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The KPZ equation

The Kardar-Parisi-Zhang (KPZ) equation is a non-linear stochastic PDE believed to
describe planar random interface growth in a very broad class of models, and is given
by

∂tH =
1
4
(∂xH)2 +

1
4
∂2xH + ξ, (1)

where ξ is space-time white noise on R× (0,∞) and H : R× (0,∞) → R.

Because of the white-noise, H is expected to be rough, so ∂xH makes sense only as a
generalized function. This makes (∂xH)2 ill-defined, and (1) ill-posed as written.

While there are now sophisticated notions of solution available, the one that has
underlied most previous studies is known as the Cole-Hopf solution.
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Cole-Hopf solution to the KPZ equation

∂tH =
1
4
(∂xH)2 +

1
4
∂2xH + ξ

The Cole-Hopf solution defines H = log Z to solve the KPZ equation, where Z solves the
multiplicative stochastic heat equation

∂tZ =
1
4
∂2xZ + ξZ

with initial condition Z(0, ·) = exp(H(0, ·)).

The narrow-wedge solution to the KPZ equation is the solution when Z(0, ·) = δ0 , the
Dirac mass at the origin.
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Scaling the narrow wedge solution

We will be interested in H(t, x) for fixed x ∈ R as t varies. So it will be convenient to
consider a scaled version of H which is tight in t.

To first order, H(t, x) grows linearly in t. Around that, its fluctuations are of order t1/3 ,
and its natural spatial scale is t2/3 .

So we consider the scaled narrow-wedge solution

ht(x) =
H(t, t2/3x) – t

12
t1/3

;

this does not grow linearly with t, has unit order fluctuations, and is tight in t ≥ t0 > 0.

It decays parabolically; in fact, for fixed t, x 7→ ht(x) + x2 is a stationary process.
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Upper tail behaviour of ht

The upper tail behavior has been of significant interest in both the physics and
mathematics communities.

In spite of significant recent progress relying on exact formulas available for the
narrow wedge solution, the upper tail behavior is not completely understood.

Questions of interest include:

• Asymptotics of one- and multi-point tails, eg. P(ht(0) > θ) or
P(ht(–1) > θ– , ht(1) > θ+).

• The behavior of the profile under the above events.

Existing work has been mainly focused on one-point asymptotics.
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A multi-point question: Sharpness of FKG?

Because of connections to statistical mechanics models, it is known that ht enjoys the
FKG inequality, so that, for all θ– and θ+ ,

P
(
ht(–1) > θ– , ht(1) > θ+

)
≥ P

(
ht(–1) > θ–

)
· P
(
ht(1) > θ+

)
.

But in many applications the inequality is suboptimal.

So we are led to ask: Is FKG sharp for any values of θ– and θ+ , and, if so, which ones?
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Greater structure in the t → ∞ limit

It has been long expected and recently proven (Quastel-Sarkar and Virág) that the
narrow-wedge solution converges to the parabolic Airy2 process P as t → ∞.

P is easier to analyze than ht , due to its many connections to random matrix theory
and explicit determinantal formulas for its finite dimensional distributions.

This has given a sharp understanding of the upper tail asymptotics: eg., it is known
(Dumaz-Virág, following work of Ramirez-Rider-Virág) that, as θ → ∞,

P
(
P(0) > θ

)
= exp

(
–
4
3
θ3/2 + O(log θ)

)
.

However, even here sharp multi-point asymptotics do not seem to be available.

The question of spatial structure has received some more attention however, with
Quastel-Tsai proving a large deviation principle for a discrete prelimit (TASEP) of P .
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Related work in the finite t case

There has been some work in the case of finite t as well:

• Lamarre-Lin-Tsai investigate the upper tail large deviation limit shape for short
time (t → 0) using a Feynman-Kac representation. (In this limit the non-linearity
disappears and the solution falls into the Gaussian universality class.)

• Das-Tsai proved a one-point large deviation principle as t → ∞ for
narrow-wedge, and Ghosal-Lin for general initial data.

• Corwin-Ghosal obtained pre-limiting bounds for fixed t in the KPZ regime.

The above rely on techniques such as the Feynman-Kac representation, PDE methods,
and the exact formulas available for the narrow-wedge solution.

In contrast, our approach is more geometric and will yield near-optimal results.
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Related work in the finite t case

Theorem (Corwin-Ghosal)

The following holds for a wide class of initial data as well as the narrow-wedge case:
there exist c1 , c2 > 0 and θ0 such that, for θ > θ0 and t ≥ 1,

exp(–c1θ3/2) ≤ P(ht(0) > θ) ≤ exp(–c2θ3/2).

The constants c1 and c2 are explicit but non-optimal for general initial data (predicted
to be 4/3 in the physics literature).

For narrow wedge the methods did obtain the optimal constant of 43 + o(1), but only in
certain regimes of θ.
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Main results



Main results: one-point asymptotics

Theorem

There exist C < ∞ and θ0 such that, for all t ≥ 1 and θ > θ0 ,

exp
(
–
4
3
θ3/2 – Cθ9/8

)
≤

1
dθ

P
(
ht(0) ∈ dθ

)
≤ exp

(
–
4
3
θ3/2 + Cθ9/8

)
.

As an immediate consequence, the same bounds also hold for P(ht(0) > θ).

• This gives a sharp bound with the optimal 43 for the density. To our knowledge,
bounds on the density were not previously available in the literature.

• The bound holds for all large values of θ with the optimal coefficient 43 , and the
error is uniform in t.

• The bound also holds for P (as mentioned a sharper version for the upper tail of
P was already known, but the density bound is new).

• We will give similar tail bounds for general initial data shortly.
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Main results: the one-point limit shape

What does ht look like when ht(0) > θ?

Define Triangleθ : [–θ1/2 , θ1/2] to be

(0, θ)

(θ1/2 , –θ)(–θ1/2 , –θ)

The linear portions of Triangleθ are tangent to –x2 at ±θ1/2 .

Theorem

There exist θ0 and c > 0 such that, for all t ≥ 1, θ > θ0 , and M > 0,

P

(
sup

x∈[–θ1/2 ,θ1/2]
|ht(x) – Triangleθ(x)| > Mθ1/4

∣∣∣ ht(0) > θ

)
≤ exp(–cM2).

• The bound also holds with the conditioning ht(0) = θ, and for P .

• θ1/4 is the Brownian fluctuation scale on an interval of size θ1/2 and is optimal.
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Main results: two-point limit shape

Define Quada,b : [–xtan` , xtanr ] to be

(–1, a)
(1, b)

(–xtan` , –(xtan` )2)
(xtanr , –(xtanr )2)

The values of xtan` and xtanr are such that the tangency conditions are met.

Theorem

Assuming some non-degeneracy conditions on a and b, there exists c > 0 such that,
for all t ≥ 1, M > 0, and large enough a, b,

P

 sup
x∈[–xtan

`
,xtanr ]

|ht(x) – Quada,b(x)| > M(a1/4 + b1/4)
∣∣∣ ht(–1) > a, ht(1) > b


≤ exp(–cM2).

• The bound again also holds for P .
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Main results: two-point limit shape

The non-degeneracy conditions are to ensure that both (–1, a) and (1, b) are extreme
points of the convex hull, unlike below.

(–1, a)

(1, b)
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Main results: Two point asymptotics

Theorem

For t ≥ 1 and if a, b are large enough and satisfy the non-degeneracy condition, then

P
(
ht(–1) ≥ a, ht(1) ≥ b

)
= exp

(
–
1
24

[
16
(
(1 + a)3/2 + (1 + b)3/2

)
+ 3(a – b)2 + 24(a + b) + 32

]
+ error

)
.

The error term has explicit upper and lower bounds, uniformly in t. The asymptotic
also holds for P .

• This is the first sharp asymptotic for the two-point distribution we know of, and is
also new for P .

• The non-degeneracy condition on a, b implies that (b – a)2 � a3/2 , b3/2 . Without it,
the one-point asymptotic dominates.

• A similar bound also holds at ±K in place of ±1.
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Corollary: Geometric condition for sharpness of FKG

Recall that the FKG inequality implies

P
(
ht(–K1/2) > a, ht(K1/2) > b

)
≥ P

(
ht(–K1/2) > a

)
· P
(
ht(K1/2) > b

)
,

and our question: when is it sharp?

(–K1/2 , a)

(K1/2 , b)

(K1/2 , b)

(K1/2 , b)
(K1/2 , b)
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Corollary: Geometric condition for sharpness of FKG

(–K1/2 , a)

(K1/2 , b)

(K1/2 , b)

(K1/2 , b)

(K1/2 , b)

Corollary

Let K be fixed. If the line joining (–K1/2 , a) and (K1/2 , b) is tangent to or intersects –x2

inside [–K1/2 , K1/2], then

P
(
ht(–K1/2) > a, ht(K1/2) > b

)
= exp

(
–
4
3
[(K + a)3/2 + (K + b)3/2] + error

)
≈ P(ht(–K1/2) > a) · P(ht(K1/2) > b).

• The second line is via the one-point asymptotics and since ht(±K1/2) + K d= ht(0) by
stationarity of ht(x) + x2 .

• In essence, the parabola acts as a barrier to the interaction of the events
{ht(–K1/2) > a)} and {ht(K1/2) > b}.
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• In essence, the parabola acts as a barrier to the interaction of the events
{ht(–K1/2) > a)} and {ht(K1/2) > b}.
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Main results: One-point asymptotics for general initial condition

Let h0 : R → R ∪ {–∞} be measurable initial condition for the KPZ equation with

• At most linear growth: lim sup|x|→∞ x–1h0(x) < ∞.

• Not –∞ everywhere: There is a positive measure set where h0 6= –∞.

(The hypotheses essentially ensure ht exists for all t ≥ 1 and is non-trivial.)

Recall that the solution htgen is given by log Zt , where Zt(x) solves the stochastic heat
equation with Z0(x) = exp(h0(x)).

Theorem

There exist C, θ0 (depending on h0) such that, for t ≥ 1, and θ > θ0 ,

exp
(
–
4
3
θ3/2 – Cθ9/8

)
≤ P

(
htgen(0) ≥ θ

)
≤ exp

(
–
4
3
θ3/2 + Cθ9/8

)
.

The constants C and θ0 can be made uniform over a class of initial data by quantifying
the hypotheses on h0 .
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Summary of results

• The limit shapes for large one- and two-point values are given in terms of tangent
lines to the parabola through the high points, and the fluctuations around the
shape are Brownian.

• The information about the limit shapes can be combined with Brownian
estimates to give sharp asymptotics for the one- and two-point probabilities.

• These asymptotics give a geometric understanding of asymptotic independence
of upper-tail events, i.e., the sharpness of FKG.

• This can be extended to give sharp one-point asymptotics for general initial data.
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The Brownian Gibbs property



The resampling property

Both ht and P can be embedded as the top, or lowest-indexed, curve in a N-indexed
ensemble of random continuous curves.

...

Essentially, it says the conditional distribution of P on an interval is a
non-intersecting Brownian bridge (of rate 2).
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The resampling property

Both ht and P can be embedded as the top, or lowest-indexed, curve in a N-indexed
ensemble of random continuous curves.

...

Essentially, it says the conditional distribution of P on an interval is a
non-intersecting Brownian bridge (of rate 2).

A useful heuristic to keep in mind:

ht and P are like Brownian bridges conditioned to stay above a parabola –x2 with
which they share endpoints.
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A convex consequence

A key idea is that the resampling in terms of Brownian bridges implies that the limit
shapes should be convex.

Indeed, suppose the limit shape of the top curve is not convex in some
neighbourhood. This pushes the second curve down on the interval.

Then we can resample the top curve on that interval. Since the non-convexity means
the second curve is far away, Brownian bridge naturally avoids it.

Unconditioned Brownian bridge approximately follows a straight line, so can’t recreate
the earlier non-convexity. A contradiction!
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A convex consequence

In the six-vertex model, a similar idea was termed the tangent method by
Colomo-Sportiello and was rigorously implemented by Aggarwal.

The six-vertex model is an example of a “zero temperature” model (similar to P), while
the KPZ equation at finite t is a “positive temperature” model.

19



Proof ideas



Getting the one-point limit shape (upper bound): pinning

y = –x2

(0, θ)

To use the linear trajectories of Brownian bridges, we first need to “pin” ht(x) to the
tangent line at some x; then we will know that Triangleθ is followed. Take x = θ1/2z.

In fact to upper bound the profile shape, it’s enough if ht is below the tangent at some
large x: we can raise the points to the tangent, and this can only raise the profile.

We need ht to be below the tangent with high probability conditional on ht(0) > θ. But
by stationarity + parabolic curvature,

P
(
ht(θ1/2z) > Tangent(θ1/2z) | ht(0) > θ

)
≤

P(ht(0) > Tangent(θ1/2z) + θz2)
P(ht(0) > θ)

,

which is small for large enough z (but still O(1)) by the Corwin-Ghosal tail bounds.
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Getting the one-point limit shape (upper bound): pinning

y = –x2

(0, θ)

Once we have the pinning, the profile from (zθ1/2 , Tangent(zθ1/2)) to (0, θ) is a Brownian
bridge conditioned to stay above the second curve, essentially a parabola.

In particular, the second curve is essentially unaffected by ht(0) being pulled up.

The linear trajectory is close to –x2 only at the tangency point, so Brownian bridge
avoids –x2 with constant probability. So the conditioning can essentially be ignored.

This yields the exp(–cM2) bound for a deviation of size M on the Brownian scale θ1/4 .
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Getting the one point tail asymptotics

(0, θ)

(θ1/2 , –θ)(–θ1/2 , –θ)

Since ht looks like Triangleθ on [–θ1/2 , θ1/2] when ht(0) > θ, P(ht(0) > θ) becomes a
Brownian calculation: with B a (rate 2) Brownian bridge from (–θ1/2 , –θ) to (θ1/2 , –θ),

P
(
ht(0) > θ

)
≈ P

(
B(0) > θ | B(x) > –x2 ∀x ∈ [–θ1/2 , θ1/2]

)

≤
P
(
B(0) > θ

)
P
(
B(x) > –x2 ∀x ∈ [–θ1/2 , θ1/2]

) .
The numerator is exp

(
– (θ+θ)

2

2θ1/2

)
= exp(–2θ3/2).

The denominator D is ≥ exp
(
– 23 θ

3/2
)
. To convince you, it can be checked that

D ≤ P

(∫ θ1/2

–θ1/2
B(x) + x2 > 0

)
= P
(
N
(
–
4
3
θ3/2 ,

4
3
θ3/2

)
> 0
)

≈ exp
(
–
2
3
θ3/2

)
,

since exp(–y2/2y) = exp(–y/2).
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The argument for general initial data

A distributional convolution formula allows one to get one-point information for
general initial data from spatial information for narrow-wedge:

htgen(0)
d= t–1/3 log

∫
R
exp

[
t1/3
{
htnw(x) + h0(x)

}]
dx.

So by obtaining sharp tail asymptotics for quantities like supR htnw and inf[–M,M] htnw , we
can obtain the same asymptotics for htgen(0).

This can be done with further resampling arguments using the Brownian Gibbs
property.
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Summary

• Using geometric methods combined with the Brownian Gibbs properties, we can
obtain sharp asymptotics for one- and two-point upper tails for narrow-wedge
solutions, as well as for one-point asymptotics for general initial data.

• As a first step for this, and also for independent interest, we need to understand
the shape of the profile under these asymptotic events, which we do using ideas
similar to the tangent method.

• Then the one-point asymptotics can be seen as the ratio of two Brownian terms,
which can be evaluated by using normal distribution asymptotics and calculating
the probability of a Brownian bridge staying above a parabola.

Thank you!
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