Bootstrapping to optimal tail exponents in last passage percolation

Milind Hegde
(joint work with Shirshendu Ganguly)

University of California, Berkeley

Junior Integrable Probability Seminar
July 1, 2020

Last passage percolation on \mathbb{Z}^{2}

LPP on \mathbb{Z}^{2} : Weights of paths

The weight of a path is the sum of the values of the covered vertices.
X_{r} is the maximum weight of paths which go from $(1,1)$ to (r, r).

LPP on \mathbb{Z}^{2} : Weights of paths

The weight of a path is the sum of the values of the covered vertices.
X_{r} is the maximum weight of paths which go from $(1,1)$ to (r, r).

To first order, X_{r} is linear in r : $\lim _{r \rightarrow \infty} X_{r} / r=\mu$ almost surely.

LPP on \mathbb{Z}^{2} : Weights of paths

The weight of a path is the sum of the values of the covered vertices.
X_{r} is the maximum weight of paths which go from $(1,1)$ to (r, r).

To first order, X_{r} is linear in r : $\lim _{r \rightarrow \infty} X_{r} / r=\mu$ almost surely.

This is because $\left\{X_{r}\right\}_{r}$ are super-additive:

$$
X_{r+s} \stackrel{d}{\geq} X_{r}+\widetilde{X}_{s}
$$

LPP on \mathbb{Z}^{2} : Weights of paths

The weight of a path is the sum of the values of the covered vertices.
X_{r} is the maximum weight of paths which go from $(1,1)$ to (r, r).

To first order, X_{r} is linear in r : $\lim _{r \rightarrow \infty} X_{r} / r=\mu$ almost surely.

This is because $\left\{X_{r}\right\}_{r}$ are super-additive:

$$
X_{r+s} \stackrel{d}{\geq} X_{r}+\widetilde{X}_{s}
$$

LPP on \mathbb{Z}^{2} : Scalings

X_{r} 's fluctuations around μr should be non-Gaussian of order $r^{1 / 3}$.
When centred and scaled, the scaling limit should be the GUE Tracy-Widom distribution (known in integrable models).

Theorem (Johansson '00)

Let $\left\{\xi_{v}: v \in \mathbb{Z}^{2}\right\}$ be i.i.d. exponential rate one random variables. It holds that

$$
\frac{X_{r}-4 r}{2^{4 / 3} r^{1 / 3}} \xrightarrow{d} F_{\mathrm{TW}} .
$$

GUE Tracy-Widom tail behavior

The GUE Tracy-Widom is also non-Gaussian. It has upper and lower tail exponents $3 / 2$ and 3 :

Theorem (eg. Ramirez-Rider-Virág '11)

As $t \rightarrow \infty$,

$$
\begin{aligned}
F_{\mathrm{TW}}([t, \infty)) & =\exp \left(-\frac{4}{3} t^{3 / 2}(1+o(1))\right) \quad \text { and } \\
F_{\mathrm{TW}}((-\infty,-t]) & =\exp \left(-\frac{1}{12} t^{3}(1+o(1))\right) .
\end{aligned}
$$

Tail behaviour in LPP

These tail exponents are also known for LPP in integrable cases!

Theorem (Joh00, LR10, BGHK19)

Let $\left\{\xi_{v}: v \in \mathbb{Z}^{2}\right\}$ be i.i.d. exponential rate one random variables. For $t_{0}<t<r^{2 / 3}$,

$$
\begin{aligned}
\mathbb{P}\left(X_{r}>4 r+t r^{1 / 3}\right) & \leq \exp \left(-c_{1} t^{3 / 2}\right) \quad \text { and } \\
\exp \left(-c_{2} t^{3}\right) \leq \mathbb{P}\left(X_{r}<4 r-t r^{1 / 3}\right) & \leq \exp \left(-c_{3} t^{3}\right)
\end{aligned}
$$

Our main result obtains such inequalities under some natural assumptions.

Use of assumptions in the non-integrable model FPP

Progress in the non-integrable model of first passage percolation has been very limited, and has often relied on assumptions comparable to ours.

These include

1. assumptions on fluctuations of the analogue of X_{r} or of the geodesic (see eg. [Cha13] and [AD14]); and
2. curvature of the limit shape as the endpoint of the geodesic varies (see eg. [NP95]).

LPP on \mathbb{Z}^{2} : Parabolic curvature of weight profile

LPP on \mathbb{Z}^{2} : Parabolic curvature of weight profile

LPP on \mathbb{Z}^{2} : Parabolic curvature of weight profile

LPP on \mathbb{Z}^{2} : Parabolic curvature of weight profile

LPP on \mathbb{Z}^{2} : Parabolic curvature of weight profile

LPP on \mathbb{Z}^{2} : Parabolic curvature of weight profile

A consequence of the curvature: transversal fluctuations

The transversal fluctuation of a path γ is roughly the maximum distance to the diagonal from γ.

In planar LPP, it is of order $r^{2 / 3}$: at this value, the weight loss from parabolic curvature is of the order of weight fluctuations, $r^{1 / 3}$:

$$
\frac{G\left(r^{2 / 3}\right)^{2}}{r}=G r^{1 / 3}
$$

Assumptions and main results

Assumptions

Assumptions

1. Limit shape existence: $\mu<\infty$.

Assumptions

1. Limit shape existence: $\mu<\infty$.
2. Limit shape strong concavity \& non-random fluctuation: For $z \in[-\rho r, \rho r]$,

$$
\mathbb{E}\left[X_{r}^{z}\right] \in \mu r-G \frac{z^{2}}{r}-\Theta\left(r^{1 / 3}\right)
$$

Assumptions

1. Limit shape existence: $\mu<\infty$.
2. Limit shape strong concavity \& non-random fluctuation: For $z \in[-\rho r, \rho r]$,

$$
\mathbb{E}\left[X_{r}^{z}\right] \in \mu r-G \frac{z^{2}}{r}-\Theta\left(r^{1 / 3}\right)
$$

3. Upper bounds, uniform in direction: There exists $\alpha>0$ s.t.

$$
\mathbb{P}\left(\left|X_{r}^{z}-\mathbb{E}\left[X_{r}^{z}\right]\right|>t r^{1 / 3}\right) \leq \exp \left(-c t^{\alpha}\right)
$$

Assumptions

1. Limit shape existence: $\mu<\infty$.
2. Limit shape strong concavity \& non-random fluctuation: For $z \in[-\rho r, \rho r]$,

$$
\mathbb{E}\left[X_{r}^{z}\right] \in \mu r-G \frac{z^{2}}{r}-\Theta\left(r^{1 / 3}\right)
$$

3. Upper bounds, uniform in direction: There exists $\alpha>0$ s.t.

$$
\mathbb{P}\left(\left|X_{r}^{z}-\mathbb{E}\left[X_{r}^{z}\right]\right|>t r^{1 / 3}\right) \leq \exp \left(-c t^{\alpha}\right)
$$

4. Lower bounds, in diagonal direction:

$$
\min \left\{\mathbb{P}\left(X_{r}-\mu r>C r^{1 / 3}\right), \mathbb{P}\left(X_{r}-\mu r<-C r^{1 / 3}\right)\right\} \geq \delta
$$

Main results: Upper tail

Main Theorem (Lower bound on upper tail)

For $t_{0}<t<\Theta\left(r^{2 / 3}\right)$,

$$
\mathbb{P}\left(X_{r}-\mathbb{E}\left[X_{r}\right] \geq t r^{1 / 3}\right) \geq \exp \left(-c t^{3 / 2}\right)
$$

Main results: Upper tail

Main Theorem (Lower bound on upper tail)

For $t_{0}<t<\Theta\left(r^{2 / 3}\right)$,

$$
\mathbb{P}\left(X_{r}-\mathbb{E}\left[X_{r}\right] \geq t r^{1 / 3}\right) \geq \exp \left(-c t^{3 / 2}\right)
$$

Main Theorem (Upper bound on upper tail)

There exists $\zeta(\alpha)>0$ such that, for $t_{0}<t<r^{\zeta}$,

$$
\mathbb{P}\left(X_{r}-\mathbb{E}\left[X_{r}\right] \geq t r^{1 / 3}\right) \leq \exp \left(-c t^{3 / 2}(\log t)^{-1 / 2}\right)
$$

Main results: Lower tail

Main Theorem (Lower bound on lower tail)

For $t_{0}<t<\Theta\left(r^{2 / 3}\right)$,

$$
\mathbb{P}\left(X_{r}-\mathbb{E}\left[X_{r}\right] \leq-t r^{1 / 3}\right) \geq \exp \left(-c t^{3}\right)
$$

Main results: Lower tail

Main Theorem (Lower bound on lower tail)

For $t_{0}<t<\Theta\left(r^{2 / 3}\right)$,

$$
\mathbb{P}\left(X_{r}-\mathbb{E}\left[X_{r}\right] \leq-t r^{1 / 3}\right) \geq \exp \left(-c t^{3}\right)
$$

Main Theorem (Upper bound on lower tail)

For $t>t_{0}$,

$$
\mathbb{P}\left(X_{r}-\mathbb{E}\left[X_{r}\right] \leq-t r^{1 / 3}\right) \leq \exp \left(-c t^{3}\right)
$$

Proof strategies: Upper tail

An overarching theme for both tails

The basic theme is: look at the geodesic at smaller scales!

But which scale?

An overarching theme for both tails

Suppose the geodesic has weight $\mu r+t r^{1 / 3}$.
Consider a $1 / k$ fraction of $i t$.

An overarching theme for both tails

Suppose the geodesic has weight $\mu r+t r^{1 / 3}$.
Consider a $1 / k$ fraction of $i t$.

Its weight should be
$\approx \mu r / k+t r^{1 / 3} / k$.

An overarching theme for both tails

Suppose the geodesic has weight $\mu r+t r^{1 / 3}$.
Consider a $1 / k$ fraction of it.

Its weight should be
$\approx \mu r / k+t r^{1 / 3} / k$.

But by KPZ fluctuations, it is typically $\mu r / k+C(r / k)^{1 / 3}$.

$(1,1)$

An overarching theme for both tails

Suppose the geodesic has weight $\mu r+t r^{1 / 3}$.
Consider a $1 / k$ fraction of it.

Its weight should be
$\approx \mu r / k+t r^{1 / 3} / k$.

But by KPZ fluctuations, it is typically $\mu r / k+C(r / k)^{1 / 3}$.

$(1,1)$

Equating,
$(r / k)^{1 / 3} \approx t r^{1 / 3} / k \Longrightarrow k \approx t^{3 / 2}$

The easier half of upper tail: lower bound

Let $X_{r / k}^{(i)}$ be the LPP value from
$i \cdot(r / k, r / k)$ to $(i+1) \cdot(r / k, r / k)$. Independent!

The easier half of upper tail: lower bound

Let $X_{r / k}^{(i)}$ be the LPP value from
$i \cdot(r / k, r / k)$ to $(i+1) \cdot(r / k, r / k)$.
Independent!

If each $X_{r / k}^{(i)}$ is at least
$\mu r / k+C(r / k)^{1 / 3}$, then

The easier half of upper tail: lower bound

Let $X_{r / k}^{(i)}$ be the LPP value from
$i \cdot(r / k, r / k)$ to $(i+1) \cdot(r / k, r / k)$.
Independent!
If each $X_{r / k}^{(i)}$ is at least
$\mu r / k+C(r / k)^{1 / 3}$, then
$X_{r} \geq \sum_{i=0}^{k-1} X_{r / k}^{(i)}$

The easier half of upper tail: lower bound

Let $X_{r / k}^{(i)}$ be the LPP value from
$i \cdot(r / k, r / k)$ to $(i+1) \cdot(r / k, r / k)$.
Independent!

If each $X_{r / k}^{(i)}$ is at least
$\mu r / k+C(r / k)^{1 / 3}$, then
$X_{r} \geq \sum_{i=0}^{k-1} X_{r / k}^{(i)} \geq \mu r+k \cdot C(r / k)^{1 / 3}$

The easier half of upper tail: lower bound

Let $X_{r / k}^{(i)}$ be the LPP value from
$i \cdot(r / k, r / k)$ to $(i+1) \cdot(r / k, r / k)$.
Independent!
If each $X_{r / k}^{(i)}$ is at least
$\mu r / k+C(r / k)^{1 / 3}$, then

$$
\begin{aligned}
X_{r} \geq \sum_{i=0}^{k-1} X_{r / k}^{(i)} & \geq \mu r+k \cdot C(r / k)^{1 / 3} \\
& =\mu r+C k^{2 / 3} r^{1 / 3}
\end{aligned}
$$

The easier half of upper tail: lower bound

Let $X_{r / k}^{(i)}$ be the LPP value from
$i \cdot(r / k, r / k)$ to $(i+1) \cdot(r / k, r / k)$.
Independent!
If each $X_{r / k}^{(i)}$ is at least
$\mu r / k+C(r / k)^{1 / 3}$, then

$$
\begin{aligned}
X_{r} \geq \sum_{i=0}^{k-1} X_{r / k}^{(i)} & \geq \mu r+k \cdot C(r / k)^{1 / 3} \\
& =\mu r+C k^{2 / 3} r^{1 / 3} \\
& =\mu r+t r^{1 / 3}
\end{aligned}
$$

The easier half of upper tail: lower bound

Since $X_{r / k}^{(i)}$ are independent, by the assumed lower bound,

$$
\mathbb{P}\left(X_{r} \geq \mu r+t r^{1 / 3}\right) \geq \prod_{i=0}^{k-1} \mathbb{P}\left(X_{r / k}^{(i)} \geq \mu r / k+C(r / k)^{1 / 3}\right)
$$

The easier half of upper tail: lower bound

Since $X_{r / k}^{(i)}$ are independent, by the assumed lower bound,

$$
\begin{aligned}
\mathbb{P}\left(X_{r} \geq \mu r+t r^{1 / 3}\right) & \geq \prod_{i=0}^{k-1} \mathbb{P}\left(X_{r / k}^{(i)} \geq \mu r / k+C(r / k)^{1 / 3}\right) \\
& \geq \delta^{k}
\end{aligned}
$$

The easier half of upper tail: lower bound

Since $X_{r / k}^{(i)}$ are independent, by the assumed lower bound,

$$
\begin{aligned}
\mathbb{P}\left(X_{r} \geq \mu r+t r^{1 / 3}\right) & \geq \prod_{i=0}^{k-1} \mathbb{P}\left(X_{r / k}^{(i)} \geq \mu r / k+C(r / k)^{1 / 3}\right) \\
& \geq \delta^{k} \\
& =\exp \left(-c t^{3 / 2}\right) . \quad\left[k=\Theta\left(t^{3 / 2}\right)\right]
\end{aligned}
$$

The easier half of upper tail: lower bound

Since $X_{r / k}^{(i)}$ are independent, by the assumed lower bound,

$$
\begin{aligned}
\mathbb{P}\left(X_{r} \geq \mu r+t r^{1 / 3}\right) & \geq \prod_{i=0}^{k-1} \mathbb{P}\left(X_{r / k}^{(i)} \geq \mu r / k+C(r / k)^{1 / 3}\right) \\
& \geq \delta^{k} \\
& =\exp \left(-c t^{3 / 2}\right) . \quad\left[k=\Theta\left(t^{3 / 2}\right)\right]
\end{aligned}
$$

This is only for $t<\Theta\left(r^{2 / 3}\right): r / k=r t^{-3 / 2}$ has to be at least 1 .

The hard half of upper tail: upper bound

For illustration, suppose X_{r} were sub-additive: $X_{r} \leq \sum_{i=0}^{k-1} X_{r / k}^{(i)}$.

The hard half of upper tail: upper bound

For illustration, suppose X_{r} were sub-additive: $X_{r} \leq \sum_{i=0}^{k-1} X_{r / k}^{(i)}$.
Also, X_{r} and $\sum_{i=0}^{k-1} X_{r / k}^{(i)}$ have a mean difference of order $k \cdot(r / k)^{1 / 3}=k^{2 / 3} r^{1 / 3}$:

The hard half of upper tail: upper bound

For illustration, suppose X_{r} were sub-additive: $X_{r} \leq \sum_{i=0}^{k-1} X_{r / k}^{(i)}$.
Also, X_{r} and $\sum_{i=0}^{k-1} X_{r / k}^{(i)}$ have a mean difference of order $k \cdot(r / k)^{1 / 3}=k^{2 / 3} r^{1 / 3}$:

$$
\mathbb{E}\left[X_{r}\right]-\sum_{i=0}^{k-1} \mathbb{E}\left[X_{r / k}^{(i)}\right]
$$

The hard half of upper tail: upper bound

For illustration, suppose X_{r} were sub-additive: $X_{r} \leq \sum_{i=0}^{k-1} X_{r / k}^{(i)}$.
Also, X_{r} and $\sum_{i=0}^{k-1} X_{r / k}^{(i)}$ have a mean difference of order $k \cdot(r / k)^{1 / 3}=k^{2 / 3} r^{1 / 3}$:

$$
\begin{aligned}
\mathbb{E}\left[X_{r}\right]- & \sum_{i=0}^{k-1} \mathbb{E}\left[X_{r / k}^{(i)}\right] \\
\approx & \mu r-C r^{1 / 3} \\
& \quad-k \cdot\left(\mu r / k-C(r / k)^{1 / 3}\right)
\end{aligned}
$$

The hard half of upper tail: upper bound

For illustration, suppose X_{r} were sub-additive: $X_{r} \leq \sum_{i=0}^{k-1} X_{r / k}^{(i)}$.
Also, X_{r} and $\sum_{i=0}^{k-1} X_{r / k}^{(i)}$ have a mean difference of order $k \cdot(r / k)^{1 / 3}=k^{2 / 3} r^{1 / 3}$:

$$
\begin{aligned}
\mathbb{E}\left[X_{r}\right]- & \sum_{i=0}^{k-1} \mathbb{E}\left[X_{r / k}^{(i)}\right] \\
\approx & \mu r-C r^{1 / 3} \\
& \quad-k \cdot\left(\mu r / k-C(r / k)^{1 / 3}\right) \\
= & \Theta\left(k^{2 / 3} r^{1 / 3}\right) .
\end{aligned}
$$

The hard half of upper tail: upper bound

So, under the sub-additive assumption,

The hard half of upper tail: upper bound

So, under the sub-additive assumption,

$$
\begin{aligned}
& \mathbb{P}\left(X_{r} \geq \mathbb{E}\left[X_{r}\right]+t r^{1 / 3}\right) \\
& \quad \leq \mathbb{P}\left(\sum_{i=0}^{k-1} X_{r / k}^{(i)} \geq \mathbb{E}\left[X_{r}\right]+t r^{1 / 3}\right)
\end{aligned}
$$

The hard half of upper tail: upper bound

So, under the sub-additive assumption,

$$
\begin{aligned}
\mathbb{P}\left(X_{r} \geq\right. & \left.\mathbb{E}\left[X_{r}\right]+t r^{1 / 3}\right) \\
& \leq \mathbb{P}\left(\sum_{i=0}^{k-1} X_{r / k}^{(i)} \geq \mathbb{E}\left[X_{r}\right]+t r^{1 / 3}\right) \\
& \leq \mathbb{P}\left(\sum_{i=0}^{k-1}\left(X_{r / k}^{(i)}-\mathbb{E}\left[X_{r / k}^{(i)}\right]\right) \geq t r^{1 / 3}-k^{2 / 3} r^{1 / 3}\right)
\end{aligned}
$$

The hard half of upper tail: upper bound

Set $k=\Theta\left(t^{3 / 2}\right)$ such that $k^{2 / 3} r^{1 / 3}$ is less than $\frac{1}{2} \operatorname{tr} r^{1 / 3}$.

$$
\begin{aligned}
\mathbb{P}\left(\sum _ { i = 0 } ^ { k - 1 } \left(X_{r / k}^{(i)}-\right.\right. & \left.\left.\mathbb{E}\left[X_{r / k}^{(i)}\right]\right) \geq t r^{1 / 3}-k^{2 / 3} r^{1 / 3}\right) \\
& \leq \mathbb{P}\left(\sum_{i=0}^{k-1}\left(X_{r / k}^{(i)}-\mathbb{E}\left[X_{r / k}^{(i)}\right]\right) \geq \frac{1}{2} t r^{1 / 3}\right)
\end{aligned}
$$

The hard half of upper tail: upper bound

Set $k=\Theta\left(t^{3 / 2}\right)$ such that $k^{2 / 3} r^{1 / 3}$ is less than $\frac{1}{2} \operatorname{tr}^{1 / 3}$.

$$
\begin{aligned}
\mathbb{P}\left(\sum _ { i = 0 } ^ { k - 1 } \left(X_{r / k}^{(i)}-\right.\right. & \left.\left.\mathbb{E}\left[X_{r / k}^{(i)}\right]\right) \geq t r^{1 / 3}-k^{2 / 3} r^{1 / 3}\right) \\
& \leq \mathbb{P}\left(\sum_{i=0}^{k-1}\left(X_{r / k}^{(i)}-\mathbb{E}\left[X_{r / k}^{(i)}\right]\right) \geq \frac{1}{2} t r^{1 / 3}\right) \\
& =\mathbb{P}\left(\sum_{i=0}^{k-1}\left(X_{r / k}^{(i)}-\mathbb{E}\left[X_{r / k}^{(i)}\right]\right) \geq \frac{1}{2} t k^{1 / 3}(r / k)^{1 / 3}\right)
\end{aligned}
$$

The hard half of upper tail: upper bound

Set $k=\Theta\left(t^{3 / 2}\right)$ such that $k^{2 / 3} r^{1 / 3}$ is less than $\frac{1}{2} \operatorname{tr}^{1 / 3}$.

$$
\begin{aligned}
\mathbb{P}\left(\sum _ { i = 0 } ^ { k - 1 } \left(X_{r / k}^{(i)}\right.\right. & \left.\left.-\mathbb{E}\left[X_{r / k}^{(i)}\right]\right) \geq t r^{1 / 3}-k^{2 / 3} r^{1 / 3}\right) \\
& \leq \mathbb{P}\left(\sum_{i=0}^{k-1}\left(X_{r / k}^{(i)}-\mathbb{E}\left[X_{r / k}^{(i)}\right]\right) \geq \frac{1}{2} t r^{1 / 3}\right) \\
& =\mathbb{P}\left(\sum_{i=0}^{k-1}\left(X_{r / k}^{(i)}-\mathbb{E}\left[X_{r / k}^{(i)}\right]\right) \geq \frac{1}{2} t k^{1 / 3}(r / k)^{1 / 3}\right)
\end{aligned}
$$

The is a sum of independent mean zero α-stretched exponentials.

The hard half of upper tail: upper bound

Concentration of measure: sum's tail decay is similar to a single one's when deep in the tail, if $0<\alpha \leq 1$.

$$
\mathbb{P}\left(\sum_{i=0}^{k-1}\left(X_{r / k}^{(i)}-\mathbb{E}\left[X_{r / k}^{(i)}\right]\right) \geq \frac{1}{2} t k^{1 / 3}(r / k)^{1 / 3}\right)
$$

The hard half of upper tail: upper bound

Concentration of measure: sum's tail decay is similar to a single one's when deep in the tail, if $0<\alpha \leq 1$.

$$
\begin{array}{r}
\mathbb{P}\left(\sum_{i=0}^{k-1}\left(X_{r / k}^{(i)}-\mathbb{E}\left[X_{r / k}^{(i)}\right]\right) \geq \frac{1}{2} t k^{1 / 3}(r / k)^{1 / 3}\right) \\
\leq \exp \left(-c\left(t k^{1 / 3}\right)^{\alpha}\right)
\end{array}
$$

The hard half of upper tail: upper bound

Concentration of measure: sum's tail decay is similar to a single one's when deep in the tail, if $0<\alpha \leq 1$.

$$
\begin{aligned}
& \mathbb{P}\left(\sum_{i=0}^{k-1}\left(X_{r / k}^{(i)}-\mathbb{E}\left[X_{r / k}^{(i)}\right]\right) \geq \frac{1}{2} t k^{1 / 3}(r / k)^{1 / 3}\right) \\
& \leq \exp \left(-c\left(t k^{1 / 3}\right)^{\alpha}\right) \\
&=\exp \left(-c t^{3 \alpha / 2}\right)
\end{aligned}
$$

(Remember again $k=\Theta\left(t^{3 / 2}\right)$.)

The hard half of upper tail: upper bound

So $\mathbb{P}\left(X_{r}>\mathbb{E}\left[X_{r}\right]+t r^{1 / 3}\right) \leq \exp \left(-c t^{3 \alpha / 2}\right)$.

This is one round of the bootstrap: from tail exponent α to $3 \alpha / 2$.

The hard half of upper tail: upper bound

So $\mathbb{P}\left(X_{r}>\mathbb{E}\left[X_{r}\right]+t r^{1 / 3}\right) \leq \exp \left(-c t^{3 \alpha / 2}\right)$.

This is one round of the bootstrap: from tail exponent α to $3 \alpha / 2$.

Iterate till we get an exponent bigger than 1. One last round gives the exponent $3 / 2 \cdot 1=3 / 2$.

$$
\Longrightarrow \mathbb{P}\left(X_{r}>\mathbb{E}\left[X_{r}\right]+t r^{1 / 3}\right) \leq \exp \left(-c t^{3 / 2}\right) .
$$

What's special about 3/2?

When $\alpha>1$, the concentration behavior is that the deviation gets "equidistributed" between the k variables. So

What's special about 3/2?

When $\alpha>1$, the concentration behavior is that the deviation gets "equidistributed" between the k variables. So

$$
\begin{aligned}
\mathbb{P}\left(\sum_{i=0}^{k-1}\left(X_{r / k}^{(i)}-\mathbb{E}\left[X_{r / k}^{(i)}\right]\right)\right. & \left.\geq t k^{1 / 3}(r / k)^{1 / 3}\right) \\
& \leq \exp \left(-c k \cdot\left(t k^{1 / 3} / k\right)^{\alpha}\right)
\end{aligned}
$$

What's special about 3/2?

When $\alpha>1$, the concentration behavior is that the deviation gets "equidistributed" between the k variables. So

$$
\begin{aligned}
\mathbb{P}\left(\sum_{i=0}^{k-1}\left(X_{r / k}^{(i)}-\mathbb{E}\left[X_{r / k}^{(i)}\right]\right)\right. & \left.\geq t k^{1 / 3}(r / k)^{1 / 3}\right) \\
& \leq \exp \left(-c k \cdot\left(t k^{1 / 3} / k\right)^{\alpha}\right) \\
& =\exp \left(-t^{\alpha} k^{1-2 \alpha / 3}\right)
\end{aligned}
$$

What's special about 3/2?

When $\alpha>1$, the concentration behavior is that the deviation gets "equidistributed" between the k variables. So

$$
\begin{aligned}
\mathbb{P}\left(\sum_{i=0}^{k-1}\left(X_{r / k}^{(i)}-\mathbb{E}\left[X_{r / k}^{(i)}\right]\right)\right. & \left.\geq t k^{1 / 3}(r / k)^{1 / 3}\right) \\
& \leq \exp \left(-c k \cdot\left(t k^{1 / 3} / k\right)^{\alpha}\right) \\
& =\exp \left(-t^{\alpha} k^{1-2 \alpha / 3}\right)
\end{aligned}
$$

But $k=\Theta\left(t^{3 / 2}\right)$, so this is $\exp \left(-c t^{3 / 2}\right)$. Somewhat mysterious!

Dealing with the simplifications

We assumed that $X_{r} \leq \sum_{i=0}^{k-1} X_{r / k}^{(i)}$, which is not true.

Dealing with the simplifications

We assumed that $X_{r} \leq \sum_{i=0}^{k-1} X_{r / k}^{(i)}$, which is not true.

We need a replacement sub-additive relation.

Dealing with the simplifications

We assumed that $X_{r} \leq \sum_{i=0}^{k-1} X_{r / k}^{(i)}$, which is not true.

We need a replacement sub-additive relation.

Dealing with the simplifications

We assumed that $X_{r} \leq \sum_{i=0}^{k-1} X_{r / k}^{(i)}$, which is not true.

We need a replacement sub-additive relation.

Interval-to-interval weights

Interval-to-interval weights have a sub-additive relation with X_{r}.

But we don't know which intervals the geodesic will pass through!

Interval-to-interval weights

Interval-to-interval weights have a sub-additive relation with X_{r}.

But we don't know which intervals the geodesic will pass through!
(With probability $\exp \left(-c t^{3 / 2}\right)$, it can fluctuate $\operatorname{poly}(t) r^{2 / 3}$.)

Interval-to-interval weights

So we do a grid-based discretization.

Its width is such that the geodesic exits the grid with probability at most $\exp \left(-c t^{3 / 2}\right)$.

For any fixed choice of intervals, bootstrapping upgrades the tail.

Interval-to-interval weights

So we also have to handle very zig-zaggy paths!

We need better tail bounds in many directions in each bootstrap round.

We also have to do a union bound over all possible choices of intervals.

The union bound entropy introduces
 the $(\log t)^{-1 / 2}$ factor.

Proof strategies: Lower tail

The exponent 3 vs $3 / 2$

The lower tail has the higher exponent 3 instead of $3 / 2$.

The exponent 3 vs $3 / 2$

The lower tail has the higher exponent 3 instead of $3 / 2$.

Bootstrapping got 3/2: it focused on one path.

The lower tail makes all paths have low weight.

The exponent 3 vs $3 / 2$

The lower tail has the higher exponent 3 instead of $3 / 2$.

Bootstrapping got $3 / 2$: it focused on one path.

The lower tail makes all paths have low weight.

For the upper bound, we will find $t^{3 / 2}$ disjoint paths, each with weight at most $\mu r-t r^{1 / 3}$. The probability will be

$$
\exp \left(-c t^{3 / 2} \cdot t^{3 / 2}\right)=\exp \left(-c t^{3}\right)
$$

The k-geodesic watermelon

More precisely, consider the maximal weight collection of k disjoint paths between $(1,1)$ and (r, r) : the k-geodesic watermelon.

Constructing k good paths

The weight X_{r}^{k} of the k-melon was recently lower bounded by an explicit construction (under stronger assumptions, $\alpha=3 / 2$).

Theorem (Basu-Ganguly-Hammond-H. '20)

For some $C<\infty$,

$$
\mathbb{P}\left(X_{r}^{k}<\mu r k-C k^{5 / 3} r^{1 / 3}\right) \leq \exp \left(-c k^{2}\right) .
$$

Constructing k good paths

The weight X_{r}^{k} of the k-melon was recently lower bounded by an explicit construction (under stronger assumptions, $\alpha=3 / 2$).

Theorem (Basu-Ganguly-Hammond-H. '20)

For some $C<\infty$,

$$
\mathbb{P}\left(X_{r}^{k}<\mu r k-C k^{5 / 3} r^{1 / 3}\right) \leq \exp \left(-c k^{2}\right)
$$

Why $k^{5 / 3} r^{1 / 3}$? There are k paths, each has k subparts on scale r / k, which each lose $(r / k)^{1 / 3}$:

$$
k \cdot k \cdot(r / k)^{1 / 3}=k^{5 / 3} r^{1 / 3}
$$

The k-melon to the lower tail's upper bound

Theorem (stated again)

For some $C<\infty$,

$$
\mathbb{P}\left(X_{r}^{k}<\mu r k-C k^{5 / 3} r^{1 / 3}\right) \leq \exp \left(-c k^{2}\right) .
$$

With this, the lower tail is easy. When $k=\Theta\left(t^{3 / 2}\right), k^{5 / 3} \approx k t$, so

$$
\mathbb{P}\left(X_{r} \leq \mu r-t r^{1 / 3}\right) \leq \mathbb{P}\left(X_{r}^{k} \leq \mu r k-k t r^{1 / 3}\right)
$$

The k-melon to the lower tail's upper bound

Theorem (stated again)

For some $C<\infty$,

$$
\mathbb{P}\left(X_{r}^{k}<\mu r k-C k^{5 / 3} r^{1 / 3}\right) \leq \exp \left(-c k^{2}\right) .
$$

With this, the lower tail is easy. When $k=\Theta\left(t^{3 / 2}\right), k^{5 / 3} \approx k t$, so

$$
\begin{aligned}
\mathbb{P}\left(X_{r} \leq \mu r-t r^{1 / 3}\right) & \leq \mathbb{P}\left(X_{r}^{k} \leq \mu r k-k t r^{1 / 3}\right) \\
& \approx \mathbb{P}\left(X_{r}^{k} \leq \mu r k-C k^{5 / 3} r^{1 / 3}\right)
\end{aligned}
$$

The k-melon to the lower tail's upper bound

Theorem (stated again)

For some $C<\infty$,

$$
\mathbb{P}\left(X_{r}^{k}<\mu r k-C k^{5 / 3} r^{1 / 3}\right) \leq \exp \left(-c k^{2}\right) .
$$

With this, the lower tail is easy. When $k=\Theta\left(t^{3 / 2}\right), k^{5 / 3} \approx k t$, so

$$
\begin{aligned}
\mathbb{P}\left(X_{r} \leq \mu r-t r^{1 / 3}\right) & \leq \mathbb{P}\left(X_{r}^{k} \leq \mu r k-k t r^{1 / 3}\right) \\
& \approx \mathbb{P}\left(X_{r}^{k} \leq \mu r k-C k^{5 / 3} r^{1 / 3}\right) \\
& \leq \exp \left(-c k^{2}\right)=\exp \left(-c t^{3}\right)
\end{aligned}
$$

The construction, briefly

The construction, briefly

How do we get the improved inputs?

We need:

How do we get the improved inputs?

We need:

1. Parabolic curvature (which we have).

How do we get the improved inputs?

We need:

1. Parabolic curvature (which we have).
2. Lower tail bound on the constrained weight: by bootstrapping. Super-additivity is nice this time!

How do we get the improved inputs?

We need:

1. Parabolic curvature (which we have).
2. Lower tail bound on the constrained weight: by bootstrapping. Super-additivity is nice this time!
3. Lower bound on the constrained weight mean: follows from previous.

Lower bound on the lower tail

We have to construct an event that forces $X_{r} \leq \mu r-t r^{1 / 3}$.

Lower bound on the lower tail

We have to construct an event that forces $X_{r} \leq \mu r-t r^{1 / 3}$.

Parabolic curvature: if a curve exits a rectangle \mathcal{R} of width $k^{1 / 3} r^{2 / 3}$, it will likely suffer a loss of $\left(k^{1 / 3} r^{2 / 3}\right)^{2} / r=k^{2 / 3} r^{1 / 3}$.

Lower bound on the lower tail

We have to construct an event that forces $X_{r} \leq \mu r-t r^{1 / 3}$.

Parabolic curvature: if a curve exits a rectangle \mathcal{R} of width $k^{1 / 3} r^{2 / 3}$, it will likely suffer a loss of $\left(k^{1 / 3} r^{2 / 3}\right)^{2} / r=k^{2 / 3} r^{1 / 3}$.

So only need to make the geodesic weight low when it's inside \mathcal{R}.

Another grid

We divide \mathcal{R} into a grid of intervals.

There are k rows, each with k intervals: k^{2} cells total.

Another grid

Consider the event that the best weight from one interval to the next row is less than $\mu r / k-C(r / k)^{1 / 3}$.

Another grid

Consider the event that the best weight from one interval to the next row is less than $\mu r / k-C(r / k)^{1 / 3}$.

If this is true for all k^{2} intervals,

Another grid

Consider the event that the best weight from one interval to the next row is less than $\mu r / k-C(r / k)^{1 / 3}$.

If this is true for all k^{2} intervals,
$X_{r} \leq k \cdot \max _{\text {intervals }}$ (interval-to-row weight)

Another grid

Consider the event that the best weight from one interval to the next row is less than $\mu r / k-C(r / k)^{1 / 3}$.

If this is true for all k^{2} intervals,
$X_{r} \leq k \cdot \max _{\text {intervals }}$ (interval-to-row weight)

$$
\begin{aligned}
& \leq k \cdot\left(\mu r / k-C(r / k)^{1 / 3}\right) \\
& =\mu r-C k^{2 / 3} r^{1 / 3}
\end{aligned}
$$

Another grid

Consider the event that the best weight from one interval to the next row is less than $\mu r / k-C(r / k)^{1 / 3}$.

If this is true for all k^{2} intervals,
$X_{r} \leq k \cdot \max _{\text {intervals }}$ (interval-to-row weight)
$\leq k \cdot\left(\mu r / k-C(r / k)^{1 / 3}\right)$
$=\mu r-C k^{2 / 3} r^{1 / 3}$.
(Remember $k=\Theta\left(t^{3 / 2}\right)$.)

The probability bound

Suppose we know that the interval-to-row weight is less than $\mu r / k-C(r / k)^{1 / 3}$ with probability at least δ.

The probability bound

Suppose we know that the interval-to-row weight is less than $\mu r / k-C(r / k)^{1 / 3}$ with probability at least δ.

This is a decreasing event, so the probability that all k^{2} interval-to-row weights are low is at least $\delta^{k^{2}}$ (by FKG).

The probability bound

Suppose we know that the interval-to-row weight is less than $\mu r / k-C(r / k)^{1 / 3}$ with probability at least δ.

This is a decreasing event, so the probability that all k^{2} interval-to-row weights are low is at least $\delta^{k^{2}}$ (by FKG).

If we ignore the unlikely event that the geodesic exits the rectangle \mathcal{R}, then

$$
\mathbb{P}\left(X_{r} \leq \mu r-t r^{1 / 3}\right) \geq \delta^{k^{2}}=\exp \left(-c t^{3}\right)
$$

The interval-to-row lower bound

The interval-to-row lower bound

The interval-to-row lower bound

The interval-to-row lower bound

Conclusion

- Surprisingly, the upper and lower tail exponents of $3 / 2$ and 3 can be explained under natural assumptions by closely studying weight maximizing paths on appropriate scales.
- There is an unexpected connection to concentration of measure that plays an important role.
- The techniques are robust and should be applicable to other non-integrable contexts.

Thank you!

Selected References

目
Riddhipratim Basu, Shirshendu Ganguly, Alan Hammond, and Milind Hegde (2020)
Interlacing and scaling exponents for the geodesic watermelon in last passage percolation.
arXiv preprint 2006.11448.
a
Sourav Chatterjee (2013)
The universal relation between scaling exponents in first-passage percolation.
Annals of Mathematics, pg. 663-697.

