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Spatial Random Permutations



Quick recap of permutations

• Finite permutations decompose as a product of disjoint cycles.

• Infinite permutations do too, but the cycles may be infinite.

Example:

i 1 2 3 4 5

σ(i) 3 5 1 2 4

Using cycle notation, σ can be decomposed as (1 3)(2 5 4).
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What is a spatial random permutation?

A “spatial random permutation” vaguely refers to a random

permutation model whose index set possesses some spatial or

geometric structure which affects the permutation structure.

For us, this will be via the index set being the vertices of a graph.
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Tóth’s model

Introduced in [Tóth ’93] to study the quantum Heisenberg

ferromagnet:

• Let Λ ⊆ Zd be a finite box.

• Let µT be a measure on permutations on the vertices of Λ.

• Define νT by

dνT (σ) =
1

Z
· 2#cycles(σ) dµT (σ),

i.e. reweight the permutations by the number of cycles

present and normalize.
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Tóth’s model

Let σΛ be a sample from νT .

Very roughly speaking, Tóth showed that, if Λ→ Zd , then there is

a correspondence (with T = time/inverse temperature):

appearance of

macrocycles in σΛ
←→

physical phase transition

in the spin-1/2

q-Heisenberg ferromagnet.

This is a recurring theme with spatial random permutation models

connected to physical models. So we want to prove macrocycles

exist.
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What is µT? The random stirring process

Consider a graph G = (V ,E ). The random stirring process (RSP)

is a process of permutations on V : (σt)t≥0, with σ0 = Id.

• To each e ∈ E , associate an independent rate 1 Poisson clock.

• Suppose e = {u, v} rings at time t. Left compose σt− with

(u v):

σt = (u v) ◦ σt−,

so we maintain right-continuity.

6



An example

v1

v2 v3

Suppose {v1, v2} rings at t = 1/2

and {v1, v3} rings at t = 1.

Then σt is

σt =


Id 0 ≤ t < 1

2

(v1 v2) 1
2 ≤ t < 1

(v1 v2 v3) t ≥ 1.

[(v1 v3) ◦ (v1 v2) = (v1 v2 v3).]
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Another view

v2 v1 v3

t = 1
2

t = 1

t = 5
4

To know σ5/4(v2), place a

particle at the vertex v2, and let

it move upwards at unit speed.

When it hits a cross, it jumps

over instantly and continues

motion up.

The vertex the particle is at at

time t = 5/4 is exactly σ5/4(v2);

in this case, v3.
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The Cyclic Time Random Meander (CyTRM)

We can take this viewpoint in general. Fix T . To study σT , we

study a related process, called the cyclic time random meander of

parameter T : CyTRM(T ). Defined on (0,∞).

For a graph G = (V ,E ), associate to each e ∈ E an independent

rate 1 Poisson point process on [0,T ). These are the crosses from

earlier.

Visualize a vertical pole of height T at each v ∈ V . Poles are

connected by crosses at the points of the point processes.
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The Cyclic Time Random Meander (CyTRM)

v2 v1 v3

T = 5
4

Let X = CyTRM(T ) started at a

vertex v . It is defined on [0,∞),

with X (0) = v .

The motion is as before, except

when we reach the top of a pole.
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The Cyclic Time Random Meander (CyTRM)

v2 v1 v3

T = 5
4

When the particle reaches the top of

a pole, it instantly appears at the

bottom and continues motion: it is

cyclic.

Thus X (T ) = σT (v).

Here, with T = 5
4 , X

(
5
4

)
= v3.

By the cyclic nature,

X (2T ) = σ2
T (v).

Here, X
(

5
2

)
= v1.
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The Cyclic Time Random Meander

Similarly, if X is started at v ,

X (kT ) = σkT (v).

So if v lies in an infinite cycle in σT , X (kT ) 6= v for any k.

The logic can be extended to say that

transience of CyTRM(T )

started at v
⇐⇒

v ∈ infinite cycle

in σT

We want to analyse transience of CyTRM(T ) as a function of T .
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The Actual Model

Introduced by Ueltschi in [Ueltschi ’13]. Instead of just crosses, we

also have double bars: when the particle encounters a double bar, it

jumps over instantly, but its direction of motion is reversed.

v2 v1 v3

12



The Actual Model

If the particle hits the bottom while moving down, it cycles to the

top instantly. In either case, the direction of motion is maintained.

v2 v1 v3
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The Actual Model: CyTRM(u,T )

• Collectively, crosses and double bars will be called bridges.

• New parameter u ∈ [0, 1] : probability that a bridge is a cross.

Otherwise, a double bar.

• The u = 1 case was the original model first described.

• Denote the modified model CyTRM(u,T ).

• As before, our interest is in transience of this process.
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Main Result

Theorem

1. Let G be a rooted tree of bounded degree with at least d0

offspring at every vertex. Then there exists a T0 such that

CyTRM(u,T ) is transient when T > T0.

We may take T0 = 0.495 and d0 = 16.

2. If G has exactly d offspring at every vertex, then there exists

Tc(u, d) such that CyTRM(u,T ) is transient for T > Tc and

recurrent for 0 < T < Tc .

Asymptotic formula for Tc from [Björnberg-Ueltschi ’18]:

Tc(u, d) =
1

d
+

1− u(1− u)− 1
6 (1− u)2

d2
+ o(d−2).
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Plot of 1− u(1− u)− 1
6
(1− u)2
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Previous Work



Breaking up the parameter space

Previous work:

Let G be the regular tree of offspring number d .

The percolation probability for G is d−1. If T is such that the probability

of at least one bridge on an edge is less than d−1, we have recurrence.

So we have recurrence for T < Tperc := log d
d−1 = 1

d + 1
2d2 + o(d−2).

(by equating 1− e−T with d−1)

0 Tperc Tc

0.5

∞

percolation

Hammond II

Angel

Hammond I
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Previous work: Angel ’03

• u = 1 case studied on infinite regular trees; u ∈ [0, 1] easily adapted.

• Established transience in a finite interval slightly above Tc(1, d):

[d−1 + 2d−2, 1
2 ]

• Outline: Identified a local configuration which forces transience, and

showed that vertices with the local configuration form a

Galton-Watson tree. In the mentioned interval, the GW mean

offspring number is greater than 1.

• The local configuration requires a small number of bridges, which is

unlikely for T high; the argument works only for low T .

0 Tperc Tc 0.5 ∞

percolation

Hammond II

Angel

Hammond I
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Previous work: Hammond I

• Only u = 1 case.

• Establishes a similar result as ours: there exists T0(= 429d−1) such

that for sufficiently large d and T > T0, CyTRM(1,T ) is transient.

• A large part of our work is extending and simplifying this argument;

will speak more later.

0 Tperc Tc 0.5 ∞

percolation

Hammond II

Angel

Hammond I
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Previous work: Hammond II

• Only u = 1 case, but also applies to u ∈ [0, 1], as observed in

[Björnberg-Ueltschi ’18].

• Establishes monotonicity in a small interval around critical point:

if d−1 < T < T ′ < d−1 + 2d−2 and CyTRM(u,T ) is transient,

then so is CyTRM(u,T ′).

0 Tperc Tc 0.5 ∞

percolation

Hammond II

Angel

Hammond I
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Previous Work

[Björnberg-Ueltschi ’18]

• Found an asymptotic expansion of Tc :

Tc(u, d) =
1

d
+

1− u(1− u)− 1
6 (1− u)2

d2
+ o(d−2).

• They show transience for T ∈
(
Tc ,

1
d + A

d−2

]
for

d > d0 = d0(A)

• But in principle transience may not hold for arbitrarily large

T ...

• Shows that Tc(u, d) > Tperc asymptotically.
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Previous Work

Björnberg-Ueltschi ’18 preprint

• Extend their asymptotic formula when cycles are reweighted

by θ > 0 (as in Tóth’s model, where θ = 2).

Tc(u, θ, d) =
θ

d
+
θ
[
1− θu(1− u)− 1

6θ
2(1− u)2

]
d2

+ o(d−2).
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Previous Work

Betz-Ehlert-Lees-Roth ’18 preprint

• Further the expansion of Tc(u, d) to order 4 in d−1.

• Obtain sharper bounds for Tc for finite d .

• The gap between Tperc and Tc is established for all

d ≥ 3.
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Proof Overview



Proof Overview

• We need to show that for high T , CyTRM(u,T ) escapes to

infinity with positive probability.

• This is simple when u = 1 and “T =∞”: it’s just simple

random walk on the tree.

• So why is SRW on a tree transient?
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Simple Case: SRW on tree

• Uniformly positive probability p of

departing to new territory at each

step—a “frontier departure”.

• Then it either never returns, or, if
it returns, two possibilities:

• moves to new territory again—an

“acceptable return”.

• moves back into old territory

• If not an acceptable return,

positive probability of moving to

new territory next time.

v

w
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Simple Case: SRW on tree

So the distance from the root stochastically dominates the

following random walk on Z:

d
d+1

1
d+1

x x + 1x − 1

This has positive drift and so escapes to +∞ with positive

probability, which implies the original SRW is transient.
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T finite and u ∈ [0, 1]

Now we don’t have complete independence. But after a frontier

departure, we have some independence for duration T .

We introduce a proxy for the distance from the root: the number

of “useful bridges” at time t.

Think of them as barriers the particle must undo to return to the

root.

Main property of useful bridges: if an edge supports a useful bridge

at time t, it has been crossed only once until that time.

=⇒ #useful bridges ≤ distance from root.
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T finite and u ∈ [0, 1]

We have to redefine an “acceptable return”:

A (first) return to a previously visited edge e is acceptable if the

particle then leaves to an unvisited vertex and moves forward

consecutively N times by duration T .

Note that the type of bridge crossed doesn’t matter, as long as the

direction is away from the root.
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T finite and u ∈ [0, 1]

We can lower bound probabilities of

(i) frontier departure

(ii) moving forward N times in time T given a frontier departure.

This gives a lower bound p(N,T , d) for the probability of an

acceptable return.

When a return is acceptable, gain N − 2 useful bridges at least.

When not acceptable, lose 2 useful bridges at most.
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Completing the argument

Looking at the number of useful bridges at suitable stopping times,

it dominates the following random walk on Z with p = p(N,T , d):

p1− p

x x + N − 2x − 2

Drift = N × d − 1

d + 1
(1− e−(d+1)T/2)

×
(

1− 1

d + 1

)N
[

1− eN−(d+1)T

(
(d + 1)T

N

)N
]
− 2.

Play with the parameters to make it positive =⇒ transience.
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Thank you
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