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KPZ universality

The Kardar-Parisi-Zhang (KPZ) universality class is a class of

stochastic growth models which share certain qualitative features:

• local smoothening

• slope dependent growth rate

• white noise roughening

It is expected that any model with these features exhibits universal

behaviour—such as the KPZ fixed point as a certain scaling

limit—independent of the precise details of the model.
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An expository continuum LPP model

Consider noise defined on R× [0, 1]; its

distribution is unimportant (for our

expository purposes).

Directed paths γ : [0, 1]→ R are given by

functions: γ(t) is the position at height t.
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(x , 1)

(0, 0)
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An expository continuum LPP model

Each path is assigned a weight based on

the environment it traverses.

L(y , 0; x , 1) is the maximum weight over

all paths from (y , 0) to (x , 1).
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An expository continuum LPP model

Fix y = 0, and consider the weight profile

x 7→ h1(x) = L(0, 0; x , 1).

This is the parabolic Airy2 process, the

KPZ fixed point from narrow-wedge initial

condition at time one.

Its maximizer is where a polymer with

unconstrained endpoint concludes.
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An expository continuum LPP model

Johansson conjectured in 2003 that h1 has

a unique maximizer a.s.; the unconstrained

polymer endpoint is unique.

Proved in 2014 by Corwin-Hammond, and

subsequently by Moreno Flores-Quastel-

-Remenik and Pimentel.
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An expository continuum LPP model

We can consider other initial conditions

with the starting point not fixed.

Let h0 : R→ R ∪ {−∞} specify an

auxiliary weight added to paths based

on their starting point.

The maximization is done with the full

weight:

h1(x) = sup
y∈R

{
h0(y) + L(y , 0; x , 1)

}

(x , 1)

h0

h1
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An expository continuum LPP model

h1(x) = sup
y∈R

{
h0(y) + L(y , 0; x , 1)

}
h1 is the KPZ fixed point (at time one).

First constructed in terms of Fredholm

determinantal formulas via TASEP by

Matetski-Quastel-Remenik.

The variational formula uses the

directed landscape L, constructed by

Dauvergne-Ortmann-Virág, and related

to TASEP by Nica-Quastel-Remenik.

(x , 1)

h0

h1
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Uniqueness of maximizer for the KPZ fixed point

Johansson’s conjecture is true for a much wider class of initial

conditions:

Theorem (Corwin-Hammond-H.-Matetski)

Under mild conditions on h0, h1 has a unique maximizer almost

surely.
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The full KPZ fixed point

We previously set the height at 1; but

we can allow any height in (0,∞).

Doing so we can define

ht(x) = sup
y∈R

{
h0(y) + L(y , 0; x , t)

}
.

The KPZ fixed point is t 7→ ht .
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Exceptional times

With a time evolution, we can ask whether there exist random

times when x 7→ ht(x) has multiple maximizers.

As a rough analogue, Brownian motion has probability zero of

being at the origin at fixed time, but still equals zero at random

times. The Hausdorff dimension of the zero set is 1
2 .

Or, dynamical critical percolation has an infinite cluster at a fixed

time with probability zero, but still a.s. has exceptional times when

an infinite cluster appears. The Hausdorff dimension of such times

is 31
36 on the honeycomb lattice.
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Polymer instability at exceptional times

Exceptional times of multiple maximizers are times of polymer

instability.

exceptional time
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Our result

Assumption: There exist γ > 0 and λ ∈ R such that

(i) h0(x) ≤ −γx2 for all x ∈ R and (ii) h0(x) = −∞ for x ≤ −λ.

For A ≥ 0 and T > 0, define

TA =
{
t ∈ [0,T ] : ht has two maximizers at distance > A

}
.

Theorem (Corwin-Hammond-H.-Matetski)

Under this assumption, TA 6= ∅ with positive probability.

Conditional on this, its Hausdorff dimension is almost surely 2
3 .
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Discussion of the result

Theorem (Corwin-Hammond-H.-Matetski)

Under this assumption, TA 6= ∅ with positive probability.

Conditional on this, its Hausdorff dimension is almost surely 2
3 .

Corollary

For narrow-wedge initial condition, TA=0 6= ∅ almost surely, and

dim(TA=0) = 2
3 almost surely.

Conjecture: TA=0 is almost surely dense for all initial conditions

satisfying the assumption.
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Discussion of the result

For A > 0, it is not the case that TA 6= ∅ almost surely.

This is analogous to dynamical critical percolation: with probability

one there are exceptional times with an infinite cluster somewhere

(and these times are dense).

But it is only with positive probability that there is an exceptional

time which has an infinite cluster containing a given face.
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A heuristic for 2
3

A Hausdorff dimension of 2
3 roughly means that we need ε−2 sets

of diameter ε3 to cover TA: ε3α−2 → 0 as ε→ 0 for any α > 2/3.

Consider a proxy set T εA of times when ε-twin peaks occurs:

t ∈ T εA if ht ∈ TPεA, i.e.,

ε

> A
ht
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A heuristic for 2
3

(i) ht(x) is Hölder-13
−

in t

(ii) P(ht ∈ TPεA) ≤ ct−1/3ε

(iii) P(ht ∈ TPεA) ≥ c(t)ε.

(i) =⇒ intervals in T εA have size

at least order ε3.

(ii) =⇒ intervals in T εA have

size at most order ε3.

(iii) =⇒ T εA has size order ε

(eg. in expectation by Fubini).

Thus we need ε/ε3 = ε−2 intervals of diameter ε3 to cover T εA .
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General strategy for proving Hausdorff dimension

Upper bound on HD is easier: identify an efficient covering.

Accomplished for us with steps (i) and (ii).

Lower bounds are harder. Usually have to find a measure

supported on the fractal set which is well-spread out.

To prove the “spread-out”-ness, a precise estimate of decorrelation

across times needed: captured here in step (ii) upper bound’s

t−1/3 factor.

Step (iii) lower bound proves the measure has non-trivial mass.
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Difficulty of the steps

Step (i) on Hölder continuity of t 7→ ht(x) is straightforward, via

the variational formula and known properties of L.

Steps (ii) and (iii) on upper & lower bounds on P(ht ∈ TPεA) are

much more difficult.

The upper bound uses exact transition probability formulas of the

KPZ fixed point t 7→ ht given in terms of Fredholm determinants.

The lower bound relies on a Brownian Gibbs resampling argument.
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Outline of lower bound for narrow-wedge

The narrow-wedge case is special and easier: here h1 can be

embedded as the top curve of the parabolic Airy line ensemble P.

...

This ensemble has the Brownian Gibbs property.
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Brownian bridge recap

Suppose you have a Brownian bridge B on [a, b]. You can

condition on the “side bridges” on [a, c] and [c , b].

The only remaining information, B(c), is an independent Gaussian.

The value of B(c) allows you to reconstruct B on [a, b] by affine

shifts of side bridges.

ba

c
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The resampling argument

Let x0 be the maximizer of h1 = P1. We want to show that, with

probability at least order ε, P1 has ε-twin peaks.

P1
P2
P3

P1(x0)

ε

x0

A 2

The location of the bead controls P1 on [x0 + A + 1, x0 + A + 2].

Its distribution is Gaussian, conditioned on lying in an interval

(dashed red line).
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Difficulties of the general case

The main difficulty is that there is no corresponding ensemble with

the Brownian Gibbs property for general initial condition.

But an important recent discovery of Dauvergne-Ortmann-Virág

allows the expression of h1 as a complicated functional of P.

The general case proof comes down to understanding the effect of

the above resampling on the functional.
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Thank you!
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