The KPZ scaling limit of the colored asymmetric simple exclusion process

Milind Hegde (based on joint work with Amol Aggarwal and Ivan Corwin)

Columbia University

CRM-ISM Montreal Probability seminar February 29, 2024

Models and main results

Fix $q \in [0, 1)$ and place a particle of "color" -k at location k for every $k \in \mathbb{Z}$.

Particles attempt to swap positions to the left and right with rates *q* and 1, respectively. Swaps succeed if the initiating particle is of higher color.

The particles lie in a *rarefaction fan* parametrized by speed $\alpha \in (-1, 1)$.

The colored ASEP height function h^{ASEP} is

 $h^{ASEP}(x, 0; y, t) := \#$ particles of initial position $\leq x$ to right of y at time t.

A lot is known about $y \mapsto h^{ASEP}(0, 0; y, t)$ in the $t \to \infty$ limit: e.g., after rescaling,

- h^{ASEP}(0,0;0,t) converges to the GUE Tracy-Widom distribution of RMT [Tracy-Widom '09]
- $y \mapsto h^{ASEP}(0, 0; y, t)$ converges to the parabolic Airy₂ process [Quastel-Sarkar '22]

We are interested in the joint limit $(x, y) \mapsto h^{ASEP}(x, 0; y, t)$.

Aity sheet *S* arises as the limit of a model of a random directed metric: Brownian last passage percolation (LPP) [Dauvergne-Ortmann-Virág].

With $B = (B_1, \ldots, B_n)$ i.i.d. Brownian motions,

$$B[(x, n) \to (y, 1)] = \sup_{\gamma} B[\gamma],$$

where the weight $B[\gamma]$ of a directed path γ is the integral of B over γ , i.e., sum of increments along the B_i .

Aity sheet S arises as the limit of a model of a random directed metric: Brownian last passage percolation (LPP) [Dauvergne-Ortmann-Virág].

Theorem (Dauvergne-Ortmann-Virág)

As $\varepsilon \to 0$,

$$\varepsilon^{1/3} \left(B[(2\varepsilon^{-2/3}x,\varepsilon^{-1}) \to (\varepsilon^{-1} + 2\varepsilon^{-2/3}y,1)] - 2\varepsilon^{-1} + 2(x-y)\varepsilon^{-2/3} \right)$$

converges in distribution to the Airy sheet S(x, y) as a continuous function on \mathbb{R}^2 uniformly on compact sets.

With $B = (B_1, \ldots, B_n)$ i.i.d. Brownian motions,

$$B[(x, n) \to (y, 1)] = \sup_{\gamma} B[\gamma],$$

where the weight $B[\gamma]$ of a directed path γ is the integral of B over γ , i.e., sum of increments along the B_i .

Aity sheet S arises as the limit of a model of a random directed metric: Brownian last passage percolation (LPP) [Dauvergne-Ortmann-Virág].

Theorem (Dauvergne-Ortmann-Virág)

As $\varepsilon
ightarrow$ 0,

$$\varepsilon^{1/3} \left(B[(2\varepsilon^{-2/3}x,\varepsilon^{-1}) \to (\varepsilon^{-1} + 2\varepsilon^{-2/3}y,1)] - 2\varepsilon^{-1} + 2(x-y)\varepsilon^{-2/3} \right)$$

converges in distribution to the Airy sheet S(x, y) as a continuous function on \mathbb{R}^2 uniformly on compact sets.

The scaling exponents $\frac{1}{3}$ and $\frac{2}{3}$ are characteristic of the Kardar-Parisi-Zhang universality class.

Recall

 $h^{ASEP}(x, 0; y, t) = \#$ particles of initial position $\leq x$ to right of y at time t.

Theorem (Aggarwal-Corwin-H.)

Fix $q \in [0, 1)$ and α = 0. The rescaled colored ASEP height function

$$\varepsilon^{1/3}\left(\varepsilon^{-1}+2(\mathbf{x}-\mathbf{y})\varepsilon^{-2/3}-2h^{\mathsf{ASEP}}(2\varepsilon^{-2/3}\mathbf{x},0;2\varepsilon^{-2/3}\mathbf{y},2\varepsilon^{-1}(1-q)^{-1})\right)$$

converges in distribution, as $\varepsilon \to 0$, to the Airy sheet $S(\mathbf{x}, \mathbf{y})$ as continuous functions on \mathbb{R}^2 uniformly on compact sets.

The case of general $\alpha \in (-1, 1)$ holds too, with explicit α -dependent scaling coefficients.

Introduced by [Jimbo '86], [Bazhanov '85], [Gwa-Spohn '93], [Kuniba--Mangazeev-Maruyama-Okado '16], [Borodin-Wheeler '22].

Quantum parameter $q \in [0, 1)$, spectral parameter $z \in (0, 1)$. At most one arrow per edge.

Simulation by Leo Petrov

The colored S6V height function $h^{S6V}(x, 0; y, t)$ is the number of arrows of color $\ge x$ exiting horizontally from vertical line t at height y or higher.

Theorem (Aggarwal-Corwin-H.)

Fix $q \in [0, 1)$, $z \in (0, 1)$, $\alpha \in (z, z^{-1})$. For explicit scaling coefficients μ , σ and β (depending on α), the rescaled colored S6V height function

$$\sigma^{-1}\varepsilon^{1/3} \left(h^{\text{S6V}}(\beta\varepsilon^{-2/3}\mathbf{x},0;\alpha\varepsilon^{-1}+\beta\varepsilon^{-2/3}\mathbf{y},\varepsilon^{-1}) - \mu\varepsilon^{-1} - \mu'\beta(\mathbf{y}-\mathbf{x})\varepsilon^{-2/3} + \beta\mathbf{x}\varepsilon^{-2/3} \right)$$

converges in distribution, as $\varepsilon \to 0$, to the Airy sheet S(x, y) as continuous functions on \mathbb{R}^2 uniformly on compact sets.

Proof ingredients

The Airy line ensemble $\mathcal{P} = (\mathcal{P}_1, \mathcal{P}_2, ...)$ is an \mathbb{N} -indexed collection of random non-intersecting curves on \mathbb{R} [Prähofer-Spohn '02, Corwin-Hammond '14]:

It arises as the edge scaling limit of Dyson Brownian motion.

 ${\cal S}$ was defined by Dauvergne-Ortmann-Virág via an infinite LPP problem in ${\cal P}$.

The path from Brownian LPP to the Airy sheet

The path from Brownian LPP to the Airy sheet

RSK isn't applicable to S6V or ASEP.

The colored *q*-Boson model is a colored vertex model on a semi-infinite strip of fixed height. It allows *arbitrarily* many arrows on vertical edges.

Arrows enter at $-\infty$ and travel straight except for finitely many columns.

The colored *q*-Boson model and the colored S6V model are related via the Yang-Baxter equation.

Gives a way to manipulate vertex models graphically while preserving partition functions/distributions, and is the source of "integrability."

A matching via Yang-Baxter

A matching via Yang-Baxter

So the colored S6V height function is distributed as colored arrow counts in the last column of *q*-Boson.

The uncolored case was shown in [Borodin-Bufetov-Wheeler '16], and the colored case in [Aggarwal-Borodin '24].

The colored Hall-Littlewood line ensemble from the colored *q*-Boson model

Colored line ensemble $L^{col} = (L^{(1)}, \dots, L^{(N)})$, with $L^{(k)} = (L_1^{(k)}, L_2^{(k)}, \dots)$ a line ensemble defined by

$$L_i^{(k)}(y) = \# \left\{ y' > y : \text{color exiting horizontally from } (-i, y') \text{ is } \geq k \right\}.$$

The colored Hall-Littlewood line ensemble from the colored *q*-Boson model

Colored line ensemble $L^{col} = (L^{(1)}, \dots, L^{(N)})$, with $L^{(k)} = (L_1^{(k)}, L_2^{(k)}, \dots)$ a line ensemble defined by

$$L_i^{(k)}(y) = \# \left\{ y' > y : \text{color exiting horizontally from } (-i, y') \text{ is } \geq k \right\}.$$

Yang-Baxter: $L_1^{(k)}$ is distributed as the color k height function $h^{S6V}(k, 0; \cdot, t)$.

Recall that S is represented as a last passage percolation (LPP) problem in the parabolic Airy line ensemble P.

Proving convergence to the Airy sheet comes down to two main components:

- 1. Show colored height function (i.e., $L_1^{(k)}$) is approximately LPP in $L^{(1)}$.
- 2. Show convergence of $L^{(1)}$ to \mathcal{P} .

The colored and uncolored line ensembles each have Gibbs properties. Colored Gibbs is the tool for (1) and uncolored Gibbs the tool for (2).

An approximate LPP representation

satisfies a (colored Hall-Littlewood) Gibbs property. Can be represented in terms of a variational problem: when q = 0, it holds that

$$L_{i}^{(k)} = \mathsf{PT}\left(L_{i}^{(1)}, L_{i+1}^{(k)}\right), \qquad \mathsf{PT}\left(f, g\right)(x) = f(x) + \max_{0 \le y \le x} \left(g(y) - f(y)\right),$$

and for q > 0,

$$\mathbb{P}\left(\max_{y}\left|L_{i}^{(k)}(y)-\mathsf{PT}\left(L_{i}^{(1)},L_{i+1}^{(k)}\right)(y)\right|\geq m\right)\leq q^{cm^{2}}.$$

The (uncolored) Hall-Littlewood Gibbs property of $L^{(1)}$

The (uncolored) Hall-Littlewood Gibbs property of $L^{(1)}$

 \mathcal{P} has Brownian Gibbs property: given by non-intersecting Brownian bridges.

 $L^{(1)}$'s Gibbs property is more complicated.

Law of top k curves of $L^{(1)}$ on [a, b] is a collection of non-crossing Bernoulli random walk bridges, reweighted by a RN derivative

$$\prod_{i=0}^{k} \prod_{x=a+1}^{b} \left(1 - q^{\Delta_{i}(x-1)} \mathbb{1}_{\Delta_{i}(x)=\Delta_{i}(x-1)-1}\right),$$

where $\Delta_i(x)$ is separation of $(i-1)^{st}$ and i^{th} curve at x [Corwin-Dimitrov '18].

Showing $L^{(1)} \rightarrow \mathcal{P}$ comes down to establishing

- 1. tightness of $L^{(1)}$ at the edge, and
- 2. showing all subsequential limits have Brownian Gibbs.

Then can use [Aggarwal-Huang '23] which characterizes \mathcal{P} as the unique law among Brownian Gibbsian line ensembles with parabolic decay of $-x^2$.

Showing $L^{(1)} \rightarrow \mathcal{P}$ comes down to establishing

- 1. tightness of $L^{(1)}$ at the edge, and
- 2. showing all subsequential limits have Brownian Gibbs.

Then can use [Aggarwal-Huang '23] which characterizes \mathcal{P} as the unique law among Brownian Gibbsian line ensembles with parabolic decay of $-x^2$.

Many works have proved tightness of line ensembles, but all rely heavily on monotone coupling properties of the line ensembles.

These do not exist for the Hall-Littlewood line ensemble!

We give a new proof framework for tightness using only "weak monotonicity" of partition functions [Corwin-Dimitrov '18].

- Including time in the scaling limit (\checkmark for ASEP and S6V)
- Scaling limit under general initial conditions (\checkmark for ASEP)
- Extend to other models
- Use to investigate other phenomena, e.g. mixing times, stationary measures, scaling limits of particle trajectories...

Summary

- Colored ASEP and colored S6V height functions converge to the Airy sheet, directed landscape, KPZ fixed point.
- Use Yang-Baxter to relate colored height functions with colored line ensembles defined via the colored *q*-Boson model.
- · Colored Gibbs property \rightarrow approximate LPP representation:

$$\mathbb{P}\left(\max_{y}\left|L_{i}^{(k)}(y)-\mathsf{PT}\left(L_{i}^{(1)},L_{i+1}^{(k)}\right)(y)\right|\geq m\right)\leq q^{cm^{2}}.$$

• Line ensemble tightness via only uncolored Gibbs & weak monotonicity.

Summary

- Colored ASEP and colored S6V height functions converge to the Airy sheet, directed landscape, KPZ fixed point.
- Use Yang-Baxter to relate colored height functions with colored line ensembles defined via the colored *q*-Boson model.
- · Colored Gibbs property \rightarrow approximate LPP representation:

$$\mathbb{P}\left(\max_{y}\left|L_{i}^{(k)}(y)-\mathsf{PT}\left(L_{i}^{(1)},L_{i+1}^{(k)}\right)(y)\right|\geq m\right)\leq q^{cm^{2}}.$$

• Line ensemble tightness via only uncolored Gibbs & weak monotonicity.

Thank you!