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Last passage percolation on Z2



LPP on Z2: Paths
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LPP on Z2: Weights of paths

The weight of a path is the sum of

the values of the covered vertices.

Xr is the maximum weight of paths

which go from (1, 1) to (r , r).

To first order, Xr is linear in r :

lim
r→∞

Xr/r = µ almost surely.

This is because {Xr}r are

super-additive:

Xr+s

d
≥ Xr + X̃s .
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LPP on Z2: Scalings

Xr ’s fluctuations around µr should be non-Gaussian of order r1/3.

When centred and scaled, the scaling limit should be the

GUE Tracy-Widom distribution (known in integrable models).

Theorem (Johansson ’00)

Let {ξv : v ∈ Z2} be i.i.d. exponential rate one random variables.

It holds that
Xr − 4r

24/3r1/3
d→ FTW.
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GUE Tracy-Widom tail behavior

The GUE Tracy-Widom is also non-Gaussian. It has upper and

lower tail exponents 3/2 and 3:

Theorem (eg. Ramirez-Rider-Virág ’11)

As t →∞,

FTW

(
[t,∞)

)
= exp

(
−4

3
t3/2 (1 + o(1))

)
and

FTW

(
(−∞,−t]

)
= exp

(
− 1

12
t3 (1 + o(1))

)
.
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Tail behaviour in LPP

These tail exponents are also known for LPP in integrable cases!

Theorem (Joh00, LR10, BGHK19)

Let {ξv : v ∈ Z2} be i.i.d. exponential rate one random variables.

For t0 < t < r2/3,

P
(
Xr > 4r + tr1/3

)
≤ exp

(
−c1t3/2

)
and

exp
(
−c2t3

)
≤ P

(
Xr < 4r − tr1/3

)
≤ exp

(
−c3t3

)
.

Our main result obtains such inequalities under some natural

assumptions.
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Use of assumptions in the non-integrable model FPP

Progress in the non-integrable model of first passage percolation

has been very limited, and has often relied on assumptions

comparable to ours.

These include

1. assumptions on fluctuations of the analogue of Xr or of the

geodesic (see eg. [Cha13] and [AD14]); and

2. curvature of the limit shape as the endpoint of the geodesic

varies (see eg. [NP95]).
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LPP on Z2: Parabolic curvature of weight profile

x
+
y

=
2r

(1, 1)

µr − Cr1/3

µr − Gz2

r
− Cr1/3
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A consequence of the curvature: transversal fluctuations

The transversal fluctuation of a path γ is roughly the maximum

distance to the diagonal from γ.

In planar LPP, it is of order r2/3: at this value, the weight loss from

parabolic curvature is of the order of weight fluctuations, r1/3:

G (r2/3)2

r
= Gr1/3.

Θ(r2/3)

(1, 1)

(r , r)
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Assumptions and main results



Assumptions

1. Limit shape existence: µ <∞.

2. Limit shape strong concavity & non-random fluctuation:

For z ∈ [−ρr , ρr ],

E[X z
r ] ∈ µr − G

z2

r
−Θ(r1/3).

3. Upper bounds, uniform in direction: There exists α > 0 s.t.

P
(
|X z

r − E[X z
r ]| > tr1/3

)
≤ exp(−ctα).

4. Lower bounds, in diagonal direction:

min
{
P
(
Xr − µr > Cr1/3

)
, P
(
Xr − µr < −Cr1/3

)}
≥ δ.
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Main results: Upper tail

Main Theorem (Lower bound on upper tail)

For t0 < t < Θ(r2/3),

P
(
Xr − E[Xr ] ≥ tr1/3

)
≥ exp(−ct3/2).

Main Theorem (Upper bound on upper tail)

There exists ζ(α) > 0 such that, for t0 < t < r ζ ,

P
(
Xr − E[Xr ] ≥ tr1/3

)
≤ exp

(
−ct3/2(log t)−1/2

)
.
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Main results: Lower tail

Main Theorem (Lower bound on lower tail)

For t0 < t < Θ(r2/3),

P
(
Xr − E[Xr ] ≤ −tr1/3

)
≥ exp(−ct3).

Main Theorem (Upper bound on lower tail)

For t > t0,

P
(
Xr − E[Xr ] ≤ −tr1/3

)
≤ exp(−ct3).
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Main results: Lower tail

Main Theorem (Lower bound on lower tail)

For t0 < t < Θ(r2/3),

P
(
Xr − E[Xr ] ≤ −tr1/3

)
≥ exp(−ct3).

Main Theorem (Upper bound on lower tail)

For t > t0,

P
(
Xr − E[Xr ] ≤ −tr1/3

)
≤ exp(−ct3).
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Proof strategies: Upper tail



An overarching theme for both tails

The basic theme is: look at the

geodesic at smaller scales!

But which scale?

(1, 1)

(r , r)
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An overarching theme for both tails

Suppose the geodesic has weight

µr + tr1/3.

Consider a 1/k fraction of it.

Its weight should be

≈ µr/k + tr1/3/k .

But by KPZ fluctuations, it is

typically µr/k + C (r/k)1/3.

Equating,

(r/k)1/3 ≈ tr1/3/k =⇒ k ≈ t3/2
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The easier half of upper tail: lower bound

Let X
(i)
r/k be the LPP value from

i · (r/k , r/k) to (i + 1) · (r/k, r/k).

Independent!

If each X
(i)
r/k is at least

µr/k + C (r/k)1/3, then

Xr ≥
k−1∑
i=0

X
(i)
r/k

≥ µr + k · C (r/k)1/3

= µr + Ck2/3r1/3

= µr + tr1/3.

(r/3, r/3)

(2r/3, 2r/3)

(1, 1)

(r , r)
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The easier half of upper tail: lower bound

Since X
(i)
r/k are independent, by the assumed lower bound,

P
(
Xr ≥ µr + tr1/3

)
≥

k−1∏
i=0

P
(
X

(i)
r/k ≥ µr/k + C (r/k)1/3

)

≥ δk

= exp(−ct3/2). [k = Θ(t3/2)]

This is only for t < Θ(r2/3): r/k = r t−3/2 has to be at least 1.
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The hard half of upper tail: upper bound

For illustration, suppose Xr were sub-additive: Xr ≤
∑k−1

i=0 X
(i)
r/k .

Also, Xr and
∑k−1

i=0 X
(i)
r/k have a mean difference of order

k · (r/k)1/3 = k2/3r1/3:

E[Xr ]−
k−1∑
i=0

E[X
(i)
r/k ]

≈ µr − Cr1/3

− k ·
(
µr/k − C (r/k)1/3

)
= Θ(k2/3r1/3).

(r/3, r/3)

(2r/3, 2r/3)

(1, 1)

(r , r)

16



The hard half of upper tail: upper bound

For illustration, suppose Xr were sub-additive: Xr ≤
∑k−1

i=0 X
(i)
r/k .

Also, Xr and
∑k−1

i=0 X
(i)
r/k have a mean difference of order

k · (r/k)1/3 = k2/3r1/3:

E[Xr ]−
k−1∑
i=0

E[X
(i)
r/k ]

≈ µr − Cr1/3

− k ·
(
µr/k − C (r/k)1/3

)
= Θ(k2/3r1/3).

(r/3, r/3)

(2r/3, 2r/3)

(1, 1)

(r , r)

16



The hard half of upper tail: upper bound

For illustration, suppose Xr were sub-additive: Xr ≤
∑k−1

i=0 X
(i)
r/k .

Also, Xr and
∑k−1

i=0 X
(i)
r/k have a mean difference of order

k · (r/k)1/3 = k2/3r1/3:

E[Xr ]−
k−1∑
i=0

E[X
(i)
r/k ]

≈ µr − Cr1/3

− k ·
(
µr/k − C (r/k)1/3

)
= Θ(k2/3r1/3).

(r/3, r/3)

(2r/3, 2r/3)

(1, 1)

(r , r)

16



The hard half of upper tail: upper bound

For illustration, suppose Xr were sub-additive: Xr ≤
∑k−1

i=0 X
(i)
r/k .

Also, Xr and
∑k−1

i=0 X
(i)
r/k have a mean difference of order

k · (r/k)1/3 = k2/3r1/3:

E[Xr ]−
k−1∑
i=0

E[X
(i)
r/k ]

≈ µr − Cr1/3

− k ·
(
µr/k − C (r/k)1/3

)

= Θ(k2/3r1/3).

(r/3, r/3)

(2r/3, 2r/3)

(1, 1)

(r , r)

16



The hard half of upper tail: upper bound

For illustration, suppose Xr were sub-additive: Xr ≤
∑k−1

i=0 X
(i)
r/k .

Also, Xr and
∑k−1

i=0 X
(i)
r/k have a mean difference of order

k · (r/k)1/3 = k2/3r1/3:

E[Xr ]−
k−1∑
i=0

E[X
(i)
r/k ]

≈ µr − Cr1/3

− k ·
(
µr/k − C (r/k)1/3

)
= Θ(k2/3r1/3).

(r/3, r/3)

(2r/3, 2r/3)

(1, 1)

(r , r)

16



The hard half of upper tail: upper bound

So, under the sub-additive assumption,

P
(
Xr ≥ E[Xr ] + tr1/3

)
≤ P

(
k−1∑
i=0

X
(i)
r/k ≥ E[Xr ] + tr1/3

)

≤ P

(
k−1∑
i=0

(
X

(i)
r/k − E[X

(i)
r/k ]
)
≥ tr1/3 − k2/3r1/3

)
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The hard half of upper tail: upper bound

Set k = Θ(t3/2) such that k2/3r1/3 is less than 1
2 tr

1/3.

P

(
k−1∑
i=0

(
X

(i)
r/k − E[X

(i)
r/k ]
)
≥ tr1/3 − k2/3r1/3

)

≤ P

(
k−1∑
i=0

(
X

(i)
r/k − E[X

(i)
r/k ]
)
≥ 1

2
tr1/3

)

= P

(
k−1∑
i=0

(
X

(i)
r/k − E[X

(i)
r/k ]
)
≥ 1

2
tk1/3(r/k)1/3

)

The is a sum of independent mean zero α-stretched exponentials.
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2 tr

1/3.

P

(
k−1∑
i=0

(
X

(i)
r/k − E[X

(i)
r/k ]
)
≥ tr1/3 − k2/3r1/3

)

≤ P

(
k−1∑
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X

(i)
r/k − E[X

(i)
r/k ]
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2
tr1/3

)
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The hard half of upper tail: upper bound

Concentration of measure: sum’s tail decay is similar to a single

one’s when deep in the tail, if 0 < α ≤ 1.

P

(
k−1∑
i=0

(
X

(i)
r/k − E[X

(i)
r/k ]
)
≥ 1

2
tk1/3(r/k)1/3

)

≤ exp(−c(tk1/3)α)

= exp(−ct3α/2).

(Remember again k = Θ(t3/2).)
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The hard half of upper tail: upper bound

So P
(
Xr > E[Xr ] + tr1/3

)
≤ exp(−ct3α/2).

This is one round of the bootstrap: from tail exponent α to 3α/2.

Iterate till we get an exponent bigger than 1. One last round gives

the exponent 3/2 · 1 = 3/2.

=⇒ P
(
Xr > E[Xr ] + tr1/3

)
≤ exp(−ct3/2).
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What’s special about 3/2?

When α > 1, the concentration behavior is that the deviation gets

“equidistributed” between the k variables. So

P

(
k−1∑
i=0

(X
(i)
r/k − E[X

(i)
r/k ]) ≥ tk1/3(r/k)1/3

)

≤ exp(−ck · (tk1/3/k)α)

= exp(−tαk1−2α/3).

But k = Θ(t3/2), so this is exp(−ct3/2). Somewhat mysterious!
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Dealing with the simplifications

We assumed that Xr ≤
∑k−1

i=0 X
(i)
r/k , which is not true.

We need a replacement sub-additive relation.

(r/3, r/3)

(2r/3, 2r/3)

(1, 1)

(r , r)
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Interval-to-interval weights

Interval-to-interval weights have a

sub-additive relation with Xr .

But we don’t know which intervals

the geodesic will pass through!

(With probability exp(−ct3/2), it

can fluctuate poly(t)r2/3.)

(r/3, r/3)

(2r/3, 2r/3)

(1, 1)

(r , r)
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Interval-to-interval weights

So we do a grid-based discretization.

Its width is such that the geodesic

exits the grid with probability at

most exp(−ct3/2).

For any fixed choice of intervals,

bootstrapping upgrades the tail.

r/k

(r/k) 2/3

(r , r)

(1, 1)

23



Interval-to-interval weights

So we also have to handle very

zig-zaggy paths!

We need better tail bounds in many

directions in each bootstrap round.

We also have to do a union bound

over all possible choices of intervals.

The union bound entropy introduces

the (log t)−1/2 factor.

r/k

(r/k) 2/3

(r , r)

(1, 1)

23



Proof strategies: Lower tail



The exponent 3 vs 3/2

The lower tail has the higher exponent 3 instead of 3/2.

Bootstrapping got 3/2: it focused on one path.

The lower tail makes all paths have low weight.

For the upper bound, we will find t3/2 disjoint paths, each with

weight at most µr − tr1/3. The probability will be

exp(−ct3/2 · t3/2) = exp(−ct3).
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The k-geodesic watermelon

More precisely, consider the maximal weight collection of k disjoint

paths between (1, 1) and (r , r): the k-geodesic watermelon.

25



Constructing k good paths

The weight X k
r of the k-melon was recently lower bounded by an

explicit construction (under stronger assumptions, α = 3/2).

Theorem (Basu-Ganguly-Hammond-H. ’20)

For some C <∞,

P
(
X k
r < µrk − Ck5/3r1/3

)
≤ exp(−ck2).

Why k5/3r1/3? There are k paths, each has k subparts on scale

r/k , which each lose (r/k)1/3:

k · k · (r/k)1/3 = k5/3r1/3.
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The k-melon to the lower tail’s upper bound

Theorem (stated again)

For some C <∞,

P
(
X k
r < µrk − Ck5/3r1/3

)
≤ exp(−ck2).

With this, the lower tail is easy. When k = Θ(t3/2), k5/3 ≈ kt, so

P
(
Xr ≤ µr − tr1/3

)
≤ P

(
X k
r ≤ µrk − ktr1/3

)

≈ P
(
X k
r ≤ µrk − Ck5/3r1/3

)
≤ exp(−ck2) = exp(−ct3).
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The construction, briefly

(r/k) 2/3

r/k
k 1/3

r 2/3

sep (j)

sep (j+
1)

=
2 sep (j)
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How do we get the improved inputs?

We need:

1. Parabolic curvature (which we have).

2. Lower tail bound on the constrained weight: by

bootstrapping. Super-additivity is nice this time!

3. Lower bound on the constrained weight mean: follows from

previous.
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Lower bound on the lower tail

We have to construct an event that forces Xr ≤ µr − tr1/3.

Parabolic curvature: if a curve exits a rectangle R of width

k1/3r2/3, it will likely suffer a loss of (k1/3r2/3)2/r = k2/3r1/3.

So only need to make the geodesic weight low when it’s inside R.

30
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Another grid

We divide R into a grid of intervals.

There are k rows, each with k

intervals: k2 cells total.

k 1/3
r 2/3

r/k

(r/k) 2/3

(r , r)

(1, 1)
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Another grid

Consider the event that the best

weight from one interval to the next

row is less than µr/k − C (r/k)1/3.

If this is true for all k2 intervals,

Xr ≤ k · max
intervals

(interval-to-row weight)

≤ k · (µr/k − C (r/k)1/3)

= µr − Ck2/3r1/3.

(Remember k = Θ(t3/2).)
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The probability bound

Suppose we know that the interval-to-row weight is less than

µr/k − C (r/k)1/3 with probability at least δ.

This is a decreasing event, so the probability that all k2

interval-to-row weights are low is at least δk
2

(by FKG).

If we ignore the unlikely event that the geodesic exits the rectangle

R, then

P
(
Xr ≤ µr − tr1/3

)
≥ δk2

= exp(−ct3).

32
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The interval-to-row lower bound
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The interval-to-row lower bound
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Conclusion

� Surprisingly, the upper and lower tail exponents of 3/2 and 3

can be explained under natural assumptions by closely

studying weight maximizing paths on appropriate scales.

� There is an unexpected connection to concentration of

measure that plays an important role.

� The techniques are robust and should be applicable to other

non-integrable contexts.
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Thank you!
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