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An expository continuum last passage percolation model

Consider noise defined on R⇥ [0, 1]; its

distribution is unimportant (for our

expository purposes).

Directed paths � : [0, 1] ! R are given by

functions: �(t) is the position at height t.
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An expository continuum last passage percolation model

Each path is assigned a weight based on

the environment it traverses.

S(y , x) is the maximum weight over all

paths from (y , 0) to (x , 1).

The maximizing path is called a geodesic.

(y , 0)

(x , 1)

(ya, 0) (yb, 0)

(x , 1)

2



An expository continuum last passage percolation model

Fix y , and consider the weight profile

x 7! P1(x) = S(y , x).

For each y , this is a parabolic Airy2
process.

S provides a coupling of these parabolic

Airy2 processes.
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What is the coupling structure?

Fix ya < yb.

S(yb, x)� S(ya, x)

= 2 � 1

= S(yb, x 0)� S(ya, x 0)

This suggests that

D(x) := S(yb, x)� S(ya, x)

is constant a.e.
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D is non-decreasing

Lemma

D is non-decreasing a.s.
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The fractal dimension of non-constant points

Let NC(D) be the set of non-constant points of D.

NC(D) has Lebesgue measure zero.

So we consider its fractal dimension as a measure of sparsity.

We use Hausdor↵ dimension: heuristically, NC(D) has dimension ↵

if it needs "�↵ number of diameter-" sets to be covered.
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The fractal dimension of non-constant points

Theorem (Basu-Ganguly-Hammond)

NC(D) has Hausdor↵ dimension
1
2 a.s.

Classical fact: The zero set of Brownian motion also has Hausdor↵

dimension 1
2 a.s.

There is an associated non-decreasing function L, the local time,

such that NC(L) = Zero(BM).
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Definition of Brownian local time

Definition

Let B be Brownian motion of rate �2. Then

L(t) = lim
"!0

1

2"

Z t

0
|B(s)|" ds.

Heuristically, the amount of time B spends at the origin.

Question: Is there a connection between L and D?
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A global comparison for D

A first form of global comparison might be the absolute continuity

of D to L.

Unfortunately, this appears to be di�cult.

Instead, we give ourselves a little flexibility.
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A global comparison for D

Main Theorem

D is a Brownian local time patchwork quilt of rate four.
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A global comparison for D

Main Theorem

D is a Brownian local time patchwork quilt of rate four.
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A local limit for D

Main Theorem

Let � 2 R and ⌧� = inf{t > � : t 2 NC(D)}. Then,

"�1/2 (D(⌧� + "t)�D(⌧�))
d! L(t)

in the topology of uniform convergence on compact sets.

Observe that ⌧� is in some sense a size-biased choice: larger

preceding flat portions are preferred.
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Local limits with a uniform modes of selection

Main Theorem

Additionally, with uniform convergence on compact sets,

"�1/2 (D(⇠ + "t)�D(⇠))
d! L(t),

where ⇠ = ⇠[a,b] is an independent sample from the probability

measure on [a, b] with distribution function D (normalized).

10

-

it



Brownianity of the parabolic Airy2 process

Recall the parabolic Airy2 process P1.

It possesses a form of global Brownianity: it is absolutely

continuous to Brownian motion on compact intervals.

Proved by Corwin-Hammond by construction of the parabolic Airy

line ensemble P.
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The parabolic Airy line ensemble and Brownian Gibbs

P is an infinite collection of random non-intersecting continuous

curves, with P1 as its top curve.

P possesses the Brownian Gibbs property.
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Proof ideas for patchwork quilt



Motivation: discrete RSK correspondence

The discrete Robinson-Schensted-Knuth correspondence provides a

transformed environment that preserves LPP values.

1 0 2

3 1 3

1 2 0

increments

across rows

1 �1 2

3 �2 2

1 1 �2

RSK

5 4 6

�1 1

�2

increments

across rows

5 �1 2

�1 2

�2

The numbers in the same column are ordered after RSK.
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Semi-discrete LPP

A similar preservation of geodesic weights will hold for S, via the

parabolic Airy line ensemble P.

Weight of an up-right path in P = sum of increments across Pi .

LPP value from (y , k) to (x , 1) is denoted P[(y , k) ! (x , 1)].

P1

P2

P3

(x , 1)

(y , 3)
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A continuous RSK correspondence for S

Here is the limiting relation between LPP values in the original and

transformed environments, between S and P.

Theorem (Dauvergne-Ortmann-Virág)

S exists and has a coupling with P such that

S(y , x)� S(y , z)

= lim
k!1

⇣
P[(�yk , k) ! (x , 1)]� P[(�yk , k) ! (z , 1)]

⌘
.

Here {yk} is a sequence of points defined by y which goes to 1.
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Coalescence intuition and di�culties of relation

S(y , x)� S(y , z) has common starting and di↵ering ending points.

This is important for the result because of coalescence.

But D(x) = S(yb, x)� S(ya, x) is opposite!
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A direct relation between S and P?

Ideally, we would like a RSK description for S directly:

S(y , x) = lim
k!1

P[(�yk , k) ! (x , 1)].

But this is di�cult: an open problem.

To get around this, we use a notion of boundary data.

17



A direct relation between S and P?

Ideally, we would like a RSK description for S directly:

S(y , x) = lim
k!1

P[(�yk , k) ! (x , 1)].

But this is di�cult: an open problem.

To get around this, we use a notion of boundary data.

17



A notion of boundary data

P1

P2

P3

P4

P5

0

. (�yk , k)

a1

a2

a3

a4

a5

(x , 1)

Lemma (Sarkar-Virág)

There exist {ai}i2N so that

S(ya, x) = sup
i2N

n
ai + P[(0, i) ! (x , 1)]

o
.
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The utility of boundary data

By varying the starting points, there exist {ai}i2N, {bj}j2N so that

S(ya, x) = sup
i2N

n
ai + P[(0, i) ! (x , 1)]

o

S(yb, x) = sup
j2N

n
bj + P[(0, j) ! (x , 1)]

o
.

We have the same LPP problems P[(0, i) ! (x , 1)] for ya and yb!
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Recall our goal

We want to show that D is a Brownian local time patchwork quilt.

So we have to find random fabric functions that D agrees with on

certain (random) intervals and are absolutely continuous to L.
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P1

P2

P3

P4

0 (x , 1)
a1, b1

a2, b2

a3, b3

a4, b4

S(yb, x)� S(ya, x)

= bj + P[(0, j) ! (x , 1)]

� (ai + P[(0, i) ! (x , 1)]).

Our fabric functions should be

Pj�1(x)� Pi�1(x),

where

Pk�1(x) = P[(0, k) ! (x , 1)].
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Why should P j�1(x)�P i�1(x) look like local time?

The simplest case of j = 2 and i = 1:

P1

P2

0 (x , 1)

s

P1�1(x) = P1(x)� P1(0)

P2�1(x) = P1(x) + max
0sx

(P2(s)� P1(s))� P2(0)

(P2�1 � P1�1)(x) = max
0sx

n⇥
P2(s)� P2(0)

⇤
�

⇥
P1(s)� P1(0)

⇤o
.
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P1

P2

0 (x , 1)

s

(P2�1 � P1�1)(x) = max
0sx

n⇥
P2(s)� P2(0)

⇤
�

⇥
P1(s)� P1(0)

⇤o
.

By the Brownian Gibbs property, P2(·)� P2(0) and P1(·)� P1(0)

are jointly absolutely continuous to independent rate two BMs!

So their di↵erence is absolutely continuous to rate four BM.
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So P2�1 � P1�1 is absolutely continuous to max0st B(s), where

B is rate four Brownian motion.

The latter is equal in law to rate four Brownian local time:

Theorem (Lévy’s identity)

Let B be rate �2
Brownian motion, L its local time at zero, and M

its running maximum. M and L are equal in law as processes.
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The general case

For the general case (j > i), we work with sequences of

transformations like the single one in the j = 2, i = 1 case.

These are called Pitman transforms PT, defined for

f1, f2 : [0,1) ! R by

�
PT(f1, f2)

�
1
(t) = f2�1(t)

�
PT(f1, f2)

�
2
(t) = f1(t) + f2(t)� f2�1(t).

Certain sequences of these transforms are known to yield LPP

values like Pj�1(x) (work of Biane-Bougerol-O’Connell, and DOV).
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A complication at the origin

P2�1 � P1�1 was absolutely continuous to L on [0, t].

But with multiple Pitman transforms, we expect Pj�1 �Pi�1 to be

absolutely continuous on only [", t], for any " > 0.

For example, PT(B1,B2) is 2-Dyson Brownian motion, which is

only comparable to Brownian motion away from 0.

26
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The local limit

Here we consider the geodesic to the random location (⌧, 1).

To avoid the singularity at the origin, we need to know we are in

the j = 2 and i = 1 case, and this is the heart of the argument.

a1, b1 P1

a2, b2 P2

a3, b3 P3

⌧
(⌧ + "t, 1)

Finally reduces to non-point-recurrence of planar Brownian motion.
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Thank you!
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