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KPZ universality

The Kardar-Parisi-Zhang (KPZ) universality class is a class of

stochastic growth models which share certain qualitative features:

• local smoothening

• slope dependent growth rate

• white noise roughening

It is expected that any model with these features exhibits universal

behaviour independent of the precise details of the model.
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Some models in the KPZ class

KPZ

universality

Totally Asymmetric
Simple Exclusion

Process

KPZ equation

∂tH = 1
2∂

2
xH+ 1

2(∂xH)2 + ξ

Continuum Directed
Random Polymer

Last Passage
Percolation
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A simple last passage percolation

model: Bernoulli LPP



Bernoulli LPP
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Bernoulli LPP
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Bernoulli LPP
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Bernoulli LPP

The energy of a path is the sum of

the values of the covered vertices.

Mn is the maximum energy of paths

which go from (0, 0) to (0, n).

To first order, Mn is linear in n:

lim
n→∞

Mn/n = a almost surely.

This is because the subadditive

ergodic theorem applies to {−Mn}n:

Mn+m

d
≥ Mn + M̃m.

(0, 0)

(0, n)

5



Bernoulli LPP

The energy of a path is the sum of

the values of the covered vertices.

Mn is the maximum energy of paths

which go from (0, 0) to (0, n).

To first order, Mn is linear in n:

lim
n→∞

Mn/n = a almost surely.

This is because the subadditive

ergodic theorem applies to {−Mn}n:

Mn+m

d
≥ Mn + M̃m.

(0, 0)

(0, n + m)

5



Bernoulli LPP

The energy of a path is the sum of

the values of the covered vertices.

Mn is the maximum energy of paths

which go from (0, 0) to (0, n).

To first order, Mn is linear in n:

lim
n→∞

Mn/n = a almost surely.

This is because the subadditive

ergodic theorem applies to {−Mn}n:

Mn+m

d
≥ Mn + M̃m.

(0, 0)

(0, n + m)

5



Bernoulli LPP

The scale of the second order term

is n1/3. That is,

n−1/3(Mn − an) is tight in n.

Define the weight

Wgtn := b−1n−1/3(Mn − an).

For appropriate choice of b, Wgtn is

believed to converge to the

GUE Tracy-Widom distribution.
(0, 0)

(0, n)
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Bernoulli LPP: Maximum energy profile

So far our endpoints were fixed at the unscaled coordinates (0, 0)

and (0, n).

Denote the maximum energy with other endpoints (x , 0) and (y , n)

by Mn

[
(x , 0)→ (y , n)

]
.

If we scale Mn[(0, 0)→ (y , n)] appropriately, it will be a tight

sequence of functions.
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Bernoulli LPP: Heuristic for spatial scaling

Assume Mn is “locally Brownian”. Then we expect

Mn[(0, 0)→ (x , n)]−Mn[(0, 0)→ (0, n)] ≈ x1/2.

Since the fluctuations of Mn are of order n1/3, we expect

x1/2 ≈ n1/3 =⇒ x ≈ n2/3.

This suggests the correct spatial scale is n2/3.
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Bernoulli LPP: Scalings

(0, 0)

(0, n)n = 10

vertical by n

horizontal by n2/3

(0, 0)

(0, 1) n large
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Bernoulli LPP: Weight profile

We define the weight profile respecting these scalings:

Wgtn
[
(x , 0)→ (y , 1)

]
= b−1n−1/3

(
Mn

[
(xn2/3, 0)→ (yn2/3, n)

]
− an

)
.

This sequence of functions is expected to be tight in n.
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The narrow-wedge weight profile and parabolic Airy2

Fix x = 0. This is like a Dirac mass initial condition, and is called

the narrow-wedge profile.

The sequence Wgtn[(0, 0)→ (y , 1)] is believed to be tight in n as

a function of y .

The limit should be A(y)− y2, where A is the Airy2 process.

(This is known in Brownian LPP.)
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What does the limiting weight profile look like?

This is a depiction of A(y)− y2:

The limiting weight profile is globally parabolic, but locally

Brownian.
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What does locally Brownian mean?

Define L(y) = 2−1/2
(
A(y)− y2

)
. Fix d > 0 and let

• C =
{
f : [−d , d ]→ R, continuous, f (−d) = 0

}
• B be the law of standard (rate one) Brownian motion on

[−d , d ].

Theorem (Corwin-Hammond)

Let d > 0. The law of L( · )−L(−d) is absolutely continuous to B.

So if an event has probability zero under B, it has probability zero

under L( · )− L(−d) as well.

We would like to know more: how do low probability events

compare quantitatively?
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Main result

Main Theorem

Let d ≥ 1, let A be a Borel measurable subset of C, and let

ε = B(A). Then for all ε ∈ [0, 1],

P
(
L( · )− L(−d) ∈ A

)
≤ ε · (subpolynomial-in-ε error).

• There is no condition (except measurability) on the set A.

• The subpolynomial error we prove is exp
(
Gd(log ε−1)5/6

)
.

• Essentially the same bound applies to the Brownian LPP

weight profile Wgtn[(0, 0)→ (y , 1)].
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Applications



A simple illustrative consequence

Corollary

Let d ≥ 1. Then there exist G <∞ and x0 > 0 such that, for

x > x0,

P

(
sup

s∈[−d ,d ]
|L(s)− L(−d)| ≥ x

)
≤ e−x

2/4d+Gd1/6x5/3 .

Proof.

Enough to show P
(

sups∈[−d ,d ] |B(s)| ≥ x
)
≤ C · e−x2/4d .

This follows from the reflection principle for Brownian motion; the

denominator of 4d is because the interval is of length 2d .
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A quantified local version of Johansson’s conjecture

Suppose we consider paths with starting point 0 and ending point

horizontally free.

Where will the endpoint of maximum energy paths fall? Will it be

unique?

The uniqueness of the endpoint is equivalent to the uniqueness of

the maximiser of the weight profile.
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A quantified local version of Johansson’s conjecture

Johansson conjectured that in the limiting narrow-wedge weight

profile the maximiser is unique.

This fact now has a number of proofs, including by

Corwin-Hammond, Flores-Quastel-Remenik, and Pimentel.

Theorem

The process y 7→ A(y)− y2 almost surely has a unique maximiser.
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−d dxmax

η

MM − aη1/2

M = sup
y∈[−d ,d ]

L(y) = 2−1/2 sup
y∈[−d ,d ]

(
A(y)− y2

)

(0, 0)

n =∞
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A quantified local version of Johansson’s conjecture

We call this event the near-touch event. Precisely,

NT(L, η, a) :=

{
sup
|z|≥1
L(xmax + zη) ≥ M − aη1/2

}
.

Theorem

Let d ≥ 1 and η ∈ (0, 1). There exists G <∞ such that, for all

a ∈ (0, 1),

P
(
NT(L, η, a)

)
≤ a · exp

(
Gd(log a−1)5/6

)
.

The proof is via the Brownian meander decomposition of Brownian

motion around its maximiser to estimate the Brownian probability.
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General initial conditions



General initial conditions

Till now we discussed the specific initial condition of narrow-wedge

and its limiting weight profile.

We would like to study the limiting weight profile which arises with

other initial conditions as well.

Proof of its existence makes use of the recent advance of

Dauvergne, Ortmann, and Virág, which constructs the full scaling

limit of Brownian LPP, the directed landscape.
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Tree structure in narrow-wedge

0

tree canopy
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Finding a polymer forest

0 0 1
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0 1

Idea: Can break up the general weight profile into (a random

number of) patches whose boundaries correspond to boundaries of

polymer tree canopies.

In each patch, the restriction of the profile (a fabric piece) looks

like the narrow-wedge profile.

We get a patchwork quilt of Brownian fabrics.
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Result for general initial conditions

Let f : R→ R be a given function which is the initial condition.

The f -rewarded weight of a given path started at x under f will be

f (x) + weight collected by path.

Wgtf∞[(∗, 0)→ (y , 1)] is the limiting maximum f -rewarded weight

of all paths ending at y .

Theorem (Informal extension of [Ham19]’s result)

The function y 7→Wgtf∞[(∗, 0)→ (y , 1)] is Brownian motion

patchwork quiltable; the Brownian comparison in each patch may

be made in L3−, and the random number of patches has

polynomial tail with exponent 2−.
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A conjecture of greater Brownian regularity

Conjecture (Informal statement from [Ham19])

Let A ⊆ C and ε = B(A). For a wide class of f , we have

P
(

Wgtf∞[(∗, 0)→ ( ·, 1)]−Wgtf∞[(∗, 0)→ (−1, 1)] ∈ A
)

≤ ε · (subpolynomial-in-ε error).

This would essentially be our main theorem, but for general initial

conditions.

In terms of the patchwork quilt, this means proving that one patch

is sufficient and has Radon-Nikodym derivative in L∞−.
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Proof flavours: The Brownian Gibbs

property



The Brownian Gibbs Property

Embed L in a system of infinite

non-intersecting curves with the

Brownian Gibbs property:

The conditional distribution of

the gray, given the black, is a

Brownian bridge with the given

end points, conditioned to not

intersect the lower curve.

25



High level proof outline

1. Consider a “half-way house” process J in between L and

Brownian motion.

2. Prove the estimate for J using its Brownian Gibbs property.

3. Transfer the estimate back to L using results from [Ham19].
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Thank you!
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