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The KPZ universality class

The Kardar-Parisi-Zhang universality class contains a very broad class of “stochastic
growth” models, including

• polymer models,

• interacting particle systems,

• metric/last passage percolation models, and more.

These each have a relevant observable, often called a height function which exhibits
universal behavior, eg. in limiting distributions.

There are two subclasses: positive and zero temperature models.
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Integrable models

Currently, only a small subset of models are tractable for deeper analysis, known as
integrable models.

They are connected to algebraic and representation-theoretic structures which yield
exact formulas. These can be analysed directly, though this is not trivial!

In the past decade, integrable tools have started to be combined with probabilistic
arguments to deepen the study of these models.

In these studies, a crucial integrable input has often been needed: estimates on the
upper and lower tails of the relevant observables, and on the fluctuation scale.

The most prominent examples are probably last passage percolation and Gibbs line
ensembles.
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The upper vs. lower tail

It turns out that the upper tail is usually much easier to analyse than the lower tail:
often there is a determinantal formula and bounds on the kernel suffice.

Techniques for the lower tail are considerably more involved, but a toolbox has been
developed for zero-temperature models, including Riemann-Hilbert methods and
connections to random matrix theory.

Techniques for positive temperature are not as extensive. A few approaches are

• using determinantal formulas for Laplace transforms

• Riemann-Hilbert representations for Laplace transforms

• geometric methods for polymer models.

These do not seem able to address all models, including ours.
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The model of q-pushTASEP

q-pushTASEP is a discrete time interacting particle system on Z introduced by
Matveev-Petrov—related to pushTASEP, q-TASEP, and q-pushTASEP (continuous time).

There are N particles whose positions at time T are denoted x1(T) < . . . < xN(T), and
whose initial positions are xi(0) = i (step initial condition).

At each time step, particle positions are updated from left to right. At time T, the kth
attempts to move Jk,T + Pk,T positions to the right, where

(jump) P(Jk,T = s) = qs ·
(q; q)∞
(q; q)s

(push) P(Pk,T = s) = qs·gapk(T) · (qgapk(T) ; q–1)∆k–1,T – s ·
(q–1 ; q–1)∆k–1,T

(q–1 ; q–1)s · (q–1 ; q–1)∆k–1,T – s
,

where

(z; x)n =
n–1∏
i=0
(1 – zxi), gapk(T) = xk(T) – xk–1(T),

∆k–1,T = xk–1(T + 1) – xk–1(T).
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The model of q-pushTASEP

The definition of the model may not seem very natural, but it is integrable; indeed,
using this structure, Vető computed the law of large numbers of the model and
showed limiting Tracy-Widom GUE fluctuations.

It is known that xN(T) has the same distribution as the length of the top row of a
partition from the q-Whittaker measure—a crucial connection for our arguments.

This is a measure on partitions defined in terms of the q-Whittaker polynomials,
though its precise definition won’t be needed for us here.

Another point of interest of the model is that, taking q → 1 and rescaling
appropriately, xN(T) converges to the free energy of the log-gamma polymer.
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Main result: q-pushTASEP lower tail

Theorem

Let q ∈ (0, 1). There exist absolute constants c and θ0 such that, for large N and θ > θ0 ,

P
(
xN(N) – fqN < –θN1/3

)
≤ exp

(
–cθ3/2

)
.

We expect the true tail decay to be exp(–cθ3), at least for θ ≪ N2/3 (i.e., before the
large deviations regime), but we do not prove this.
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A connection to last passage percolation

In geometric last passage percolation, we have an i.i.d.
environment {ξv} of Geo(z) random variables, one for
each of the N2 small squares in a N× N big square.

(Here, X ∼ Geo(z) means P(X ≥ k) = zk for k = 0, 1, 2, . . .)

We consider downward paths. Each path γ has a weight
w(γ) given by

w(γ) =
∑
v∈γ

ξv .

The LPP value L = maxγ w(γ).

Geo(z)

8



A connection to last passage percolation

In geometric last passage percolation, we have an i.i.d.
environment {ξv} of Geo(z) random variables, one for
each of the N2 small squares in a N× N big square.

(Here, X ∼ Geo(z) means P(X ≥ k) = zk for k = 0, 1, 2, . . .)

We consider downward paths. Each path γ has a weight
w(γ) given by

w(γ) =
∑
v∈γ

ξv .

The LPP value L = maxγ w(γ).

8



A connection to last passage percolation

In geometric last passage percolation, we have an i.i.d.
environment {ξv} of Geo(z) random variables, one for
each of the N2 small squares in a N× N big square.

(Here, X ∼ Geo(z) means P(X ≥ k) = zk for k = 0, 1, 2, . . .)

We consider downward paths. Each path γ has a weight
w(γ) given by

w(γ) =
∑
v∈γ

ξv .

The LPP value L = maxγ w(γ).

8



A connection to last passage percolation

Surprisingly, there is a connection between
q-pushTASEP and a certain LPP problem.

Consider an infinite strip with independent geometric
RVs as shown; the parameter is the same in a single big
square, and decays geometrically as we move down.

Because of this decay, by the Borel-Cantelli lemma, only
finitely many small squares are non-zero. (Recall
P(Geo(qk) ̸= 0) = qk .)

Geo(q2)

Geo(q3)

Geo(q4)

Geo(q5)

Geo(q6)
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A connection to last passage percolation

We regard this strip as being periodic, i.e., a cylinder. We
define the LPP value L as being from the top to
infinitely down, but allow paths to wrap around.

The maximizing path is called a geodesic.

Note that L is well-defined and finite almost surely!

Remarkably, it was shown by Imamura-Mucciconi-
Sasamoto that

L d= λ1 ,

where λ1 is the first row of a partition ∼ q-Whittaker
measure.

So, it follows that L d= xN(N)!

Geo(q2)

Geo(q3)

Geo(q4)

Geo(q5)

Geo(q6)
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A fairly sharp lower bound using the variational problem

This identity is very useful to bound the lower tail of
q-pushTASEP. Indeed, for any path γ,

xN(N)
d= L ≥ w(γ).

As a consequence,

P(xN(N) ≤ t) ≤ P(w(γ) ≤ t).

So if we find a γ which is close in weight to L and whose
weight can be analyzed, we get a tail bound on xN(N).

We don’t have tail bounds for LPP values in periodic or
inhomogeneous environments. So we consider an
easier path instead of the geodesic itself.

Geo(q4)
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A fairly sharp lower bound using the variational problem

The easier path can be written as a concatenation of
LPP paths in homogeneous environments, and the
smaller paths cannot wrap around the strip.

Perhaps surprisingly, this path’s weight and xN(N) match
to the first order law of large numbers term!

The path’s weight is a infinite sum of independent RVs.
If we can control its fluctuations, we will be done.

Geo(q4)
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An issue...

Sharp lower tail bounds for geometric LPP are available,
but for fixed q; the constants may blow up as q → 0 or 1.

But the parameter of the geometric LPP problem in the
ith big square from the top is q2i → 0 as i → ∞.

We need to develop new lower tail estimates for
geometric LPP that hold uniformly for q ∈ (0, 1).

Geo(q4)
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Main result: Uniform lower tail for geometric LPP

Let TN be the LPP value from top to bottom of an N× N square in an environment
given by i.i.d. Geo(q) random variables, and let µq = (1 + q1/2)2/(1 – q).

Theorem

There exist positive constants c, x0 , and N0 such that, for q ∈ (0, 1), N ≥ N0 , and x > x0 ,

P

(
TN ≤ (µq – 1)N – x ·

q1/6

1 – q
N1/3

)
≤ exp(–cx3/2).
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P

(
TN ≤ (µq – 1)N – x ·

q1/6

1 – q
N1/3

)
≤ exp(–cx3/2).

Note that the constant c and x0 are independent of q, which is allowed to range over
all of (0, 1). As we saw, this is crucial for the application.

Effectively, q ≥ N–2 . If q = cN–2 and N → ∞, geometric LPP becomes Poissonian LPP.

The true decay behaviour is exp(–cx3), but we do not achieve this.

With this tail estimate, we obtain the lower tail of xN(N) by using a concentration
inequality to control the contribution from all the big squares.

The concentration inequality has to take into account the variables’ decaying scale.
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Proof ideas



Determinantal point processes

Determinantal point processes are a class of point processes with several features
making them easier to analyse.

Distributions of point processes can be described by their n-point correlation
functions ρn(x1 , . . . , xn); for DPPs, ρn is given as an n× n determinant of a kernel.

Many properties of the point process can be understood by studying the asymptotics
of the kernel only.

DPPIndependent

TN from geometric LPP is the top particle in a DPP (Meixner ensemble)!
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Widom’s trick

Widom’s trick provides a simpler way to obtain lower tail estimates for determinantal
point processes, at the cost of a worse tail exponent ( 32 instead of 3).

Heuristically, it allows one to treat the process as if the points are independent,
ignoring the repulsion that DPPs actually exhibit.

For a DPP (λ1 > λ2 > . . . > λn) with kernel Kn ,

P(λ1 ≤ t) = det
(
In – Ktn

)

=
n∏
i=1
(1 – ρti )

≤ exp
(
–

n∑
i=1

ρti

)

= exp
(
–Tr Ktn

)

.
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Analysing the trace

There are many representation for the trace of KtN , eg. in terms of the kernel K itself,
which leads to contour integral representations.

Because of the uniformity in q that we require, contour integral representations are
hard to extract asymptotics from.

Instead, a different representation will be useful for us. It involves the mean empirical
spectral distribution νq,N of the DPP:

νq,N(A) = E
[
1
N

N∑
i=1

1λi∈A

]
.

It turns out that

Tr KtN = νq,N
(
[t,∞)

)
.

Since P(λ1 ≤ t) ≤ exp(–Tr KtN), we want a lower bound on the upper tail of νq,N .
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An argument of Ledoux

Ledoux has an argument, introduced for GUE, that converts sharp asymptotics on
moments of νq,N to such a lower bound. Let X ∼ νq,N .

First, by Cauchy-Schwarz,

E
[
X2k1X≥t

]
≤ E

[
X4k
]1/2 · P(X ≥ t)1/2 .

Also,

E
[
X2k1X≥t

]
= E
[
X2k
]
– E
[
X2k1X<t

]
≥ E

[
X2k
]
– E
[
Xk
]
· tk .

So overall,

P
(
X ≥ t

)
≥ E

[
X4k
]–1 (E[X2k] – E[Xk] · tk)2 .

So, with sharp upper and lower bounds on high moments of X, we can optimize over k
and obtain a lower bound.
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P
(
X ≥ t

)
≥ E

[
X4k
]–1 (E[X2k] – E[Xk] · tk)2

For GUE, one can get sharp estimates on E[Xk] using some simple recursions. Not so
for Meixner!

However, with such estimates, taking t = µqN(1 – q1/6ε), one gets

P
(
X ≥ µqN(1 – q1/6ε)

)
≥ ε3/2 .

Note that we need the q1/6 factor in front of ε in the probability to get a bound
independent of q!

This bound is sharp, and we also prove an upper bound of the same order. The 3
2 here

is the source of the 3
2 tail exponents in our main theorems.
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Sharp moment asymptotics for νq,N

Theorem

Let X ∼ νq,N . For all large N and uniformly over essentially the whole range of k (up to
δN) and q ∈ (0, 1),

E[Xk] = (q1/6k)–3/2(µqN)k exp
(
±Θ

(
q1/2 k

3

N2

))
.

The bulk of the technical work in our argument is obtaining the above estimate.

The starting point is a formula of Ledoux for the factorial moments of X:

E[(X)k] := E
[
X(X – 1) · · · (X – k + 1)

]
= qk

(1 – q)k
1
N

·
1

k + 1

k∑
i=0

q–i
(k
i

)2
·
(N + k – i)!
(N – i – 1)!

.

We obtain asymptotics for the factorial moments from this using a Laplace method
argument (though there is some delicacy because we need to allow k up to Θ(N)).
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Factorial to polynomial moments?

But going from factorial moments to polynomial moments is very non-trivial.

One reason is that when k = Θ(N), (X)k and Xk differ by an exponential-in-N factor:

X(X – 1) · · · (X – k + 1)
Xk

=
k–1∏
i=1
(1 – iX–1) = exp

– k–1∑
i=1

log(1 – iX–1)



If k = αN and X ≈ µqN, we can evaluate this as a Riemann sum to obtain

exp
(
(α – µq) log

(
1 – α

µq

)
– α
)
.

This factor has to be exactly tracked and shown to cancel with an expression arising
from asymptotics of E[(X)k].

It would be interesting to find a more direct approach, perhaps by finding a formula
for E[Xk] directly.
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Summary and future directions

• We focused on xN(N), and not xN(T). In the infinite LPP problem, general T would
correspond to the homogeneous domains being rectangular of dimension N× T.

• Requires developing uniform geometric LPP estimates in directions other than (1, 1).

• Improving the tail exponent to 3: this just requires getting the same for geometric
LPP (uniformly in q).

• Possibly Riemann-Hilbert approaches could yield it.
• Another approach is to use the geometric bootstrapping approach developed in
Ganguly-H. This would also require uniform-in-q estimates with exponent 3/2 for LPP in
other directions.

• A LPP representation for the log-gamma polymer free energy?

Thank you!
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