The Airy difference profile \& Brownian local time

Milind Hegde
(joint work with Shirshendu Ganguly)
University of California, Berkeley

Stanford Probability Seminar
March 8, 2021

An expository continuum last passage percolation model

Consider noise defined on $\mathbb{R} \times[0,1]$; its distribution is unimportant (for our expository purposes).

Directed paths $\gamma:[0,1] \rightarrow \mathbb{R}$ are given by functions: $\gamma(t)$ is the position at height t.

An expository continuum last passage percolation model

Each path is assigned a weight based on the environment it traverses.
$\mathcal{S}(y, x)$ is the maximum weight over all paths from $(y, 0)$ to $(x, 1)$.

The maximizing path is called a geodesic.

An expository continuum last passage percolation model

Fix y, and consider the weight profile $x \mapsto \mathcal{P}_{1}(x)=\mathcal{S}(y, x)$.

For each y, this is a parabolic Airy 2 process.

An expository continuum last passage percolation model

Fix y, and consider the weight profile $x \mapsto \mathcal{P}_{1}(x)=\mathcal{S}(y, x)$.

For each y, this is a parabolic Airy ${ }_{2}$ process.
\mathcal{S} provides a coupling of these parabolic Airy 2 processes.

What is the coupling structure?

Fix $y_{a}<y_{b}$.

What is the coupling structure?

Fix $y_{a}<y_{b}$.

What is the coupling structure?

Fix $y_{a}<y_{b}$.

$$
\mathcal{S}\left(y_{b}, x\right)-\mathcal{S}\left(y_{a}, x\right)
$$

What is the coupling structure?

Fix $y_{a}<y_{b}$.

$$
\begin{aligned}
\mathcal{S}\left(y_{b}, x\right)- & \mathcal{S}\left(y_{a}, x\right) \\
& =2
\end{aligned}
$$

What is the coupling structure?

Fix $y_{a}<y_{b}$.

$$
\begin{aligned}
\mathcal{S}\left(y_{b}, x\right)- & \mathcal{S}\left(y_{a}, x\right) \\
& =2
\end{aligned}
$$

What is the coupling structure?

Fix $y_{a}<y_{b}$.

$$
\begin{aligned}
\mathcal{S}\left(y_{b}, x\right)- & \mathcal{S}\left(y_{a}, x\right) \\
& =2 \\
& =\mathcal{S}\left(y_{b}, x^{\prime}\right)-\mathcal{S}\left(y_{a}, x^{\prime}\right)
\end{aligned}
$$

What is the coupling structure?

Fix $y_{a}<y_{b}$.

$$
\begin{aligned}
\mathcal{S}\left(y_{b}, x\right)- & \mathcal{S}\left(y_{a}, x\right) \\
& =2 \\
& =\mathcal{S}\left(y_{b}, x^{\prime}\right)-\mathcal{S}\left(y_{a}, x^{\prime}\right)
\end{aligned}
$$

This suggests that

$$
\mathcal{D}(x):=\mathcal{S}\left(y_{b}, x\right)-\mathcal{S}\left(y_{a}, x\right)
$$

is constant a.e.

What is the coupling structure?

Fix $y_{a}<y_{b}$.

$$
\begin{aligned}
\mathcal{S}\left(y_{b}, x\right)- & \mathcal{S}\left(y_{a}, x\right) \\
& =2 \\
& =\mathcal{S}\left(y_{b}, x^{\prime}\right)-\mathcal{S}\left(y_{a}, x^{\prime}\right)
\end{aligned}
$$

This suggests that

$$
\mathcal{D}(x):=\mathcal{S}\left(y_{b}, x\right)-\mathcal{S}\left(y_{a}, x\right)
$$

is constant a.e.

\mathcal{D} is non-decreasing

Lemma
\mathcal{D} is non-decreasing a.s.

Proof

$$
\begin{aligned}
& S\left(y_{b}, x^{\prime}\right)-S\left(y_{a}, x^{\prime}\right) \\
& =(6)-(3)+(2)) \\
& \geqslant(2)+(2)-(3)+(2)) \\
& =(4)-(3) \\
& =\underbrace{(4)+(1)-(3)+(1))}_{=S\left(y_{0}, x\right)} \\
& =S\left(y_{b}, x\right)-S\left(y_{c}, x\right)
\end{aligned}
$$

The fractal dimension of non-constant points

Let $\operatorname{NC}(\mathcal{D})$ be the set of non-constant points of \mathcal{D}.
$\mathrm{NC}(\mathcal{D})$ has Lebesgue measure zero.

So we consider its fractal dimension as a measure of sparsity.

We use Hausdorff dimension: heuristically, $\operatorname{NC}(\mathcal{D})$ has dimension α if it needs $\varepsilon^{-\alpha}$ number of diameter- ε sets to be covered.

The fractal dimension of non-constant points

Theorem (Basu-Ganguly-Hammond)
 NC($\mathcal{D})$ has Hausdorff dimension $\frac{1}{2}$ a.s.

Classical fact: The zero set of Brownian motion also has Hausdorff dimension $\frac{1}{2}$ a.s.

There is an associated non-decreasing function \mathcal{L}, the local time, such that $\operatorname{NC}(\mathcal{L})=$ Zero(BM).

Definition of Brownian local time

Definition

Let B be Brownian motion of rate σ^{2}. Then

$$
\mathcal{L}(t)=\lim _{\varepsilon \rightarrow 0} \frac{1}{2 \varepsilon} \int_{0}^{t} \mathbb{1}_{|B(s)| \leq \varepsilon} \mathrm{d} s
$$

Heuristically, the amount of time B spends at the origin.

Question: Is there a connection between \mathcal{L} and \mathcal{D} ?

A global comparison for \mathcal{D}

A first form of global comparison might be the absolute continuity of \mathcal{D} to \mathcal{L}.

Unfortunately, this appears to be difficult.

Instead, we give ourselves a little flexibility.

A global comparison for \mathcal{D}

Main Theorem
\mathcal{D} is a Brownian local time patchwork quilt of rate four.

"fabric functions" restrictions each of them is abs. cont. to \mathcal{Z}
patch boundaries
\mathcal{A} is these fabric functions "sewn" together to form a patchwork quilt

A global comparison for \mathcal{D}

Main Theorem
\mathcal{D} is a Brownian local time patchwork quilt of rate four.
 $y_{i}: \quad[0, \infty) \rightarrow \mathbb{R}$ and obs. cont to \mathcal{Z} on any interval $\left[\delta, \delta^{-1}\right]$
vertically shift them to be continuous

A local limit for \mathcal{D}

Main Theorem

Let $\lambda \in \mathbb{R}$ and $\tau_{\lambda}=\inf \{t>\lambda: t \in \mathrm{NC}(\mathcal{D})\}$. Then,

$$
\varepsilon^{-1 / 2}\left(\mathcal{D}\left(\tau_{\lambda}+\varepsilon t\right)-\mathcal{D}\left(\tau_{\lambda}\right)\right) \xrightarrow{d} \mathcal{L}(t)
$$

in the topology of uniform convergence on compact sets.

A local limit for \mathcal{D}

Main Theorem

Let $\lambda \in \mathbb{R}$ and $\tau_{\lambda}=\inf \{t>\lambda: t \in \operatorname{NC}(\mathcal{D})\}$. Then,

$$
\varepsilon^{-1 / 2}\left(\mathcal{D}\left(\tau_{\lambda}+\varepsilon t\right)-\mathcal{D}\left(\tau_{\lambda}\right)\right) \xrightarrow{d} \mathcal{L}(t)
$$

in the topology of uniform convergence on compact sets.

Observe that τ_{λ} is in some sense a size-biased choice: larger preceding flat portions are preferred.

Local limits with a uniform modes of selection

Main Theorem

Additionally, with uniform convergence on compact sets,

$$
\varepsilon^{-1 / 2}(\mathcal{D}(\xi+\varepsilon t)-\mathcal{D}(\xi)) \xrightarrow{d} \mathcal{L}(t)
$$

where $\xi=\xi_{[a, b]}$ is an independent sample from the probability measure on $[a, b]$ with distribution function \mathcal{D} (normalized).

Brownianity of the parabolic Airy y_{2} process

Recall the parabolic Airy ${ }_{2}$ process \mathcal{P}_{1}.

It possesses a form of global Brownianity: it is absolutely continuous to Brownian motion on compact intervals.

Proved by Corwin-Hammond by construction of the parabolic Airy line ensemble \mathcal{P}.

The parabolic Airy line ensemble and Brownian Gibbs

\mathcal{P} is an infinite collection of random non-intersecting continuous curves, with \mathcal{P}_{1} as its top curve.

The cone dist. is
\mathcal{P} possesses the Brownian Gibbs property.
given by Brownian bridyly conditioned on non-intersection

Proof ideas for patchwork quilt

Motivation: discrete RSK correspondence

The discrete Robinson-Schensted-Knuth correspondence provides a transformed environment that preserves LPP values.

1	0	2
3	1	3
1	2	0

Motivation: discrete RSK correspondence

The discrete Robinson-Schensted-Knuth correspondence provides a transformed environment that preserves LPP values.

1	0	2
3	1	3
1	2	0

1	-1	2
3	-2	2
1	1	-2

environment

Motivation: discrete RSK correspondence

The discrete Robinson-Schensted-Knuth correspondence provides a transformed environment that preserves LPP values.

1	0	2
3	1	3
1	2	0

Motivation: discrete RSK correspondence

The discrete Robinson-Schensted-Knuth correspondence provides a transformed environment that preserves LPP values.

1	0	2
3	1	3
1	2	0

1	-1	2
3	-2	2
1	1	-2

5	4	6
	-1	1
		-2

The numbers in the same column are ordered after RSK.

Motivation: discrete RSK correspondence

The discrete Robinson-Schensted-Knuth correspondence provides a transformed environment that preserves LPP values.

1	0	2
3	1	3
1	2	0

1	-1	2
3	-2	2
1	1	-2

5	4	6
	-1	1
		-2

5	-1	2
	-1	2
	-2	

The numbers in the same column are ordered after RSK.

Semi-discrete LPP

A similar preservation of geodesic weights will hold for \mathcal{S}, via the parabolic Airy line ensemble \mathcal{P}.

Semi-discrete LPP

A similar preservation of geodesic weights will hold for \mathcal{S}, via the parabolic Airy line ensemble \mathcal{P}.

Weight of an up-right path in $\mathcal{P}=$ sum of increments across \mathcal{P}_{i}.

LPP value from (y, k) to $(x, 1)$ is denoted $\mathcal{P}[(y, k) \rightarrow(x, 1)]$.

A continuous RSK correspondence for \mathcal{S}

Here is the limiting relation between LPP values in the original and transformed environments, between \mathcal{S} and \mathcal{P}.

Theorem (Dauvergne-Ortmann-Virág)

\mathcal{S} exists and has a coupling with \mathcal{P} such that

$$
\begin{aligned}
\mathcal{S}(y, x)- & \mathcal{S}(y, z) \\
& =\lim _{k \rightarrow \infty}\left(\mathcal{P}\left[\left(-y_{k}, k\right) \rightarrow(x, 1)\right]-\mathcal{P}\left[\left(-y_{k}, k\right) \rightarrow(z, 1)\right]\right) .
\end{aligned}
$$

Here $\left\{y_{k}\right\}$ is a sequence of points defined by y which goes to ∞.

Coalescence intuition and difficulties of relation

$\mathcal{S}(y, x)-\mathcal{S}(y, z)$ has common starting and differing ending points.

This is important for the result because of coalescence.

Coalescence intuition and difficulties of relation

$\mathcal{S}(y, x)-\mathcal{S}(y, z)$ has common starting and differing ending points.

This is important for the result because of coalescence.

But $\mathcal{D}(x)=\mathcal{S}\left(y_{b}, x\right)-\mathcal{S}\left(y_{a}, x\right)$ is opposite!

A direct relation between \mathcal{S} and \mathcal{P} ?

Ideally, we would like a RSK description for \mathcal{S} directly:

$$
\mathcal{S}(y, x)=\lim _{k \rightarrow \infty} \mathcal{P}\left[\left(-y_{k}, k\right) \rightarrow(x, 1)\right] .
$$

But this is difficult: an open problem.

A direct relation between \mathcal{S} and \mathcal{P} ?

Ideally, we would like a RSK description for \mathcal{S} directly:

$$
\mathcal{S}(y, x)=\lim _{k \rightarrow \infty} \mathcal{P}\left[\left(-y_{k}, k\right) \rightarrow(x, 1)\right] .
$$

But this is difficult: an open problem.

To get around this, we use a notion of boundary data.

A notion of boundary data

A notion of boundary data

Lemma (Sarkar-Virág)

There exist $\left\{a_{i}\right\}_{i \in \mathbb{N}}$ so that

$$
\mathcal{S}\left(y_{\mathrm{a}}, x\right)=\sup _{i \in \mathbb{N}}\left\{a_{i}+\mathcal{P}[(0, i) \rightarrow(x, 1)]\right\} .
$$

A notion of boundary data

Lemma (Sarkar-Virág)

There exist $\left\{a_{i}\right\}_{i \in \mathbb{N}}$ so that

$$
\mathcal{S}\left(y_{a}, x\right)=\sup _{i \in \mathbb{N}}\left\{a_{i}+\mathcal{P}[(0, i) \rightarrow(x, 1)]\right\} .
$$

The utility of boundary data

By varying the starting points, there exist $\left\{a_{i}\right\}_{i \in \mathbb{N}},\left\{b_{j}\right\}_{j \in \mathbb{N}}$ so that

$$
\begin{aligned}
& \mathcal{S}\left(y_{a}, x\right)=\sup _{i \in \mathbb{N}}\left\{a_{i}+\mathcal{P}[(0, i) \rightarrow(x, 1)]\right\} \\
& \mathcal{S}\left(y_{b}, x\right)=\sup _{j \in \mathbb{N}}\left\{b_{j}+\mathcal{P}[(0, j) \rightarrow(x, 1)]\right\} .
\end{aligned}
$$

We have the same LPP problems $\mathcal{P}[(0, i) \rightarrow(x, 1)]$ for y_{a} and y_{b} !

Recall our goal

We want to show that \mathcal{D} is a Brownian local time patchwork quilt.

So we have to find random fabric functions that \mathcal{D} agrees with on certain (random) intervals and are absolutely continuous to \mathcal{L}.

$$
\begin{aligned}
& \mathcal{S}\left(y_{b}, x\right)-\mathcal{S}\left(y_{a}, x\right) \\
& =b_{j}+\mathcal{P}[(0, j) \rightarrow(x, 1)] \\
& \quad-\left(a_{i}+\mathcal{P}[(0, i) \rightarrow(x, 1)]\right) .
\end{aligned}
$$

$$
\begin{aligned}
\mathcal{S}\left(y_{b}, x\right) & -\mathcal{S}\left(y_{a}, x\right) \\
= & b_{j}+\mathcal{P}[(0, j) \rightarrow(x, 1)] \\
& \quad-\left(a_{i}+\mathcal{P}[(0, i) \rightarrow(x, 1)]\right) .
\end{aligned}
$$

Our fabric functions should be

$$
\mathcal{P}_{j \rightarrow 1}(x)-\mathcal{P}_{i \rightarrow 1}(x),
$$

where

$$
\mathcal{P}_{k \rightarrow 1}(x)=\mathcal{P}[(0, k) \rightarrow(x, 1)] .
$$

Why should $\mathcal{P}_{j \rightarrow 1}(x)-\mathcal{P}_{i \rightarrow 1}(x)$ look like local time?

The simplest case of $j=2$ and $i=1$:

Why should $\mathcal{P}_{j \rightarrow 1}(x)-\mathcal{P}_{i \rightarrow 1}(x)$ look like local time?

The simplest case of $j=2$ and $i=1$:

$$
\mathcal{P}_{1 \rightarrow 1}(x)=\mathcal{P}_{1}(x)-\mathcal{P}_{1}(0)
$$

Why should $\mathcal{P}_{j \rightarrow 1}(x)-\mathcal{P}_{i \rightarrow 1}(x)$ look like local time?

The simplest case of $j=2$ and $i=1$:

$$
\begin{aligned}
& \mathcal{P}_{1 \rightarrow 1}(x)=\mathcal{P}_{1}(x)-\mathcal{P}_{1}(0) \\
& \mathcal{P}_{2 \rightarrow 1}(x)=\mathcal{P}_{1}(x)+\max _{0 \leq s \leq x}\left(\mathcal{P}_{2}(s)-\mathcal{P}_{1}(s)\right)-\mathcal{P}_{2}(0)
\end{aligned}
$$

Why should $\mathcal{P}_{j \rightarrow 1}(x)-\mathcal{P}_{i \rightarrow 1}(x)$ look like local time?

The simplest case of $j=2$ and $i=1$:

$$
\begin{aligned}
\mathcal{P}_{1 \rightarrow 1}(x)=\mathcal{P}_{1}(x)-\mathcal{P}_{1}(0) \\
\mathcal{P}_{2 \rightarrow 1}(x)=\mathcal{P}_{1}(x)+\max _{0 \leq s \leq x}\left(\mathcal{P}_{2}(s)-\mathcal{P}_{1}(s)\right)-\mathcal{P}_{2}(0) \\
\left(\mathcal{P}_{2 \rightarrow 1}-\mathcal{P}_{1 \rightarrow 1}\right)(x)=\max _{0 \leq s \leq x}\left\{\left[\mathcal{P}_{2}(s)-\mathcal{P}_{2}(0)\right]-\left[\mathcal{P}_{1}(s)-\mathcal{P}_{1}(0)\right]\right\} .
\end{aligned}
$$

$\left(\mathcal{P}_{2 \rightarrow 1}-\mathcal{P}_{1 \rightarrow 1}\right)(x)=\max _{0 \leq s \leq x}\left\{\left[\mathcal{P}_{2}(s)-\mathcal{P}_{2}(0)\right]-\left[\mathcal{P}_{1}(s)-\mathcal{P}_{1}(0)\right]\right\}$.
By the Brownian Gibbs property, $\mathcal{P}_{2}(\cdot)-\mathcal{P}_{2}(0)$ and $\mathcal{P}_{1}(\cdot)-\mathcal{P}_{1}(0)$ are jointly absolutely continuous to independent rate two BMs !

So their difference is absolutely continuous to rate four BM.

So $\mathcal{P}_{2 \rightarrow 1}-\mathcal{P}_{1 \rightarrow 1}$ is absolutely continuous to $\max _{0 \leq s \leq t} B(s)$, where B is rate four Brownian motion.

The latter is equal in law to rate four Brownian local time:

Theorem (Lévy's identity)

Let B be rate σ^{2} Brownian motion, \mathcal{L} its local time at zero, and M its running maximum. M and \mathcal{L} are equal in law as processes.

The general case

For the general case $(j>i)$, we work with sequences of transformations like the single one in the $j=2, i=1$ case.

These are called Pitman transforms PT, defined for $f_{1}, f_{2}:[0, \infty) \rightarrow \mathbb{R}$ by

$$
\begin{aligned}
& \left(\operatorname{PT}\left(f_{1}, f_{2}\right)\right)_{1}(t)=f_{2 \rightarrow 1}(t) \\
& \left(\operatorname{PT}\left(f_{1}, f_{2}\right)\right)_{2}(t)=f_{1}(t)+f_{2}(t)-f_{2 \rightarrow 1}(t)
\end{aligned}
$$

Certain sequences of these transforms are known to yield LPP values like $\mathcal{P}_{j \rightarrow 1}(x)$ (work of Biane-Bougerol-O'Connell, and DOV).

A complication at the origin

$\mathcal{P}_{2 \rightarrow 1}-\mathcal{P}_{1 \rightarrow 1}$ was absolutely continuous to \mathcal{L} on $[0, t]$.

$$
=\max \left(P_{2}(s)-P_{1}(s)\right)-\left(P_{2}(0)-P_{1}(0)\right)
$$

But with multiple Pitman transforms, we expect $\mathcal{P}_{j \rightarrow 1}-\mathcal{P}_{i \rightarrow 1}$ to be absolutely continuous on only $[\varepsilon, t]$, for any $\varepsilon>0$.

For example, $\mathrm{PT}\left(B_{1}, B_{2}\right)$ is 2-Dyson Brownian motion, which is only comparable to Brownian motion away from 0.

The local limit

Here we consider the geodesic to the random location $(\tau, 1)$.

To avoid the singularity at the origin, we need to know we are in the $j=2$ and $i=1$ case, and this is the heart of the argument.

Finally reduces to non-point-recurrence of planar Brownian motion.

Thank you!

Selected References

Shirshendu Ganguly and Milind Hegde (2021)
Local and global comparisons of the Airy difference profile to Brownian local time.
To be posted to arXiv shortly.

Riddhipratim Basu, Shirshendu Ganguly, Alan Hammond (2019) Fractal geometry of Airy ${ }_{2}$ processes coupled via the Airy sheet.
arXiv preprint 1904.01717.

Rourav Sarkar and Bálint Virág (2020)
Brownian absolute continuity of the KPZ fixed point with arbitrary initial condition.
arXiv preprint 2002.08496.

