue of the area tilt calculation
in [Ser23a] is that if yNi → yi uniformly on I, then we have the Riemann sum convergence

1
N

∑
j∈I

Y N
i (j) = σ2/3N−2/3∑

j∈I
yNi (jσ2/3N−2/3) −→

∫ r

`
yi(t) dt,

so that the limiting area tilt indeed matches that of µa,b. This is the reason for the choice of the
scaling σ−2/3. We refer the reader to [Ser23a] for further details of the argument.

Proof of Proposition 2.16. Let x be any weak subsequential limit of {xN}N≥1, where we recall
xN (t) = N−1/3X(tN2/3) with X ∼ Pa,b;u,vn,N ;0 . Without loss of generality we may assume that in fact
xN → x weakly. By the Skorohod representation theorem, by passing to another probability space
we can assume that xN → x uniformly on compact sets almost surely.

By a monotone class argument and the definition of conditional expectation, in order to verify
(2.4) it suffices to prove the following. Fix I = [`, r] and Σ = J1, kK. Then for any Σ′ = J1, k′K ⊇ Σ,
I = [`′, r′] ⊇ I, and any bounded continuous functional G : C((Σ′ × I ′) \ (Σ× I))→ R,

E[F (x)G(x)] = E
[
Ea,b;x(`),x(r)
k,I;xk+1

[F ]G(x)
]
. (8.18)

Here we are using the shorthand F (x) = F (x|Σ×I) and G(x) = G(x|(Σ′×I′)\(Σ×I)); and in the inner
expectation on the right we are implicitly restricting xk+1 to I and x(`),x(r) to Σ.

By the a.s. uniform convergence xN → x and the dominated convergence theorem,
E[F (x)G(x)] = lim

N→∞
E[F (xN )G(xN )]. (8.19)

Now let J = Jd`σ−2/3N2/3e, brσ−2/3N2/3cK, and let FNk,J denote the σ-algebra generated by {Xi(j) :
i /∈ Σ or j /∈ J}. Let Y ∼ Pa,b;X(`σ−2/3N2/3),X(rσ−2/3N2/3)

k,J ;Xk+1
(with shorthand as above) and define

yN (t) := σ−2/3N−1/3Y(tσ−2/3N2/3) for t ∈ I. Note that G(xN ) is FNk,J -measurable. The tower
property and the discrete Gibbs property for X, see Remark 2.9, then imply that

E[F (xN )G(xN )] = E
[
E
[
F (xN ) | FNk,J

]
G(xN )

]
= E

[
E[F (yN )]G(xN )

]
. (8.20)

Again using the a.s. uniform convergence xN → x, Lemma 8.6 implies that yN converges in law,
a.s., to Pa,b;x(`),x(r)

k,I;xk+1
as N → ∞, so that E[F (yN )] → Ea,b;x(`),x(r)

k,I;xk+1
[F ] a.s. Applying this fact with

dominated convergence in (8.20) yields

lim
N→∞

E[F (xN )G(xN )] = E
[
Ea,b;x(`),x(r)
k,I;xk+1

[F ]G(x)
]
.

Combining with (8.19) proves (8.18). �
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Appendix A. Stochastic monotonicity

In this section we give the proof of Lemma 3.2. The argument is a standard application of Glauber
dynamics to construct a monotone coupling of two appropriate Markov chains. In particular, our
argument closely follows the one presented in [Wu23, Appendix B], while the idea of constructing
Markov chains to showcase monotone couplings originates goes back to [CH14, CH16]. Among the
conditions on the random walk bridges stated in Section 2, we require here only the convexity of
the random walk Hamiltonian HRW, Assumption 2.1.

Proof. We will first construct two Markov chains on the space of trajectories whose dynamics are
coupled such that the pointwise ordering is preserved between them. This will yield a coupling
of the stationary distributions ν� and ν� of the constructed Markov chains which also exhibits
the pointwise ordering (assuming the Markov chains converge). We will arrange so that ν∗ =
Pa
∗,b∗;u∗,v∗
n,[0,T ];g∗,h∗ for ∗ ∈ {�, �}. We present the argument only in the nonlattice random walk case (2)

in Section 2; the lattice case (1) is analogous and in fact simpler.
Note that the desired stationary measures ν∗ are laws on Rn|I|. So as to work on a finite state

space, we first discretize. We will then return to our original state space by taking a further weak
limit of the stationary distributions of the discretized chains to obtain the desired laws.

Our discretization parameter will be ε. Consider the finite space Xε := εZ∩ [−ε−1, ε−1] and the
random variable supported on Xε whose probability mass function at kε, for k ∈ J−

⌊
ε−2⌋ , ⌊ε−2⌋K,

is proportional to

ε exp (−HRW(kε)) ; (A.1)

it follows that the normalization constant is of unit order as a function of ε and, indeed, converges to
the normalization

∫
R exp(−HRW(x)) dx for PRW,n as ε ↓ 0. Let P εRW,n be the transition probability

kernel of n independent random walks whose increment distribution is given by the law described
in (A.1) and PRW,n be that of n independent random walks with increment distribution having
density proportional to exp(−HRW(x)). So, if xε → x and xε′ → x′ as ε ↓ 0, then P εRW,n(xε,xε′)→
PRW,n(x,x′) as ε ↓ 0.

For w, z ∈ Xε with w ≥ z, let us use the notation X nε;w,z := {x ∈ (Xε)n : w ≥ x1 ≥ · · · ≥ xn ≥ z}.
For gε, hε : I → Xε, let us further define X n,Iε;gε,hε to be the set of trajectories Q = (Qi(x) : i ∈
J1, nK, x ∈ I) such that Q(x) ∈ X nε;gε(x),hε(x) for all x ∈ I. Writing I = [`, r], let u ∈ X nε;gε(`),hε(`),
v ∈ X nε;gε(r),hε(r), and consider the law on X n,Iε;gε,hε given by the analogue of Pa,b;u

ε,vε
n,I;gε,hε with the

random walk increment distribution defined by (A.1) instead of having density proportional to
exp(−HRW(x)); we denote this law by Pa,b;u

ε,vε;ε
n,I;gε,hε . It is immediate from the portmanteau theorem

that if (uε,vε, gε, hε)→ (u,v, g, h) as ε ↓ 0 then this law converges weakly to Pa,b;u,vn,I;g,h, so it suffices
to prove the monotone coupling for the discretized laws. For convenience we will drop the ε
superscripts for u,v, g, h in the following. We will consider a Glauber-type discrete-time dynamics
for the measures Pa

�,b�;u�,v�;ε
n,I;g�,h� and Pa

�,b�;u�,v�;ε
n,I;g�,h� . The strategy will be to couple these dynamics

across ∗ ∈ {�, �} by using the same randomness and show that then the desired pointwise ordering
is maintained at every time step under the dynamics. Denote the two chains by Q� = (Q�,t)t∈N
and Q� = (Q�,t)t∈N, where Q∗,t ∈ X n,Iε;gε,hε for all t ∈ N and ∗ ∈ {�, �}.

The dynamics are as follows. LetQ�,0 andQ�,0 be chosen to be the same (arbitrary) deterministic
state. Let (Ut)t∈N be a collection of i.i.d. random variables distributed uniformly on [0, 1]. If
I = J`, rK, at every time step t we choose (K,X, σ) ∈ J1, nK×J`+1, r−1K×{±1} uniformly at random
and independent of everything else. Define Q̃∗,t+1 for ∗ ∈ {�, �} by Q̃∗,t+1

K (X) = Q∗,tK (X) + εσ and
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Q̃∗,t+1
k (x) = Q∗,tk (x) for all (k, x) 6= (K,X). Define R∗t for ∗ ∈ {�, �} by the following:

R∗t =
Pa
∗,b∗;u∗,v∗;ε
n,I;g∗,h∗ (Q̃∗,t+1)
Pa
∗,b∗;u∗,v∗;ε
n,I;g∗,h∗ (Q∗,t)

=
exp

(
−a∗

N

∑n
i=1(b∗)i−1A(Q̃∗,t+1

i )
)

exp
(
−a∗

N

∑n
i=1(b∗)i−1A(Q∗,ti )

) · 1∏
j=0

P εRW,n(Q̃∗,t+1(X + j − 1), Q̃∗,t+1(X + j))
P εRW,n(Q∗,t(X + j − 1),Q∗,t(X + j)) .

(A.2)

For ∗ ∈ {�, �}, we set Q∗,t+1 = Q̃∗,t+1 if both R∗t ≥ Ut and Q̃∗,t+1 ∈ X n,Iε;gε,hε , and Q∗,t+1 = Q∗,t

otherwise. It is an easy check that Pa
∗,b∗;u∗,v∗;ε
n,I;g∗,h∗ is stationary for these dynamics, in fact reversible.

Note in the above that the dynamics of the � and � chains are coupled by using the same
uniform random variables for deciding acceptance. We claim that these dynamics are such that
Q�,ti (x) ≤ Q�,ti (x) for all i ∈ J1, NK, x ∈ I, t ∈ N. We prove this by induction on t. The claim holds
at t = 0 since we adopt the same starting state for both chains; assume it holds for some t ≥ 0. In
going from t to t + 1, note that at most one location on one curve is changed in each of Q�,t and
Q�,t (and the same site in both, if a change occurs), and the change is by ±ε. Thus there are two
cases where the pointwise ordering could be violated in the transition from t to t+ 1:

(1) (K,X, σ) is chosen with σ = +1, Q�,tK (X) = Q�,tK (X), R�
t < Ut ≤ R�

t , and Q̃∗,t+1 ∈ X n,Iε;gε,hε
for ∗ ∈ {�, �}, or

(2) (K,X, σ) is chosen with σ = −1, Q�,tK (X) = Q�,tK (X), R�
t < Ut ≤ R�

t , and Q̃∗,t+1 ∈ X n,Iε;gε,hε
for ∗ ∈ {�, �}.

We argue that the first case cannot occur, by showing that R�
t ≥ R�

t in that case; an analogous
argument shows that the second case also cannot occur. This will complete the proof.

We have by the inductive hypothesis that Q�,tk (x) ≤ Q�,tk (x) for all k, x. We have to compare
R�
t and R�

t as defined in (A.2). We start with the second factor there, associated with the random
walk. Recall HRW is convex as a function on R, and let z := Q�,tK (X) = Q�,tK (X). We observe that

1∏
j=0

P εRW,n(Q̃∗,t+1(X + j − 1), Q̃∗,t+1(X + j))
P εRW,n(Q∗,t(X + j − 1),Q∗,t(X + j))

=
exp

(
−HRW

(
z + ε−Q∗,tK (X − 1)

)
−HRW

(
Q∗,tK (X + 1)− z − ε

))
exp

(
−HRW

(
z −Q∗,tK (X − 1)

)
−HRW

(
Q∗,tK (X + 1)− z

)) . (A.3)

For any convex function f : R→ R and for any z, a, b ∈ R with a ≥ b and ε > 0, it holds that

−f(z + ε− a) + f(z − a) ≥ −f(z + ε− b) + f(z − b) and
−f(a− z − ε) + f(a− z) ≥ −f(b− z − ε) + f(b− z).

(A.4)

Applying this inequality in (A.3) with f = HRW, and using the inductive hypothesis that
Q�,tk (x) ≥ Q�,tk (x) for x ∈ {X − 1, X + 1}, yields that

1∏
j=0

P εRW,n(Q̃�,t+1(X + j − 1), Q̃�,t+1(X + j))
P εRW,n(Q�,t(X + j − 1),Q�,t(X + j)) ≥

1∏
j=0

P εRW,n(Q̃�,t+1(X + j − 1), Q̃�,t+1(X + j))
P εRW,n(Q�,t(X + j − 1),Q�,t(X + j)) .

(A.5)

So far we heave dealt with the ratio of the P εRW,n factors in (A.2), and next we turn to the ratio
of the area-tilt factors. The conditions of case 1 imply Q̃∗,t+1

K (X) = Q∗,tK (X) + ε and Q̃∗,t+1
k (x) =
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Q∗,tk (x) for all (k, x) 6= (K,X). So

exp
(
−a∗

N

∑n
i=1(b∗)i−1A(Q̃∗,t+1

i )
)

exp
(
−a∗

N

∑n
i=1(b∗)i−1A(Q∗,ti )

) = exp(−a∗

N (b∗)K−1ε).

Since a� ≤ a� and b� ≤ b�, it holds from the previous display and (A.5) that R�
t ≥ R�

t in case 1, as
desired. This completes the proof. �
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