A phase transition in a random loop model on infinite trees

Milind Hegde
(joint with Alan Hammond)
February 6, 2019

University of California, Berkeley

Spatial Random Permutations

Quick recap of permutations

- Finite permutations decompose as a product of disjoint cycles.
- Infinite permutations do too, but the cycles may be infinite.

Example:

$$
\begin{array}{c|ccccc}
i & 1 & 2 & 3 & 4 & 5 \\
\hline \sigma(i) & 3 & 5 & 1 & 2 & 4
\end{array}
$$

Using cycle notation, σ can be decomposed as (1 3)(2 54).

What is a spatial random permutation?

A "spatial random permutation" vaguely refers to a random permutation model whose index set possesses some spatial or geometric structure which affects the permutation structure.

For us, this will be via the index set being the vertices of a graph.

Tóth's model

Introduced in [Tóth '93] to study the quantum Heisenberg ferromagnet:

- Let $\Lambda \subseteq \mathbb{Z}^{d}$ be a finite box.
- Let μ_{T} be a measure on permutations on the vertices of Λ.
- Define ν_{T} by

$$
d \nu_{T}(\sigma)=\frac{1}{Z} \cdot 2^{\# \operatorname{cycles}(\sigma)} d \mu_{T}(\sigma)
$$

i.e. reweight the permutations by the number of cycles present and normalize.

Tóth's model

Let σ_{Λ} be a sample from ν_{T}.

Very roughly speaking, Tóth showed that, if $\Lambda \rightarrow \mathbb{Z}^{d}$, then there is a correspondence (with $T=$ time/inverse temperature):
appearance of
macrocycles in σ_{Λ}
physical phase transition in the spin-1/2
q -Heisenberg ferromagnet.

This is a recurring theme with spatial random permutation models connected to physical models. So we want to prove macrocycles exist.

What is μ_{\top} ? The random stirring process

Consider a graph $G=(V, E)$. The random stirring process (RSP) is a process of permutations on V : $\left(\sigma_{t}\right)_{t \geq 0}$, with $\sigma_{0}=\mathrm{Id}$.

- To each $e \in E$, associate an independent rate 1 Poisson clock.
- Suppose $e=\{u, v\}$ rings at time t. Left compose σ_{t-} with (u v):

$$
\sigma_{t}=(u v) \circ \sigma_{t-},
$$

so we maintain right-continuity.

An example

> Suppose $\left\{v_{1}, v_{2}\right\}$ rings at $t=1 / 2$ and $\left\{v_{1}, v_{3}\right\}$ rings at $t=1$.

Then σ_{t} is

$$
\sigma_{t}= \begin{cases}\mathrm{ld} & 0 \leq t<\frac{1}{2} \\
\left(v_{1} v_{2}\right) & \frac{1}{2} \leq t<1 \\
\left(\begin{array}{lll}
v_{1} & v_{2} & v_{3}
\end{array}\right) & t \geq 1\end{cases}
$$

$$
\left[\left(\begin{array}{ll}
v_{1} & v_{3}
\end{array}\right) \circ\left(\begin{array}{ll}
v_{1} & v_{2}
\end{array}\right)=\left(\begin{array}{lll}
v_{1} & v_{2} & v_{3}
\end{array}\right) .\right]
$$

Another view

To know $\sigma_{5 / 4}\left(v_{2}\right)$, place a particle at the vertex v_{2}, and let it move upwards at unit speed.

When it hits a cross, it jumps over instantly and continues motion up.

The vertex the particle is at at time $t=5 / 4$ is exactly $\sigma_{5 / 4}\left(v_{2}\right)$; in this case, v_{3}.

Another view

To know $\sigma_{5 / 4}\left(v_{2}\right)$, place a particle at the vertex v_{2}, and let it move upwards at unit speed.

When it hits a cross, it jumps over instantly and continues motion up.

The vertex the particle is at at time $t=5 / 4$ is exactly $\sigma_{5 / 4}\left(v_{2}\right)$; in this case, v_{3}.

Another view

To know $\sigma_{5 / 4}\left(v_{2}\right)$, place a particle at the vertex v_{2}, and let it move upwards at unit speed.

When it hits a cross, it jumps over instantly and continues motion up.

The vertex the particle is at at time $t=5 / 4$ is exactly $\sigma_{5 / 4}\left(v_{2}\right)$; in this case, v_{3}.

Another view

To know $\sigma_{5 / 4}\left(v_{2}\right)$, place a particle at the vertex v_{2}, and let it move upwards at unit speed.

When it hits a cross, it jumps over instantly and continues motion up.

The vertex the particle is at at time $t=5 / 4$ is exactly $\sigma_{5 / 4}\left(v_{2}\right)$; in this case, v_{3}.

Another view

To know $\sigma_{5 / 4}\left(v_{2}\right)$, place a particle at the vertex v_{2}, and let it move upwards at unit speed.

When it hits a cross, it jumps over instantly and continues motion up.

The vertex the particle is at at time $t=5 / 4$ is exactly $\sigma_{5 / 4}\left(v_{2}\right)$; in this case, v_{3}.

Another view

> To know $\sigma_{5 / 4}\left(v_{2}\right)$, place a particle at the vertex v_{2}, and let it move upwards at unit speed.
> When it hits a cross, it jumps over instantly and continues motion up.
> The vertex the particle is at at time $t=5 / 4$ is exactly $\sigma_{5 / 4}\left(v_{2}\right)$; in this case, v_{3}.

The Cyclic Time Random Meander (CyTRM)

We can take this viewpoint in general. Fix T. To study σ_{T}, we study a related process, called the cyclic time random meander of parameter T : CyTRM (T). Defined on $(0, \infty)$.

For a graph $G=(V, E)$, associate to each $e \in E$ an independent rate 1 Poisson point process on $[0, T)$. These are the crosses from earlier.

Visualize a vertical pole of height T at each $v \in V$. Poles are connected by crosses at the points of the point processes.

The Cyclic Time Random Meander (CyTRM)

$$
T=\frac{5}{4}
$$

> Let $X=\operatorname{CyTRM}(T)$ started at a vertex v. It is defined on $[0, \infty)$, with $X(0)=v$.

The motion is as before, except when we reach the top of a pole.

The Cyclic Time Random Meander (CyTRM)

$$
T=\frac{5}{4}
$$

> Let $X=\operatorname{CyTRM}(T)$ started at a vertex v. It is defined on $[0, \infty)$, with $X(0)=v$.

The motion is as before, except when we reach the top of a pole.

The Cyclic Time Random Meander (CyTRM)

$$
T=\frac{5}{4}
$$

> Let $X=\operatorname{CyTRM}(T)$ started at a vertex v. It is defined on $[0, \infty)$, with $X(0)=v$.

The motion is as before, except when we reach the top of a pole.

The Cyclic Time Random Meander (CyTRM)

$$
T=\frac{5}{4}
$$

> Let $X=\operatorname{CyTRM}(T)$ started at a vertex v. It is defined on $[0, \infty)$, with $X(0)=v$.

The motion is as before, except when we reach the top of a pole.

The Cyclic Time Random Meander (CyTRM)

$$
T=\frac{5}{4}
$$

> Let $X=\operatorname{CyTRM}(T)$ started at a vertex v. It is defined on $[0, \infty)$, with $X(0)=v$.

The motion is as before, except when we reach the top of a pole.

The Cyclic Time Random Meander (CyTRM)

$$
T=\frac{5}{4}
$$

> Let $X=\operatorname{CyTRM}(T)$ started at a vertex v. It is defined on $[0, \infty)$, with $X(0)=v$.

The motion is as before, except when we reach the top of a pole.

The Cyclic Time Random Meander (CyTRM)

$$
T=\frac{5}{4}
$$

When the particle reaches the top of a pole, it instantly appears at the bottom and continues motion: it is cyclic.

The Cyclic Time Random Meander (CyTRM)

$$
T=\frac{5}{4}
$$

When the particle reaches the top of a pole, it instantly appears at the bottom and continues motion: it is cyclic.

Thus $X(T)=\sigma_{T}(v)$.
Here, with $T=\frac{5}{4}, X\left(\frac{5}{4}\right)=v_{3}$.

The Cyclic Time Random Meander (CyTRM)

$$
T=\frac{5}{4}
$$

When the particle reaches the top of a pole, it instantly appears at the bottom and continues motion: it is cyclic.

Thus $X(T)=\sigma_{T}(v)$.
Here, with $T=\frac{5}{4}, X\left(\frac{5}{4}\right)=v_{3}$.

The Cyclic Time Random Meander (CyTRM)

$$
T=\frac{5}{4}
$$

When the particle reaches the top of a pole, it instantly appears at the bottom and continues motion: it is cyclic.

Thus $X(T)=\sigma_{T}(v)$.
Here, with $T=\frac{5}{4}, X\left(\frac{5}{4}\right)=v_{3}$.

The Cyclic Time Random Meander (CyTRM)

$$
T=\frac{5}{4}
$$

When the particle reaches the top of a pole, it instantly appears at the bottom and continues motion: it is cyclic.

Thus $X(T)=\sigma_{T}(v)$.
Here, with $T=\frac{5}{4}, X\left(\frac{5}{4}\right)=v_{3}$.

The Cyclic Time Random Meander (CyTRM)

When the particle reaches the top of a pole, it instantly appears at the bottom and continues motion: it is cyclic.

Thus $X(T)=\sigma_{T}(v)$.
Here, with $T=\frac{5}{4}, X\left(\frac{5}{4}\right)=v_{3}$.

By the cyclic nature, $X(2 T)=\sigma_{T}^{2}(v)$.
Here, $X\left(\frac{5}{2}\right)=v_{1}$.

The Cyclic Time Random Meander

Similarly, if X is started at v,

$$
X(k T)=\sigma_{T}^{k}(v)
$$

So if v lies in an infinite cycle in $\sigma_{T}, X(k T) \neq v$ for any k.

The logic can be extended to say that
transience of CyTRM (T) started at v
$v \in$ infinite cycle in σ_{T}

We want to analyse transience of $\operatorname{CyTRM}(T)$ as a function of T.

The Actual Model

Introduced by Ueltschi in [Ueltschi '13]. Instead of just crosses, we also have double bars: when the particle encounters a double bar, it jumps over instantly, but its direction of motion is reversed.

The Actual Model

If the particle hits the bottom while moving down, it cycles to the top instantly. In either case, the direction of motion is maintained.

The Actual Model

If the particle hits the bottom while moving down, it cycles to the top instantly. In either case, the direction of motion is maintained.

The Actual Model: CyTRM (u, T)

- Collectively, crosses and double bars will be called bridges.
- New parameter $u \in[0,1]$: probability that a bridge is a cross. Otherwise, a double bar.
- The $u=1$ case was the original model first described.
- Denote the modified model CyTRM (u, T).
- As before, our interest is in transience of this process.

Main Result

Theorem

1. Let G be a rooted tree of bounded degree with at least d_{0} offspring at every vertex. Then there exists a T_{0} such that CyTRM (u, T) is transient when $T>T_{0}$.
We may take $T_{0}=0.495$ and $d_{0}=16$.
2. If G has exactly d offspring at every vertex, then there exists $T_{c}(u, d)$ such that CyTRM (u, T) is transient for $T>T_{c}$ and recurrent for $0<T<T_{c}$.

Asymptotic formula for T_{c} from [Björnberg-Ueltschi '18]:

$$
T_{c}(u, d)=\frac{1}{d}+\frac{1-u(1-u)-\frac{1}{6}(1-u)^{2}}{d^{2}}+o\left(d^{-2}\right)
$$

Plot of $1-u(1-u)-\frac{1}{6}(1-u)^{2}$

Previous Work

Breaking up the parameter space

Let G be the regular tree of offspring number d.
The percolation probability for G is d^{-1}. If T is such that the probability of at least one bridge on an edge is less than d^{-1}, we have recurrence.

So we have recurrence for $T<T_{\text {perc }}:=\log \frac{d}{d-1}=\frac{1}{d}+\frac{1}{2 d^{2}}+o\left(d^{-2}\right)$. (by equating $1-e^{-T}$ with d^{-1})

Previous work: Angel '03

- $u=1$ case studied on infinite regular trees; $u \in[0,1]$ easily adapted.
- Established transience in a finite interval slightly above $T_{c}(1, d)$: $\left[d^{-1}+2 d^{-2}, \frac{1}{2}\right]$
- Outline: Identified a local configuration which forces transience, and showed that vertices with the local configuration form a Galton-Watson tree. In the mentioned interval, the GW mean offspring number is greater than 1.
- The local configuration requires a small number of bridges, which is unlikely for T high; the argument works only for low T.

Previous work: Hammond I

- Only $u=1$ case.
- Establishes a similar result as ours: there exists $T_{0}\left(=429 d^{-1}\right)$ such that for sufficiently large d and $T>T_{0}$, $\operatorname{CyTRM}(1, T)$ is transient.
- A large part of our work is extending and simplifying this argument; will speak more later.

Hammond I

Previous work: Hammond II

- Only $u=1$ case, but also applies to $u \in[0,1]$, as observed in [Björnberg-Ueltschi '18].
- Establishes monotonicity in a small interval around critical point: if $d^{-1}<T<T^{\prime}<d^{-1}+2 d^{-2}$ and $\operatorname{CyTRM}(u, T)$ is transient, then so is $\operatorname{CyTRM}\left(u, T^{\prime}\right)$.

Previous Work

[Björnberg-Ueltschi '18]

- Found an asymptotic expansion of T_{c} :

$$
T_{c}(u, d)=\frac{1}{d}+\frac{1-u(1-u)-\frac{1}{6}(1-u)^{2}}{d^{2}}+o\left(d^{-2}\right)
$$

- They show transience for $T \in\left(T_{c}, \frac{1}{d}+\frac{A}{d^{-2}}\right]$ for $d>d_{0}=d_{0}(A)$
- But in principle transience may not hold for arbitrarily large T...
- Shows that $T_{c}(u, d)>T_{\text {perc }}$ asymptotically.

Previous Work

Björnberg-Ueltschi '18 preprint

- Extend their asymptotic formula when cycles are reweighted by $\theta>0$ (as in Tóth's model, where $\theta=2$).

$$
T_{c}(u, \theta, d)=\frac{\theta}{d}+\frac{\theta\left[1-\theta u(1-u)-\frac{1}{6} \theta^{2}(1-u)^{2}\right]}{d^{2}}+o\left(d^{-2}\right)
$$

Previous Work

Betz-Ehlert-Lees-Roth '18 preprint

- Further the expansion of $T_{c}(u, d)$ to order 4 in d^{-1}.
- Obtain sharper bounds for T_{c} for finite d.
- The gap between $T_{\text {perc }}$ and T_{c} is established for all $d \geq 3$.

Proof Overview

Proof Overview

- We need to show that for high T, CyTRM (u, T) escapes to infinity with positive probability.
- This is simple when $u=1$ and " $T=\infty$ ": it's just simple random walk on the tree.
- So why is SRW on a tree transient?

Simple Case: SRW on tree

- Uniformly positive probability p of departing to new territory at each step-a "frontier departure".
- Then it either never returns, or, if it returns, two possibilities:
- moves to new territory again-an "acceptable return".
- moves back into old territory
- If not an acceptable return,
 positive probability of moving to new territory next time.

Simple Case: SRW on tree

So the distance from the root stochastically dominates the following random walk on \mathbb{Z} :

This has positive drift and so escapes to $+\infty$ with positive probability, which implies the original SRW is transient.

T finite and $u \in[0,1]$

Now we don't have complete independence. But after a frontier departure, we have some independence for duration T.

We introduce a proxy for the distance from the root: the number of "useful bridges" at time t.

Think of them as barriers the particle must undo to return to the root.

Main property of useful bridges: if an edge supports a useful bridge at time t, it has been crossed only once until that time.
\Longrightarrow \#useful bridges \leq distance from root.

T finite and $u \in[0,1]$

We have to redefine an "acceptable return":

A (first) return to a previously visited edge e is acceptable if the particle then leaves to an unvisited vertex and moves forward consecutively N times by duration T.

Note that the type of bridge crossed doesn't matter, as long as the direction is away from the root.

T finite and $u \in[0,1]$

We can lower bound probabilities of
(i) frontier departure
(ii) moving forward N times in time T given a frontier departure.

This gives a lower bound $p(N, T, d)$ for the probability of an acceptable return.

When a return is acceptable, gain $N-2$ useful bridges at least. When not acceptable, lose 2 useful bridges at most.

Completing the argument

Looking at the number of useful bridges at suitable stopping times, it dominates the following random walk on \mathbb{Z} with $p=p(N, T, d)$:

$$
\begin{aligned}
\text { Drift }= & N \times \frac{d-1}{d+1}\left(1-e^{-(d+1) T / 2}\right) \\
& \times\left(1-\frac{1}{d+1}\right)^{N}\left[1-e^{N-(d+1) T}\left(\frac{(d+1) T}{N}\right)^{N}\right]-2 .
\end{aligned}
$$

Play with the parameters to make it positive \Longrightarrow transience.

Selected References

围 Jakob Björnberg and Daniel Ueltschi（2018）
Critical parameter of random loop model on trees．
The Annals of Applied Probability，28（4）：2063－2082．
圊 Balint Tóth（1993）
Improved lower bound on the thermodynamic pressure of the spin 1／2 Heisenberg ferromagnet．
Lett．Math．Phys．28（1）：75－84．
睩 Daniel Ueltschi（2013）
Random loop representations for quantum spin systems．
J．Math．Phys．，54（8）：083301，40，2013．28（4）：2063－2082．

Thank you

