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Abstract

Probabilistic and geometric methods in last passage percolation

by

Milind Hegde

Doctor of Philosophy in Mathematics

University of California, Berkeley

Professor Alan Hammond, Co‐chair

Professor Shirshendu Ganguly, Co‐chair

Last passage percolation (LPP) refers to a broad class of models thought to lie within the Kardar‐
Parisi‐Zhang universality class of one‐dimensional stochastic growth models. In LPP models,
there is a planar random noise environment through which directed paths travel; paths are as‐
signed a weight based on their journey through the environment, usually by, in some sense,
integrating the noise over the path. For given points y and x, the weight from y to x is defined by
maximizing the weight over all paths from y to x. A path which achieves the maximum weight
is called a geodesic.

A few last passage percolation models are exactly solvable, i.e., possess what is called integrable
structure. This gives rise to valuable information, such as explicit probabilistic resampling prop‐
erties, distributional convergence information, or one point tail bounds of the weight profile as
the starting point y is fixed and the ending point x varies. However, much of the behaviour
currently proved within only the special models with integrable structure is expected to hold in
a much larger class of models; further, integrable techniques alone seem unable to obtain cer‐
tain types of information, such as process‐level properties of natural limiting objects. This thesis
explores probabilistic and geometric approaches which assume limited integrable input to infer
information unavailable via exactly solvable techniques or to develop methods which will prove
be to robust and eventually applicable to a broader class of non‐integrable models.

In the first part, we study the parabolic Airy2 processP1 and the parabolic Airy line ensembleP
via a probabilistic resampling structure enjoyed by the latter. The parabolic Airy line ensemble is
an infinite N‐indexed collection of random continuous non‐intersecting curves, whose top (and
lowest indexed) curve is P1, which is a limiting weight profile in LPP when the starting point
is fixed (which can be thought of as a particular form of initial data) and the ending point is al‐
lowed to vary along a line. The ensemble P possess a probabilistic resampling property known
as the Brownian Gibbs property, which gives an explicit description of a certain conditional
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distribution of P in terms of non‐intersecting Brownian bridges. This property gives a qualita‐
tive comparison—absolute continuity—of P1 to Brownian motion, as proved in [CH14]. Using
a framework introduced in [Ham19a], we prove here a strong quantitative form of comparison,
showing that an event which has probability ε under the law of Brownian motion has probability
atmost ε1−o(1) under the law of an increment ofP1, with an explicit form of exp(O(1)(log ε−1)5/6)
for the ε−o(1) error factor. Up to the error factor, this is expected to be sharp. One consequence is
that the Radon‐Nikodym derivative of the increment of P1 with respect to Brownian motion lies
in all Lp spaces with p ∈ [1,∞), i.e., has finite polynomial moments of all orders. The bounds
also hold for lower curves of P and for weight profiles in an LPP model known as Brownian LPP.

In the second part, we work in an LPP model on the lattice Z2 and make use of a geometric
approach, i.e., we study properties of geodesics and other weight maximizing structures. The
random environment is given by i.i.d. non‐negative random variables associated to the vertices
of Z2, and the weight of an up‐right path is the sum of the random variables it passes through.
Now, in exactly solvable models such as when the vertex weight distribution is geometric or
exponential, the GUE Tracy‐Widom distribution is known to be a scaling limit of the last pas‐
sage value Xr from (1, 1) to (r, r). The GUE Tracy‐Widom distribution is well‐known to have
upper and lower tail exponents of 3

2 and 3, which is also known for the prelimiting Xr in the
mentioned exactly solvable models. Here we work in a more general setup and adopt some nat‐
ural assumptions of curvature and weak one‐point upper and lower tail estimates on the weight
profile—with no assumptions on the vertex weight distribution and, hence, a non‐integrable
setting—which we bootstrap up to obtain the optimal tail exponents for both tails, in terms of
both upper and lower bounds. We also obtain sharp upper and lower bounds for the lower tail
of the maximum weight over all paths which are constrained to lie in a strip of given width, a
result which was not previously known in even the integrable models and does not seem easily
accessible via integrable techniques.

Finally, in the third part, we combine the geometric and probabilistic approaches to obtain an
estimate on a certain probability of the KPZ fixed point. The KPZ fixed point (t, x) 7→ ht(x) is
a space‐time process constructed in [MQR17] which should be thought of as a limiting object
analogous to P1 under general initial data. We show that the event, for fixed t > 0, that ht
has ε‐twin peaks, i.e., there exists a point at a given distance away from the maximizer of ht at
which ht comes within ε of its maximum, has probability at least of order ε. This served as an
important input in [CHHM21] to prove that the Hausdorff dimension of the set of exceptional
times t where ht has multiple maximizers is almost surely 2

3 , on the positive‐probability event
that the set is non‐empty. Geometric and probabilistic arguments are combined by making use
of a remarkable identity of last passage values between an original and a certain transformed
environment proven in [DOV18], which allows us to consider geodesics through an environment
which itself has the Brownian Gibbs property.
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Chapter 1

The KPZ universality class

The Kardar‐Parisi‐Zhang (KPZ) universality class refers to a broad family of one‐dimensional
stochastic growth models which are believed to showcase certain universal behaviour. The uni‐
versality class was introduced by the physicists it is named after in a paper [KPZ86] from 1986,
in which this universality was conjectured and a qualitative description of the defining charac‐
teristics of models which should lie in the class was proposed.

In this chapter we will describe a number of models thought to or known to lie in the KPZ uni‐
versality class to illustrate the connections and state of knowledge, though this thesis will study
only a few models; a good survey article is [Cor12]. Our results will be discussed in Chapter 2.

1.1 The Edenmodel and first passage percolation

Let us first consider a simple model known as the Eden model, which was introduced by the
physical chemist and electrical engineer Murray Eden to model bacterial growth [Ede61]. The
setting is Z2, and we consider its faces (one can also consider an equivalent model on the vertices

1
8

2
8

1
8

1
8

1
8

1
8

1
8

Figure 1.1: One step of the Eden model. The currently occupied faces are black, the adjacent
faces are yellow, and the non‐adjacent unoccupied faces are white. The fraction in each yellow
boxes is the probability of it being picked to be newly occupied.
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??

Figure 1.2: A simulation of the Eden model after about 12,000 discrete time steps.

of Z2 by going to the dual graph). Initially, the face at the origin is occupied—representing a
single bacterial cell. At each discrete step of time, a face adjacent to one of the currently occupied
faces is picked with probability proportional to the number of occupied faces it is adjacent to, and
becomes occupied—representing the event that one of the boundary bacterial cells divides into
two. See Figure 1.1. One can also consider a continuous time version of the model by assigning
to each boundary edge separating an occupied and an unoccupied face an independent rate one
exponential clock (i.e., random variable), and declaring the unoccupied face corresponding to
the first clock that rings to be newly occupied.

As might be expected, of interest is the long‐time behaviour of the set of occupied faces. In
Figure 1.2 is a simulation after about 12,000 steps. To first order, the beginnings of a limiting
shape can perhaps be discerned from the figure. Indeed, the existence of a deterministic limit
shape has been proved in all dimensions by Cox‐Durrett [CD81].

With the existence of a limit shape, two directions naturally arise to pursue enquiry:

(i) the properties of the limit shape, and
(ii) the nature of the fluctuations in the prelimit around the limit shape.

It is fairly immediate from the definition of the model that the limit shape must respect the
symmetries of the lattice, i.e., be unchanged under reflection about the axes and rotation by
multiples of 90◦. The model also possesses an additive structure known as sub‐additivity which
implies that the limit shape must be convex. (However, in spite of these properties and unlike
what may be suggested by Figure 1.2, it can be seen from larger simulations that the limit shape
is almost certainly not a circle.)

To state this subadditivity, let us consider a broader class of models known as first passage perco‐
lation (FPP), of which the variant of the Eden model with exponential waiting times mentioned
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above is a special case. To each edge e of Z2 (or, more generally, Zd) is associated an i.i.d. non‐
negative random variable ξe. To a non‐self‐intersecting path γ in Z2 is associated a weight (also
often called a waiting time) w(γ) which is given by

∑
e∈γ ξe, i.e., the sum of random values asso‐

ciated to the edges on γ. Then for given vertices x, y ∈ Z2, the weight from x to y is

τx,y = min
γ:x�y

w(γ),

with the minimum over all paths connecting x to y. We note, to contrast with later, that the paths
are allowed to backtrack, i.e., need not be functions of any particular coordinate.

Unlike the biological origins of the Eden model, FPP was introduced by Hammersley andWelsh
in [HW65] to model the physical phenomenon of a liquid flowing from one side of a porous
medium to the other. This can also be seen as a notion of random growth by thinking of the
liquid as growing into the medium.

The mathematical connection of FPP to the (continuous time version of the) Eden model is the
following: In the Eden model, a given site x could have become occupied only by a path of
occupied vertices connecting the origin to it. Each such path takes a given time to reach x, which
is the sum of the waiting times (i.e., weights, which are exponentially distributed) of each edge
on it. Thus xwill be occupied at a time which is theminimumwaiting time over all the paths that
reach x from 0. The set of occupied vertices at a given time t, like what is shown in Figure 1.2, is
exactly the set {x ∈ Z2 : τ0,x ≤ t}. So, the Eden model is FPP in two dimensions in the special
case that ξe are distributed as i.i.d. exponential random variables.

The variational formula for τx,y yields the aforementioned subadditive relation easily: we have

τx,y ≤ τx,z + τz,y,

for any z ∈ Z2, i.e., the triangle inequality. The reason is that any two paths from x to z and z to
y respectively can be concatenated to give a path from x to y, and the weight of the concatenated
path is the sum of the weights of the individual paths.

This subadditive relation is immensely useful because of Kingman’s subadditive ergodic theorem
(which, in fact, was introduced in its original form precisely to study FPP [HW65]). Though we
do not state a precise version of this theorem here, it essentially yields the existence of the limit
shape mentioned above by giving the almost sure existence of the following closely related limit
for x a vector in Z2:

lim
n→∞

τ0,[nx]
n

= µ(x),

where µ(x) is a deterministic constant usually known as the time constant. In terms of the time
constant, the normalized limiting shape of the set of sites reached by a given time (as time goes
to infinity) is given by {x : µ(x) ≤ 1}.
We can now reformulate the questions listed on page 3 in a slightly more precise way. We view
the first as asking about the properties of the function µ, and the second as asking about the
fluctuations of τ0,[nx] − nµ(x). The subadditivity relation implies that µ is a convex function,
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and so an initial form of the first question is to establish strict convexity of µ; an initial form of
the second is to identify the scale (eg. nα for some α > 0) of the fluctuations of τ0,[nx] − nµ(x).

Unfortunately, we must confess that we have been leading the reader thus far to an anticlimactic
conclusion. Essentially nothing is known about the answers to either of these questions. This is the
state of knowledge for the vastmajority ofmodels believed to lie within the KPZ universality class.
The models which are exceptions are those which have what is known as integrable structure.

1.2 Integrability within KPZ

While we have mentioned the KPZ class, we have not yet provided even a qualitative description
of what features should identify a model as belonging to the class. We start this section by
rectifying this omission.

Models in the class typically have an associated height function or profile. In FPP, this could be
the profile of weights of all vertices at a given distance from the origin, or the boundary of the
set of vertices reached by a given time. Three features of the evolution of the profile are believed
to be hallmarks of the models in the KPZ class:

(i) a smoothening tendency: depressions in the profile are quickly filled,
(ii) slope‐dependent growth: faster growth where the profile’s local gradient is larger, and
(iii) space‐time white noise roughening.

Let us illustrate this in the context of the Edenmodel/FPP. The first two points are related and say,
for example, that regions of the boundary of the set of occupied sites which form local depressions
will experience faster growth, thereby pushing the overall profile towards smoothness. In terms
of the dynamics, this is manifested through the fact that such macroscopically rougher portions
of the boundary will have a greater number of unoccupied sites incident—a sort of isoperimetric
phenomenon—and so there is a greater probability of an incident site in that region being picked
to be occupied than inmacroscopically smoother boundary areas. The third point onwhite noise
roughening simply refers to the i.i.d. randomness of the environment creating fluctuations and
local roughness.

While the above three qualities are present in every KPZ model, they are extremely explicit in
the KPZ equation, a stochastic PDE thought to describe the scaling limit of the height function
of many KPZ models in certain parameter regimes, and the first of our models which displays
integrable structure. We turn to it next.

The KPZ equation is a stochastic PDE stated formally as

∂tH(t, x) =
1
2
∂2xH(t, x) +

1
2

(
∂xH(t, x)

)2
+ ξ(t, x), (1.1)

where ξ(t, x) is space‐time white noise, i.e., a Gaussian process defined on R2 with covariance
given by

E[ξ(s, y)ξ(t, x)] = δt=sδx=y; (1.2)
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it is rigorously defined as a random generalized function.

The solution H of (1.1) is called the height function, and it can be thought of as the height of a
one‐dimensional interface at position x and time t as the interface evolves.

As mentioned, the three features of the KPZ class are explicit on the righthand side of (1.1): the
first term, a Laplacian, represents smoothening; the second, the square of the gradient, represents
(non‐linear) slope‐dependent growth; while the third is white noise in the flesh.

Note that we said that the KPZ equation is stated formally as (1.1). This is because it is quite non‐
trivial tomake sense of what (1.1) actually means. Essentially, the difficulty comes from the space‐
time white noise ξ(t, x). Its presence suggests thatH should be locally rough, perhaps Brownian
in some sense, in which case the derivative ∂xH(t, x) will only exist in the sense of distributions,
i.e., generalized functions. While generalized functions can always be differentiated, there is in
general no way to directly multiply them, and so the second term of (1.1) is not well‐defined.

Given this issue, there has been much recent work to make sense of (1.1). While not getting into
the details, we mention here some of the main advances and papers: Hairer’s theory of regular‐
ity structures [Hai13], paracontrolled distributions [GIP12, GP17], and energy solutions [GJ14].
These are all quite sophisticated approaches, and the first two are aimed at not onlymaking sense
of the KPZ equation, but also other non‐linear and singular stochastic PDEs. For our purposes,
since we are concerned with only (1.1), however, there is a simpler, physically relevant notion of
solution.

This physically relevant solution is known as the Cole‐Hopf solution. It is given by defining
H(t, x) to be logZ(t, x), where Z(t, x) solves the multiplicative stochastic heat equation (SHE)

∂tZ(t, x) =
1
2
∂2xZ(t, x) + ξ(t, x)Z(t, x), (1.3)

with initial condition given by Z(0, x) = exp(H(0, x)). One can use a formal chain rule compu‐
tation to check that, if Z(t, x) solves (1.3), thenH(t, x) should solve something like (1.1); also, it
is known that Z remains positive for all positive time if it has non‐negative initial data [Mue91],
and so H is well‐defined. Note further that the stochastic heat equation is linear in Z and so
doesn’t require making sense of things like multiplying generalized functions; this means that it
is much more straightforward to give a meaning to the solution of (1.3).

A great deal is now known about the KPZ equation under a general class of initial data, but initial
progress was restricted to what is called the narrow wedge solution. The narrow wedge case is
when Z is the fundamental solution to the SHE, i.e., Z(0, x) = δx=0, a Dirac mass at zero; in
this case, H(0, x) can be thought of as being 0 at x = 0 and −∞ elsewhere, so that growth is
initially from the single point x = 0, analogous to the single starting site of the Eden model.

The reason the narrow‐wedge condition is special is because it has integrable structure, also often
referred to as exactly solvable structure. (This will also be the case for the analogues of narrow
wedge initial conditions in othermodelswhich this thesis is concernedwith thatwewill introduce
in Chapter 2.) What does this mean?
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Essentially, it means that there are exact descriptions or formulas for the distribution of the rel‐
evant random quantity. Since the random variables of interest are usually quite complicated
and non‐linear functions of the noise, this is by no means typical. In the case of the KPZ equa‐
tion with narrow wedge initial condition, one such random quantity is Z(t, 0); the exact de‐
scription available forZ(t, 0) is its distribution function and its moments (or Laplace transform)
[ACQ11, BG16].

These formulas are given in terms of classical objects like the Airy function (and the associated
Airy point process, whichwewill saymore about later) and can be expressed as contour integrals;
in other models, combinatorial bijections and algebraic identities may come into play, which can
then be related to similar analytic descriptions using devices like classical orthogonal polynomial
theory. These contour integral formulas, with work, can be made amenable to analysis such that
sharp asymptotic information can be extracted. The great deal of analytic control available over
these objects is what makes integrable models mathematically tractable.

The continuum directed random polymer

The KPZ equation at finite time t can be thought of as a “positive temperature” model. What
this means can be made more clear by way of a polymer model, known as the continuum directed
random polymer (CDRP), which is closely associated to the KPZ equation. This discussion will
be rather heuristic and not concern itself with the technical subtleties of the construction of the
object we are trying to introduce; the interested reader is referred to [AKQ14] for the full details.

Random polymer models have a rich history in probability theory (see, for example, the book
[Com17]), and they typically have three ingredients: a (discrete or continuous) space on which
everything is defined, a random environment given by some kind of discrete or continuous space‐
time white noise, and a base measure on paths in the space. The model consists of specifying
a way that paths picked according to the base measure are reweighted by their journey through
the random environment to give a new measure. The random path picked according to this
reweighted distribution is called a polymer, and the distribution a polymer path measure.

For the CDRP, the space we are working on is [0, 1]×R. This should be thought of as an infinite
strip of height one, with the height variable indexing time. The random environment ξ is space‐
time white noise, i.e., the random generalized function defined earlier by (1.2); we will denote
the law of ξ by Q. Finally, the base measure on paths is given by the law of Brownian bridge
(with specified endpoints (0, 0) and (t, x) with t ∈ (0, 1)), a probability measure on the space
of continuous functions on [0, t] which we will denote Pt,x; the fact that paths are continuous
functions is the source of the adjective “directed” in CDRP: paths have a unique position at each
time (i.e., height) and so cannot backtrack, unlike in FPP.

For a fixed endpoint (x, t), the joint distribution Pt,x of random environment ξ and polymer Γ is
defined by a reweighting of the Brownian bridge (with endpoints (0, 0) and (x, t)) measure, and
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is formally given by

Pt,x(dξ, dΓ) =
1
Zβ

exp
{
β

∫ 1

0
ξ(s,Γs) ds

}
Pt,x(dΓ)Q(dξ); (1.4)

here Zβ = Zβ(t, x) is a normalization constant, known as the partition function, such that the
righthand side, conditionally on ξ, is a (ξ‐dependent, so random) measure with total mass one,
i.e.,

Zβ(t, x) =

∫
exp

{
β

∫ 1

0
ξ(s,Γs) ds

}
Pt,x(dΓ).

In words, (1.4) says that paths are given an exponential reweighting based on their integral
through the random environment that they traverse, modified by amultiplicative factor β, which
can be thought of as an interaction strength parameter. This parameter is typically called an
inverse temperature, for this is how its effect behaves: when β is low, there is not much of a
reweighting effect in (1.4), and the base pure randomness of the Brownian bridge measure Pt,x

is dominant, as might be expected on physical grounds if the temperature is high and entropy
reigns supreme; on the other hand, if β is high, paths which are well‐suited to the environment
(i.e., pass through regions where ξ is large) are exponentially more preferred, which can be inter‐
preted physically as a low temperature phenomenon, when low energy ground states are favored.

We say (1.4) is a formal description because it is difficult to make sense of the integral of white
noise along a Brownian bridge path, and evenmore so to interpret the exponential of that integral;
again, the issue is that we are dealing with non‐linear functions of the generalized function that
is white noise. Further, it is shown in [AKQ14] that the polymer path measure of the CDRP
is singular with respect to Brownian bridge, and so a Radon‐Nikodym derivative, or measure
reweighting, description as in (1.4) cannot hold. Nevertheless, the above is the intuition for the
model.

Now we may briefly point out the connection of the CDRP to the KPZ equation. In statistical
physical models, there is an important quantity known as the free energy F which is defined as
the logarithm of the partition function:

Fβ(t, x) = logZβ(t, x).

If we take β = 1, it turns out that the partition function for the CDRP, i.e., Z = Zβ=1 solves
the multiplicative stochastic heat equation (1.3). Thus, recalling the definition of the Cole‐Hopf
solution, it follows that the free‐energy of the CDRP solves the KPZ equation. (For general β, Zβ

solves the SHE with coefficients depending on β; by linear transformations, we can reduce back
to the standard SHE given in (1.3), and so the general case of any fixed β is essentially captured
by the β = 1 case. The same is not true if we wish to consider Zβ as a function of β, and we will
say something about that topic in Section 1.4.)
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1.3 Last passage percolation

Having introduced the CDRPwith general β parameter, it is natural to consider the extreme cases.
The β = 0 case is of no interest, as there is no interaction between the path and the environment.
The other extreme, β = ∞, is, however, extremely rich (though in different but related settings),
and we turn to it now; this is the zero temperature case.

Let us look at (1.4) again. Remember that all the manipulations being performed here are purely
formal. With that in mind, we see that, taking β large in (1.4), the path Γ which maximizes the
weight through the environment, i.e., maximizes

∫ 1
0 ξ(s,Γs) ds, has outsize contribution of mass

to the polymer pathmeasure defined by the path‐marginal ofP; in fact, in the limit of β → ∞, the
marginal pathmeasure should (intuitively) concentrate on that single maximizing path. Observe
that, assuming such a maximizing path is unique, there is no longer any randomness in the
selection of path given the environment. We have come upon a model which falls in the class
of models known as last passage percolation (LPP), which is the family of models that this thesis
will be studying.

(Unfortunately, while the CDRP can be rigorously constructed in the case of finite β, the same
has not been done in the case of infinite β. Nevertheless, we will continue, for the time being,
to use the same intuitive picture of maximizing weights of continuous paths through a contin‐
uum space‐time white noise, before later introducing discrete analogues that are well‐defined.
The troubled reader may wish to keep instead in the background a very fine mesh of i.i.d. ran‐
dom variables and appropriately discretized paths instead of white noise in the continuum and
arbitrary continuous functions as paths.)

Here is a summary of the heuristic continuum LPP model we have arrived at. We work on an
infinite strip of height one, with the height indexing time, and an associated white noise. We

(y, 0)

(x, 1)

Figure 1.3: A depiction of a geodesic in the continuum LPP model.
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Figure 1.4: A depiction of the parabolic Airy2 process.

consider directed paths which are continuous functions γ : [0, 1] → R. Each path is assigned a
randomweight given by its integral through the white noise environment. We fix two endpoints
on the boundaries of the strip, (y, 0) and (x, 1), and maximize the weight over all paths with
those two endpoints. For reasons of convention, the maximizing path is usually no longer called
a polymer in the zero temperature case, but instead a geodesic (in spite of the fact that the object
is defined by a maximization rather than a minimization as in the usual definition of geodesics
in metric spaces). See Figure 1.3.

We emphasize again that this is not a rigorously defined model, in part due to the difficulty of
defining the maximization over all continuous paths of a weight through the singular space‐time
white noise; any naive definition will lead to a result of∞. We will introduce discrete analogues
which are well‐defined shortly, but the continuum version will be useful to explain some of the
limiting objects that we are also interested in.

The parabolic Airy2 process

The first of these limiting objects is known as the parabolic Airy2 process, denoted byP1 : R → R
(the reason for the subscript one will be explained later). In terms of the continuum LPP model,
P1(x) is the weight of the geodesic with starting point (0, 0) (i.e., y = 0 in our earlier discussion)
and endpoint (x, 1); for this reason, we will think of it as a weight profile.

The parabolic Airy2 process was originally defined by Prähofer and Spohn [PS02], who showed
that it is the scaling limit of an analogous prelimiting weight profile in a certain discrete LPP
model. It has a number of interesting properties. Firstly, it is called parabolic because it has a
global downward parabolic curvature; see Figure 1.4. On adding back in the parabola x2, the
resulting process is stationary, i.e., x 7→ P1(x) + x2 is stationary; this process is known as the
Airy2 process A1.

The one‐point distribution of A1 is the GUE Tracy‐Widom distribution. This distribution was
discovered nearly a decade before the Airy2 process, in the seemingly very different context of
randommatrix theory [TW94]; wewill see in Chapter 2 that there are in fact some rather remark‐
able connections between randommatrices and certain LPP models underlying this coincidence.
More precisely, the GUE Tracy‐Widom distribution is the scaling limit of the fluctuations of the
largest eigenvalue of the Gaussian Unitary Ensemble (GUE) (for the unfamiliar but interested
reader, this will also be defined in Chapter 2).
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(n, n)

(0, 1)

(0, 0)

Figure 1.5: Poissonian LPP, and the rotation and vertical scaling to fit into the heuristic contin‐
uum LPP model. The blue dots are the Poisson points, and in black is an up‐right path from
(0, 0) to (n, n); its weight is 5 as it passes through 5 blue points. The dashed horizontal line in
the right panel is the line on which the endpoint of the geodesic varies to give a weight profile
which converges to P1 under an appropriate scaling.

This information andmore about the parabolic Airy2 processwas obtained via integrable connec‐
tions which wewill indicate soon. In fact, the discovery of the GUETracy‐Widom distribution in
the context of LPP preceded the discovery of the parabolic Airy2 process—though both occurred
in the exactly solvable model of Poissonian LPP.

Our first discrete model: Poissonian LPP

Poissonian LPP is defined as follows. We work in R2. The random environment is given by a
rate one Poisson point process on R2, and directed paths are piecewise linear paths which move
in an up‐right manner, i.e., have north‐east direction. The weight of a path is the number of
Poissonian points it passes through. The LPP weight between say (0, 0) and (x, y) with x, y > 0
is themaximumweight over all up‐right paths between the endpoints, i.e., themaximumnumber
of Poisson points which can be picked up by up‐right paths; see Figure 1.5.

This is related to the heuristic continuum LPPmodel from above by a rotation and scaling. More
precisely, consider the region between the lines x+y = 0 and x+y = 2n. If the model is rotated
by 45◦ so that the x + y = 0 line is horizontal, and scaled in the resulting vertical direction
by 2n, so that the original x + y = 2n line is at height 1, then one is in the analogue of the
continuum LPP setup (modulo an important horizontal scaling which we have not yet touched
upon); note that up‐right paths in the original setup are piecewise linear functions of the height
after rotation. However, for the remaining discussion we will stick with the original, unrotated,
coordinate system.
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Incidentally, suppose one fixes the square [0, 1]2 and conditions on there being n Poisson points
inside it. Then, if one orders the points by their x‐coordinates and considers the permutation
obtained by looking at the ranks of their y‐coordinates, it is easy to see that it is distributed
as a uniform random permutation σn on {1, . . . , n} (because under the conditioning, the set of
Poisson points has the distribution of n i.i.d. samples from the uniform distribution on [0, 1]2).
Further, the LPP weight from (0, 0) to (1, 1) is exactly the length of the longest increasing subse‐
quence of σn, i.e., the largest ℓ such that there are i1 < i2 < . . . < iℓ with σ(i1) < . . . < σ(iℓ).

This is the first hint of integrable structure in this model. For there is a classical bijection on
permutations known as the Robinson‐Schensted correspondence which maps a permutation on
{1, . . . , n} to a pair of standard Young tableaux of the same shape (see Figure 1.6); further, the
length of the first row of these tableaux is precisely the length of the longest increasing sub‐
sequence of the original permutation. (An important generalization by Knuth, known as the
Robinson‐Schensted‐Knuth, or RSK, correspondence, will be briefly returned to later.)

Figure 1.6: AYoung diagram; the defining property is that the length of the rows is decreasing (in
general, non‐increasing) as we go down. A (standard) Young tableau is one where the diagram
is filledwith positive integers which are increasing in each row and column, but for the purposes
of our exposition here it suffices to consider only the shape of the Young tableau, i.e, the Young
diagram.

This is discussed with great clarity and much greater detail in the book [Rom15]. But for us,
we observe that a statistic of interest in this model, namely the LPP value, is encoded in an
explicit fashion as the length of the top row of a concrete algebraic object picked according to a
certain measure (corresponding to the Poisson randomness of the points). This is what makes
Poissonian LPP an exactly solvable model.

It was by making use of this algebraic connection that Baik, Deift, and Johansson proved in a
breakthrough paper [BDJ99] that the LPP value from (0, 0) to (n, n), suitably centred and scaled,
converges in law to the GUE Tracy‐Widom distribution.

Theorem 1.1 (Baik‐Deift‐Johansson). Let Xn be the LPP value from (0, 0) to (n, n) and FTW be
the GUE Tracy‐Widom distribution. As n → ∞,

Xn − 2n
n1/3

→ FTW,

where the convergence is in distribution.
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The KPZ scaling exponents

Observe that, in Theorem 1.1, the scaling ofXn, a quantity growing linearly in n to first order, is
n1/3, instead of the more classical n1/2 of the central limit theorem. In other words, the fluctua‐
tions ofXn are on the scale of n1/3. This 1

3 is the first of the characteristic KPZ scaling exponents
(which we have taken an anomalously long time to come to in this introduction in comparison
to most overviews of KPZ). It is often called the longitudinal fluctuation exponent and denoted
χ; we will instead refer to it as the weight fluctuation exponent.

The second characteristic KPZ scaling exponent is the transversal fluctuation exponent, usually
denoted ξ. To seewhere it arises, recall that we have seen that theGUETracy‐Widomdistribution
is the one‐point distribution of the stationary Airy2 process, and that it is also the scaling limit
of the LPP value to (n, n) in Poissonian LPP. We have not yet explored the obvious avenue: what
is the statistic of Poissonian LPP that converges to the Airy2 process? (In fact, the more natural
limiting object will be the parabolic Airy2 process P1.) It is in describing the correct spatial
scalings for this functional convergence that we will need ξ.

The statistic of Poissonian LPP that will converge to P1 is the weight profile with fixed starting
point (0, 0) and ending point varying on the line x + y = 2n; in the right panel of Figure 1.5,
this is the horizontal line through (0, 1) (after vertical scaling). The convergence will hold after
a spatial, horizontal scaling by nξ—in other words, this is the scaling at which correlations are
non‐trivial. In 1+ 1 dimensional KPZ models, the universal value of the transversal fluctuation
exponent predicted is

ξ =
2
3
.

(Another way of thinking of this transversal fluctuation exponent is that the width of the smallest
diagonal strip that contains the geodesic from (0, 0) to (n, n) will typically be of order n2/3: see
Figure 1.7.)

Returning to the interpretation of the transversal fluctuation exponent as describing the scale of
non‐trivial correlations, consider the map

x 7→ Ln(x) := n−1/3 (Xn+xn2/3,n−xn2/3 − 2n
)
,

whereXx,y is the LPP value from (0, 0) to (x, y) and the map is defined for |x| ≤ n1/3. Then, one
meaning of the above statement that n2/3 is the right spatial scale for non‐trivial correlations is
that

lim sup
n→∞

Corr
(
Ln(x), Ln(y)

)
∈ (0, 1)

for all fixed x, y ∈ R, and the same with lim inf in place of lim sup. (The Fortuin–Kasteleyn–
Ginibre, or FKG, correlation inequality from percolation theory tells us that the correlation must
be non‐negative.)

With Ln defined, we can state the convergence theorem to P1, proved in [PS02].
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Θ(n2/3)

(0, 0)

(n, n)

Figure 1.7: In green is the geodesic from (0, 0) to (n, n). One interpretation of the statement that
the transversal fluctuation exponent ξ = 2

3 is that the width of the minimum width diagonal
strip which contains the geodesic, here depicted in dashed light gray lines, is typically of order
n2/3.

Theorem 1.2 (Prähofer‐Spohn). The following holds in the sense of convergence of finite dimen‐
sional distributions:

lim
n→∞

Ln(x) = P1.

This was later improved to a functional convergence, i.e., distributional convergence as processes,
by Johansson [Joh03], though in a discrete variant of the Poissonian model.

A heuristic for ξ = 2
3

Wepause here to give a quick heuristic for why ξ = 2
3 is the transversal fluctuation exponent. Sup‐

pose we know that, to first order, the weight loss to (n+x, n−x) compared to (n, n) isO(x2/n),
as it is in all known integrable LPP models and should be anticipated by the parabolic curva‐
ture of P1. (However, this statement has also not yet been shown in any non‐integrable model.)
Because the underlying randomness of the environment is i.i.d., it is natural to believe that the
weight profile should exhibit Brownian features, at least on a local scale before the parabolic
curvature becomes powerful. Indeed, a main result of this thesis will be proving a precise and
quantitative version of this statement. Then, when moving a distance of x from (n, n), we have
two opposing forces: a weight loss of order x2/n, and a Brownian weight fluctuation of x1/2. We
see that the scale of x where these are of the same order is x ≈ n2/3.

The KPZ relation

There is a famous relation, called the KPZ relation, that is expected to hold between χ and ξ for
stochastic growth models in all dimensions. This is that

χ = 2ξ − 1. (1.5)
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This is of course true for the integrable models in 1+1 dimensions that we have been discussing.
In arbitrary dimensions, it has been shown to hold for FPP under certain quite strong assump‐
tions [Cha13] (see also [AD14]) which have till date not been verified for any particular distribu‐
tion of the edge weights. There is, however, no consensus on even the level of conjecture about
what the individual values of χ and ξ should be in any dimension higher than two, and even
suggestions that, for high enough dimension, χ = 0. See [ADH17, Section 3.1] for some brief
discussion and references.

The other rows of the Young tableaux

We’ve seen that the length of the top row of the pair of Young tableaux associated to the Poisson
point environment encodes information which is very valuable for our purposes. What of the
remaining rows?

In the context of permutations, and as a question about the Robinson‐Schensted correspondence,
this was answered by Greene [Gre74]: given a permutation σ, the sum of the lengths of the top k
rows of the associated Young diagram is exactly the size of the longest subsequence of σ which
is the union of k increasing subsequences of σ.

In Poissonian LPP, this has a nice equivalent meaning. Consider a collection of k disjoint paths
in the environment. We ascribe such a collection a weight, namely the sum of the weights of the
constituent curves. Then the maximumweight over all such collections of k disjoint paths is the
sum of the lengths of the top k rows of the associated Young diagram.

(Note that the best collection of k disjoint paths need not include the highest weight single path,
i.e., the geodesic. In particular, the collection is not formed by taking the geodesic, finding and
including in the collection the highest weight path disjoint from the geodesic, and iterating.)

The LPP description also gives a nice interpretation to the fact that the Young diagram row lengths
are non‐increasing: the amount of weight gained by giving oneself k+1 disjoint paths instead of
k can be no more than the same gained by going from k−1 paths to k. This is true by definition
when comparing the second and first rows (as the first row length is the weight of the best path).
While plausible as a sort of law of diminishing returns, it is, however, not immediate for larger k.
A proof which works with the LPP paths directly (in a related LPP model) and does not make use
of the RS (or RSK) correspondence is given in [BGHH20], a paper whose contents are not entirely
included in this thesis but on which I was a coauthor; it will be discussed briefly in Section 2.6.

The Airy point process and line ensemble

Now, as we saw earlier, Baik, Deift, and Johansson proved that the length of the top row of the
random Young tableaux picked according to the measure induced by the Poisson randomness
of points converges, in law, to the GUE Tracy‐Widom distribution (after a certain centring and
scaling), and that the weight profile of Poissonian LPP converges to P1. It is natural to wonder
what happens to the lengths of the top k rows jointly.
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The GUE Tracy‐Widom distribution is the scaling limit of the top eigenvalue of the Gaussian
Unitary Ensemble. Might the scaling limit of the top k row length be the scaling limit of the top
k eigenvalues of GUE?

The scaling limit of the latter is a random point process known as the Airy point process. Its
top point is thus distributed according to the GUE Tracy‐Widom distribution. The Airy point
process is a determinantal point process, with kernelKAi(x, y) given by

KAi(x, y) =


Ai(x)Ai′(y)− Ai′(x)Ai(y)

x− y
x 6= y

Ai′(x)2 − xAi(x)2 x = y,

where Ai : R → R is the classical Airy function.

In essence, this means that the probability (rather, joint density) of finding points of the point
process at each of the locations x1, . . . , xk is given by det(KAi(xi, xj))

k
i,j=1 for each k ∈ N. A

good introduction to determinantal point processes is [HKPV09]. This determinantal structure,
and the appearance of the classical Airy function, is another indication of the exactly solvable
nature of the objects we are encountering.

Given this description of the GUE Tracy‐Widom distribution and the analogy between row
lengths of random Young diagrams and eigenvalues of the GUE, [BDJ99] conjectured that the
lengths of the top k rows too jointly converge to the top k points of the Airy point process. This
was proved shortly afterwards, independently, by Borodin, Okounkov and Olshanski [BOO00];
Johansson [Joh01]; and Okounkov [Oko00].

We now recall that we originally introduced the GUE Tracy‐Widom distribution not on its own,
but as the one point distribution of the stationary process known as the Airy2 process A1. To
complete the picture we’ve been sketching, we next introduce the Airy line ensemble A. This is
an infinite (N‐indexed) collection of continuous, non‐intersecting curves A1 > A2 > . . . which
is stationary and whose one point distribution is the Airy point process.

In the heuristic LPP model defined previously in the continuum, the weight profile from fixed
starting point as the ending point varied was given by the parabolic Airy2 processP1, which was
x 7→ A1(x) − x2. So, if we subtract a parabola from the Airy line ensemble A, we obtain the
parabolic Airy line ensembleP , whose top indexed curve isP1; see Figure 1.8. This also explains
the reason for the subscript of 1 for P1.

The parabolic Airy line ensemble was described in terms of its finite dimensional distributions
in [PS02] by the name of the multi‐line Airy process; the finite dimensional distributions can
be described via a determinantal point process, with kernel known as the extended Airy kernel.
That there exists a law on the space of infinite collections of continuous curves which has these
finite dimensional distributions, and such that samples from that law are non‐intersecting, is not
trivial. The construction of this law, i.e., of P , was undertaken in the paper [CH14].
Taking the interpretation of the Young diagram row lengths in Poissonian LPP to the limit, we
can extend the interpretation of P1(x) as the weight of the geodesic from (0, 0) to (x, 1) to the
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P1

P2

P3

...
Figure 1.8: A depiction of the parabolic Airy line ensemble.

other curves. In particular, we see that the sum of the top k values of P(x) for a given x should
be thought of as the weight of the best collection of k disjoint paths from (0, 0) to (x, 1) in the
heuristic continuum LPP model. (In fact, this has recently been proven [DZ21] for a rigorously
defined version of the continuum LPP model—which is different from the heuristic model in
that the underlying noise environment is a specific distribution which is not i.i.d.)

Part II of this thesis will be devoted to a study of the parabolic Airy line ensemble.

1.4 The KPZ equation and the KPZ fixed point

Before closing out this chapter, we pause and return to elucidate a connection we skipped over
earlier: namely, what is the precise relation between the positive temperature object, the KPZ
equation, and the various zero temperature objects and models we have encountered, such as
last passage percolation, the parabolic Airy2 process, and the parabolic Airy line ensemble?

There is an obvious similarity between the continuum directed random polymer and the contin‐
uum LPP model which was stressed before. This suggests that some statistic of the continuum
directed random polymer with fixed starting point (say 0) should, in some sense, converge to
the weight profile in the continuum LPP model with the same fixed point, i.e., P1.

In fact, the statistic is the free energy of the CDRP, which, recall, is described by the Cole‐Hopf
solution to the KPZ equation (with narrow wedge initial condition, since the polymers are fixed
to start from 0). That the free energy converges toP1was first conjectured in [ACQ11, Conjecture
1.5], later extended in [CH16, Conjecture 2.17], and recently proven independently by Quastel‐
Sarkar [QS20] and Virág [Vir20].

Theorem1.3 (Quastel‐Sarkar, Virág). LetH : [0,∞)×R → R be the solution to the KPZ equation
(1.1) with narrow‐wedge initial condition. Then,

21/3α−1/3
(
H(α, 21/3α2/3x) +

α

24

)
→ P1(x) (1.6)

as α → ∞, where the convergence is in distribution as continuous processes on R in the topology of
uniform convergence on compact sets.
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(We have switched from the temporal argument being represented by t to α for a reason which
will become clear ahead.)

In fact, the spatial scaling factor of 21/3 was not included in the aforementioned conjectures, and
it is not completely clear from the formulations of the theorems in [QS20, Vir20] whether it has
been taken into account. However, a scaling factor of this sort is necessary for this convergence
to hold, as we explain now.

The solution to the KPZ equation (1.1) can be expected to be in some sense locally Brownian,
with a diffusion rate of one; heuristically, this is due to the presence of the space‐time white noise
of rate one. Further, it is known (eg. [CH16, Proposition 1.17]) that

α−1/3
(
H(α, α2/3x) +

α

24

)
+

x2

2

is stationary in x. These two facts should be contrasted with their analogues for P1(x): first, P1

is locally Brownian (again in a sense which we have not yet specified) of rate two, and second,
P1 needs an addition of x2, not x2/2, to be stationary. Thus, without the spatial scaling factor,
there is no reason that the KPZ equation should change its local diffusion rate from 1 to 2 and
its asymptotic decay rate from −x2/2 to −x2 in the limit.

Including the scaling factor of 21/3 in the spatial argument resolves both these issues. Indeed, let
Hsc,α be the scaled narrow‐wedge solution to the KPZ equation given by

Hsc,α(t, x) = r−1/2α−1/3
(
H(αt, 2α2/3rx) +

αt

24

)
,

where r is a scaling parameter to be set. For any value of r, this rescaled object has a locally
Brownian rate of two. We need to find r which is also such that the rescaled object decays like
−x2. In other words, sinceHsc,α(1, x) decays like r−1/2 × 4r2x2/2, we need

2r3/2 = 1 ⇒ r = 2−2/3.

The lefthand side of (1.6) is exactly Hsc,α(1, x) with this value of r, and we now define Hsc,α to
always be associated with r = 2−2/3.

The KPZ fixed point

Having explained the scaling factors, let us take a look again at (1.6). It can be interpreted in two
ways. The first is that we are simply taking time to infinity. The second is that we are fixing time
to be 1 (which, recall, is also the height of the strip in both theCDRP and the heuristic continuum
LPP model) and performing a certain rescaling of the noise environment and path measure; in
other words, we are fixing time to be 1 but taking the inverse temperature parameter β to ∞.
Indeed, the second perspective is more useful, as it suggests we also consider the following: what
may be the limit, as α → ∞, ofHsc,α(t, x), as a space‐time process?
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A second natural question arises by considering (1.6) again. That convergence was stated for
the initial condition of the KPZ equation being narrow‐wedge. What happens for other initial
conditions?

For the CDRP, the interpretation of a general initial condition x 7→ H(0, x) is the following.
Instead of forcing the polymer to begin at (0, 0), it may begin at any point (x, 0); depending on
its starting location, a path is given a reward determined by H(0, x), which thus influences the
polymer path measure.

We can now give a unified answer to both the just introduced questions in terms of our heuristic
continuum LPP model. The first is simpler: intuitively, instead of restricting our infinite strip to
have height 1, we should allow any height t ∈ (0,∞) to describe the limit of large α ofHsc,α(t, x).
To answer the second, we need to define a notion of initial condition for the LPP model.

Let h0 : R → R ∪ {−∞} be a given deterministic function. The augmented weight of a path
starting at (y, 0) in the continuum LPP model will be h0(y) plus its usual weight determined
by its journey through the noise environment. (We allow h0 to take the value −∞ so that cer‐
tain starting points can be excluded, as in, for example, the narrow‐wedge case.) Then, the LPP
problem is to maximize the augmented weight overall from the line at height 0 to the specified
endpoint. So paths are essentially given a (possibly negative) reward described by h0 based on
their starting point.

The endpoint need not be at height 1, but can be (x, t) for any x ∈ R and t ∈ (0,∞). Let us
call the corresponding LPP value to be ht(x), which depends on the choice of h0. The space‐
time process (x, t) 7→ ht(x) is known as the KPZ fixed point. It is expected to be a universal
scaling limit, parametrized by initial conditions, for all models in the KPZ universality class. For
narrowwedge initial condition, h1 is the same asP1 (though the subscripts of one have a different
meaning in each).

The KPZ fixed point was first constructed as the scaling limit of a particular model in the KPZ
class, known as TASEP (which is equivalent to a particular LPP model, exponential LPP, that we
will introduce in the next chapter), by Matetski‐Quastel‐Remenik [MQR17].

With this, we may state the full convergence theorem of the KPZ equation proved by Quastel‐
Sarkar and Virág.

Theorem1.4 (Quastel‐Sarkar, Virág). LetH : (0,∞)×R → R be the solution to the KPZ equation
(1.1) with initial conditionH(0, ·) : R → R ∪ {−∞}. Then,

Hsc,α → h

as α → ∞, where h0 = limα→∞ Hsc,α(0, ·), and the asserted convergence is in the sense of finite
dimensional distributions.

A stronger space‐time process convergence is also expected but has not yet been achieved; for fixed
time, a process level convergence of the spatial marginal has been proved in the above result.
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We can give a slightlymore precise description of ht. Suppose the LPP value from (y, 0) to (x, t) in
the continuum LPPmodel is given byL(y, 0; x, t). From the discussion of the LPP interpretation
of ht above, we see that the following variational formula should hold:

ht(x) = sup
y∈R

{
h0(y) + L(y, 0; x, t)

}
.

In fact, this is true in a rigorous sense, as has been shown quite recently. Originally, however, the
construction in [MQR17] of h did not yield a variational formula, because it was at the time an
open problem to rigorously constructL as a scaling limit of any LPP model. The construction of
L—now called the directed landscape—was achieved in the breakthrough paper [DOV18], aided
by [DV18], in the model of Brownian LPP, which we will introduce in the next chapter. Finally,
the resulting variational formula and the earlier definition of h from [MQR17] were shown to be
equivalent in [NQR20].

Conclusion of Chapter 1

We now come to the end of this chapter introducing the KPZ universality class. We focused
mainly on integrable models and hinted at integrable techniques. But while the perspective of
this thesis is not an integrable one, along the way, we have also encountered the main objects
that this thesis will study: the parabolic Airy line ensemble, the KPZ fixed point, the GUE
Tracy‐Widom distribution, and discrete LPP models. In the next chapter we will discuss the
probabilistic and geometric viewpoint on the study of KPZ and explain our main results.



21

Chapter 2

Probabilistic and geometric viewpoints

In the previous chapter we introduced a number of objects, most of which were mathematically
tractable to analyze because of integrable connections. In this chapter, we will adopt instead a
probabilistic and geometric perspective, one which has informed much of the work in this thesis,
as well as introduce our main results.

This alternative viewpoint will consist of two approaches. The first is to initially use integrable in‐
formation to identify convenient probabilistic features of models, and then pursue all subsequent
analysis using only these probabilistic methods. The second is to investigate the implications of
assumptions in certain models, like last passage percolation, which can currently be verified in
only the integrable cases.

In both approaches, the underlying theme or aim is to develop techniques which can achieve
results beyond the reach of integrable methods. For example, techniques which are robust may
be applicable inmodels defined only by assumptionswhich create amore general, non‐integrable
framework, and may eventually be applicable to a wider class of models, if at a later date we have
enough of an understanding to resolve some of the fundamental difficulties which plague all
non‐integrable KPZ models (such as the lack of proof of the weight fluctuation exponent being
1
3 , or of the parabolic curvature of the weight profile).

This thesis broadly consists of three pillars. The first is a study of the parabolic Airy2 process
using the parabolic Airy line ensemble and a valuable probabilistic resampling property it pos‐
sesses. The second is an investigation of aspects of LPP values using geometric properties of
geodesics. Finally, the third combines aspects of the first two to study the KPZ fixed point.
These three pillars form Parts II, III, and IV. While the terms “probabilistic” and “geometric”
are not unrelated in our context, in this discussion we will use them to respectively refer to the
first and second pillars.

The probabilistic and geometric viewpoint on KPZ largely came into its own in the last decade.
Complementing our first two pillars, we focus on two streams: the first was initiated by Corwin
and Hammond in [CH14], where they introduced the Brownian Gibbs property to construct and
study the parabolic Airy line ensemble; the second by Basu, Sidoravicius, and Sly in [BSS14],
where they wielded an understanding of geodesic geometry in last passage percolation to settle
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(y, n)

(x, 1)

Figure 2.1: Left: A depiction of the environment given by independent Brownian motions B.
The functions Bi corresponding to each line are graphed in red on the corresponding black
line for visual clarity; the function values themselves need not be ordered. Right: An upright
path γ from (y, n) to (x, 1) is depicted in green; note that in a formal sense the depicted vertical
portions are not part of the path. The path’s weight is the sum of the increments of fi along the
portion of the ith line γ spends on it.

the so‐called slow bond problem.

We start by discussing the first stream in Section 2.1. We will discuss the results of this thesis
that fall in this stream in Section 2.2, and then turn to background on the geometric stream and
results in that stream in Sections 2.3 and 2.4. Results that form the third pillar of the thesis, which
combine the geometric and probabilistic viewpoints, will be discussed in Section 2.5. Finally,
we will briefly discuss some other work undertaken by me during graduate school that is not
included in this thesis in Section 2.6.

2.1 Background on the probabilistic approach

Brownian LPP

The Brownian Gibbs property is an explicit and important resampling property enjoyed by the
parabolic Airy line ensemble. To motivate it, we introduce an integrable LPP model known
as Brownian LPP which is the setting for one of our main results and where we can define a
prelimiting version of the parabolic Airy line ensemble .

Brownian LPP is a semi‐discrete LPP model, which here means that the space on which the
noise and directed paths are defined is discrete in one dimension and continuous in the other.
More precisely, let n ∈ N and J1, nK denote the integer interval {1, . . . , n}. Then the space is
R × J1, nK. This should be imagined as a collection of n horizontal lines, arranged vertically.
The noise is a collection B = (B1, . . . , Bn) of i.i.d. two‐sided rate one Brownian motions, i.e.,
one Brownian motion for each element of J1, nK and each defined on R. These may be pictured
as being associated to the horizontal lines. While these lines are depicted as vertically ordered,
the values of the Brownian motions themselves do not have any such ordering, of course. We
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label the horizontal lines in increasing index with height, i.e., the lowest is labeled n, and the
highest 1. See Figure 2.1.

Directed paths are paths which are up‐right, i.e., remain on a given horizontal line for some
interval before moving up to the next line above. See again Figure 2.1. An up‐right path is
parametrized by its jump times {ti}n−1i=1 at which it jumps from the (i + 1)st line to the ith line.
Define Πn

y,x to be the set of up‐right paths from (y, n) to (x, 1). The weight of an up‐right path
γ ∈ Πn

y,x in B is denoted B[γ] and defined by

B[γ] =
n−1∑
i=1

(
Bi(ti−1)− Bi(ti)

)
,

where {ti}n−1i=1 are the jump times of γ, with tn = y and t0 = x. This expression is thus the sum
of increments of B along the portions of γ on each line. As usual, the last passage value in B
from (y, n) to (x, 1) is defined by maximizing over all up‐right paths with those endpoints:

B[(y, n) → (x, 1)] = sup
γ∈Πn

y,x

B[γ].

If the set Πn
y,x is empty, i.e., if y > x, we define the passage value to be −∞.

(Alternatively, the noise can be thought of as a collection of independent one‐dimensional white
noises, which allows the model to fit in more directly to the description of LPP models given in
Chapter 1, where paths were assigned a weight by integrating against the noise, since increments
of Brownian motion are integrals of white noise. That is, with the white noise environment, the
weight of the path is exactly its integral against the white noise. But the Brownian description is
more standard.)

Recall that, in Poissonian LPP, while the LPP value was equal to the length of the top row of
the associated Young diagram, the lengths of the lower rows were related to weights of maximal
weight collections of disjoint curves. A similar equivalence will hold for Brownian LPP. To de‐
scribe it, let Πn,k

y,x be the collection of sets of k disjoint curves from (y, n) to (x, 1); we do not
impose the disjointness conditions at the common starting and ending point. Though the star‐
ing and ending points are common, it is possible to have paths which are disjoint except for those
points because, for any j, a path can jump from line n to line n − j (or from line j to line 1) at
the very first instant y (or final instant x).

Now we define, for k ∈ J1, nK,
B[(y, n)k → (x, 1)k] = sup

γ∈Πn,k
y,x

k∑
i=1

B[γi],

to be the LPP value for k disjoint paths with the given endpoints, where γ = (γ1, . . . , γk).

Recall that in Poissonian LPP, it was the sum of the lengths of the rows of the Young diagram
which corresponded to the weights of the maximal weight disjoint collections. Further, it was
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the row lengths which had the scaling limit of the Airy point process. Here, the statistic corre‐
sponding to the Young diagram row lengths is given by

Pn,k(x) := B[(0, n)k → (x, 1)k]− B[(0, n)k−1 → (x, 1)k−1], (2.1)

for k ≥ 2, with Pn,1(x) = B[(0, n) → (x, 1)]. Thus, just as with the row lengths of the Young
diagram, we have

B[(0, n)k → (x, 1)k] =
k∑

i=1

Pn,k(x).

Also as in the Poissonian case, we have that Pn,1 ≥ Pn,2 ≥ . . . ≥ Pn,n.

In order to get the parabolic Airy line ensemble P in the limit, we will need to introduce the
scalings corresponding to the weight and transversal fluctuations. We will return to this shortly,
after discussing the exactly solvable nature of Brownian LPP.

GUE and Dyson’s Brownianmotion

Brownian LPP is an integrable model. Its integrability is due to its direct equivalence with the
well‐known random matrix model, the Gaussian Unitary Ensemble (GUE).

The size‐n GUE is defined as a n × n random Hermitian matrix A, where the diagonal entries
aii are i.i.d. normal random variables with mean zero and variance one, and the above diagonal
entries aij with i > j are i.i.d. complex normal random variables with mean zero and variance
one, i.e.,X +

√
−1Y withX, Y i.i.d. real normal random variables with mean zero and variance

1
2 ; the below diagonal entries are defined by aji = aij to give the Hermitian property. The “U” in
“GUE” arises because the resulting distribution over matrices is invariant under conjugation by
unitary matrices.

The remarkable fact is that there is a distributional equality between Brownian LPP and GUE: if
λ1 is the largest eigenvalue of a size‐n GUE, then

Pn,1(1) = B[(0, n) → (1, 1)] d
= λ1. (2.2)

This was first proved in [Bar01, GTW01]. But even more amazingly, the identity extends to hold
between much richer objects, and this is of great importance. To state this, we need to introduce
Dyson’s Brownian motion.

There are two descriptions of Dyson’s Brownian motion. The first is as a dynamic on the eigen‐
values of the GUE. We simply replace the real normal random variables (including the real and
imaginary components of the complex normal entries) which were involved in the entries of the
GUE by independent Brownian motions of diffusion rate equal to the variance of the entry (i.e.,
diffusion rate 1

2 if the variance was
1
2 , and 1 if it was 1). This gives a process of random matrices.

At any given time t, themarginal distribution of this process at that time is exactly the same as the
GUE except scaled by

√
t (since a variance t normal random variable has the same distribution

as
√
t times a variance one normal random variable).
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Figure 2.2: A depiction of Dyson’s Brownian motion. A vertical slice at any fixed time gives
n random points which have the same distribution as the eigenvalues of size‐n GUE, except
scaled by a factor of the square of the time.

The random matrix process induces a process on its eigenvalues: we get λ1(t) > λ2(t) > . . . >
λn(t) by following the paths of the ordered eigenvalues as time proceeds. This eigenvalue process
is exactly Dyson’s Brownianmotion. This was the original definition of Dyson’s Brownianmotion
given by Dyson [Dys62]; it also has a description in terms of a system of stochastic differential
equations. A depiction is given in Figure 2.2. Now, the righthand side of (2.2) is λ1(1), the top
line of n‐level Dyson’s Brownian motion at time one.

The second description of Dyson’s Brownian motion came later [Gra99], but is better suited
to serve as motivation for the upcoming Brownian Gibbs property. Notice that the eigenvalues
remain ordered throughout time, and are strictly ordered at any given time, since this is true of
the eigenvalues of GUE; while in principle two of them could coincide at some random time, it
should be plausible that in fact they don’t. Quite surprisingly, the second description of Dyson’s
Brownian motion is simply that it is a collection of n independent Brownian motions, all started
at zero, which are conditioned to never intersect.

Of course, this is not a trivial conditioning, for two reasons: (i) independent Brownian motions
with common starting point will almost surely intersect infinitely often in any time‐interval con‐
taining zero, and (ii) independent Brownian motions with any starting points will almost surely
intersect infinitely often over the course of their entire lifetimes on [T,∞) for any T ≥ 0. So the
conditioning we desire is singular in two distinct ways, at zero and at infinity.

We won’t get into the details of how to overcome this singular conditioning, but, essentially, this
is resolved by making use of something known as the Doob h‐transform, which allows us to
condition a Markov processX on a singular event if we can find a function h which is harmonic
with respect to the generator ofX and is such that the event that h(Xt) = 0 for some t is the same
as the singular event we wish to condition on. For Dyson’s Brownianmotion,X is n‐dimensional
Brownian motion killed at the time it exits the Weyl chamber {x ∈ Rn : x1 ≤ x2 ≤ . . . ≤ xn},
and h : Rn → R is the Vandermonde determinant,

h(x) =
∏
i<j

(xi − xj).
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Pn,1

Pn,2

Pn,3a b

Pn,1

Pn,2

Pn,3a b

Figure 2.3: The Brownian Gibbs property: the conditional distribution of the “erased” portion
of the top curve on [a, b], given everything else (as depicted in the left panel), is that of a Brow‐
nian bridge (depicted in blue in the right panel) between the endpoint values marked by black
circles (which have been conditioned upon), conditioned to not intersect the lower curve.

(Note that X is not simply n‐dimensional Brownian motion, essentially because the event that
that process will eventually exit the Weyl chamber has probability 1.) See, for example, [War07,
Section 3] for more details.

With this brief description of the precise definition, we will proceed with an intuitive understand‐
ing of the meaning of non‐intersecting Brownianmotions; in any case, we will only be concerned
with the behaviour of Dyson’s Brownian motion on compact intervals away from the origin, so,
heuristically, neither of the singular conditionings arise.

Having introduced Dyson’s Brownian motion, we may now state the remarkable generalization
of the identity (2.2) proven in [OY02], where Pn = (Pn,1, . . . , Pn,n) and DBMn is n‐level Dyson’s
Brownian motion:

Pn and DBMn are equal in law as processes on J1, nK × [0,∞).

The Brownian Gibbs property

The Brownian Gibbs property gives an explicit description of the conditional law of Pn given a
selection of data. Let [a, b] ⊆ (0,∞) be a given interval avoiding zero and k ∈ J1, nK. Let F be
the σ‐algebra generated by the data of Pn,k+1, . . . , Pn,n on [0,∞) as well as Pn,1, . . . , Pn,k outside
of [a, b]. In other words, we condition on everything apart from the top k curves on [a, b].

The Brownian Gibbs property says that the conditional law of (Pn,1, . . . , Pn,k) on [a, b] given
F is that of k independent Brownian bridges Bbr

1 , . . . , B
br
k of rate one, with Bbr

i between the
coordinates (a, Pn,i(a)) and (b, Pn,i(b)), conditioned on intersecting neither each other nor the
lower curve Pn,k+1. See Figure 2.3.

That this is true is easy to see from the description of Dyson’s Brownian motion as Brownian
motions conditioned to not intersect. Indeed, the conditional distribution of a single Brownian
motion on [a, b], given its path outside of [a, b], is a Brownian bridge between the appropriate
endpoints (as can be checked by a covariance calculation); considering k of them together and
imposing the non‐intersection conditioning from the definition ofDyson’s Brownianmotion then
(intuitively) gives the BrownianGibbs description. (Of course, that Dyson’s Brownianmotion has
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the Brownian Gibbs property needs a precise proof, and this was in fact rigorously proved only
recently, essentially in [DM20]—see Lemma 11.12 ahead for details.)

What does the fact that Pn has the Brownian Gibbs property have to do with the parabolic Airy
line ensemble P? Similar to how the weight profile in Poissonian LPP converged, under appro‐
priate centring and scaling, to the top line of P , in Brownian LPP we have that Pn converges
under scaling to the whole of P . More precisely, let Pn : J1, nK × [−1

2n
1/3,∞) → R be defined

by
Pn,j(x) = n−1/3 (Pn,j(n+ 2n2/3x)− 2n− 2n2/3x

)
. (2.3)

While not performing the calculation here, we remark that 2n + 2n2/3x is the mean of Pn,j(n +
2n2/3x) after excluding terms of lower order than the fluctuation order, i.e., n1/3; this can be
seen from the fact that Pn,1(1) = λ1 is 2

√
n to first order (from knowledge of GUE), Brownian

square‐root scaling, and a Taylor expansion of the square‐root. The factor of 2 in front of n2/3x
is included in order to have P as the limit of Pn since, as mentioned before, by convention P is
locally of diffusion rate two, while Pn is locally of diffusion rate one.

Now, the Brownian Gibbs property will also hold for any affine transformation of Pn, such asPn,
though possibly of a different rate. This is because affine transformations of Brownian motions
are still Brownian motions, just with a possibly different drift and diffusion rate, and the drift
does not play a role in the conditional distribution in terms of Brownian bridges on an interval.
In particular, Pn has the Brownian Gibbs property of rate two.

Finally, we have the promised convergence.

Theorem 2.1 (Corwin‐Hammond). As n → ∞,

Pn → P

as processes in the topology of uniform convergence of compact sets ofN×R. Further, the Brownian
Gibbs property (of rate two) is preserved in the limit.

In fact, [CH14] proved the convergence when the prelimiting object was non‐intersecting Brown‐
ian bridges, rather than Brownian motions as in Dyson’s Brownian motion. However, this imme‐
diately implies the same convergence for Dyson’s Brownianmotion by the use of a transformation
which takes Brownian bridges to Brownian motions; see [DV18, equation (2)].

As an immediate consequence of Theorem 2.1’s assertion that P has the Brownian Gibbs prop‐
erty, it follows that Pj(·)− Pj(a) is absolutely continuous to rate two Brownian motion on any
compact interval [a, b]. This is a qualitative comparison statement, and a main result of Part II
will be a strong quantitative formulation, as we will discuss shortly in Section 2.2.

However, even the qualitative comparison was sufficient to resolve a conjecture made by Johans‐
son about a decade earlier [Joh03, Conjecture 1.5]. In terms of the heuristic continuum LPP
model from Chapter 1, the conjecture was that the geodesic whose starting point is fixed at
(0, 0)will have an almost surely unique ending point if the ending point is allowed to vary along
the line (x, 1); in other words, the point‐to‐line geodesic has an almost surely unique ending
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point. Equivalently, since P1 is the weight profile as the ending point varies on exactly the same
line, the conjecture asserts that P1 has an almost surely unique maximizer on R.
Since Brownian motion has a unique maximizer on each compact interval, combining the abso‐
lute continuity of P1 to Brownian motion on compact intervals with the parabolic rate of decay
of P1 yielded Johansson’s conjecture in [CH14]. Shortly afterwards, alternate proofs of the con‐
jecture not making use of the Brownian comparison were provided in [FQR13, Pim14].

Part IV of this thesis will be devoted to proving an estimate needed to investigate the set of random
exceptional times when Johansson’s conjecture fails to be true, as we will discuss in Section 2.5.

2.2 Results in the probabilistic stream: Brownian regularity

In this section we will motivate and state our main result of Part II and some of its applications,
which were originally proved in [CHH19] with Alan Hammond and Jacob Calvert. To do so, we
return to the parabolic Airy2 process P1 and the larger system of which it is a part, the parabolic
Airy line ensembleP . We saw in Section 2.1 thatP1 enjoys a qualitative comparison to Brownian
motion by way of the Brownian Gibbs property: increments of P1 on compact intervals are
absolutely continuous to rate two Brownian motion.

While for some situations, such as for the resolution to Johansson’s conjecture, this level of in‐
formation may be sufficient, it is easy to imagine that there are other situations where a more
quantitative comparison may be necessary. For an example of a more quantitative comparison,
while absolute continuity yields the existence of the Radon‐Nikodym derivative of the increment
of P1 with respect to Brownian motion, we may want to know whether it lies in an Lp space for
a given p > 1, or all p ≥ 1.

It is an easy consequence of the Hölder inequality that, if the Radon‐Nikodym derivative lies in
an Lp space for a given p ≥ 1, then an event which has a Brownian probability of ε ∈ (0, 1)
can have probability under the law of an increment of P1 at most ε1−1/p. Thus, if the Radon‐
Nikodym derivative lay in every Lp space for p ≥ 1, then an event of Brownian probability of ε
would have probability at most ε1−o(1) under the law of an Airy increment. The first main result
of this thesis establishes such a bound, with the error factor ε−o(1) taking the more explicit form
exp(O(1)(log ε−1)5/6). The result also applies to the prelimiting Pn under a mild lower bound
condition on the value of ε.

Main Theorem 2.2. Let k ∈ N, d ≥ 1, C be the space of continuous functions on [−d, d] which
vanish at −d, and A a Borel measurable subset of C. Let ε = B(A), where B is the law of rate two
Brownian motion on [−d, d]. Then there exists an absolute finite constant G such that

P
(
Pk(·)− Pk(−d) ∈ A

)
≤ ε · exp

(
Gd(log ε−1)5/6

)
.

Further, there exists a constant c depending on only k such that, if ε ≥ exp(−cn1/12), then the same
bound holds with Pn,k in place of Pk.
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We will state a slightly more general version of this theorem as Theorem 4.8 in Chapter 4 that
does not require the interval under consideration, here [−d, d], to be centred at zero.

Theorem 2.2 is the culmination across several papers of a probabilistic study of narrow wedge
KPZ structure via the probabilistic Brownian Gibbs technique. The road begins with the ab‐
solute continuity comparison made by [CH14]. An important intermediate step was achieved
in [Ham19a], in which a comparison formally very similar to that of Theorem 2.2 was made,
but with the compared processes being affinely shifted so that their interval endpoint values van‐
ish, and the comparison being with respect to Brownian bridge. The relation of Theorem 2.2 to
this counterpart result in [Ham19a] is important both for its formal similarity and its striking
differences, and for the technique of proof. We will discuss this more in Chapter 3.

The form of Brownian comparison made by this result and by its upcoming prelimiting counter‐
part Theorem 4.8 is strong enough to open up an exciting array of applications concerning KPZ
universality and last passage percolation models, and has, in fact, already been an important
tool in a number of subsequent studies. We will briefly mention these works of other authors
in which Theorem 2.2 has played an important role shortly. First, we give an easy application of
Theorem 2.2 to illustrate its utility and power; further applications are discussed and proven in
the original paper [CHH19].

Movement of Airy2 in an interval

An immediate application of Theorem 2.2 which illustrates its utility is the following corollary,
which gives a tail bound on the amount the Airy process or its parabolic version moves in a
unit‐order interval.

Corollary 2.3. Let d ≥ 1 and k ∈ N. Then there exist C < ∞ and C ′ < ∞ such that, for x > 0,

P

(
sup

s∈[−d,d]

|Pk(s)− Pk(−d)| ≥ x

)
≤ e−x2/8d+Cd1/6x5/3

and

P

(
sup

s∈[−d,d]

|Ak(s)−Ak(−d)| ≥ x

)
≤ e−x2/8d+C′dx5/3 .

Recall that Pk andAk are both, in an idealised sense, rate two processes, and that we are consid‐
ering the tail probability of an increment over an interval of length 2d. For Brownian motions
of rates two, these probabilities can be understood as being roughly exp(−x2/8d), and this ac‐
counts for the dominant terms in the exponents in the bounds in Corollary 2.3; the remaining
terms in the exponents of the form d1/6x5/3 or dx5/3 are sub‐dominant corrections arising from
Theorem 2.2.

Estimates on Pn,k have previously appeared in the literature with a weaker tail bound exponent
of 3/2, instead of 2 as obtained here, such as in [DV18, Proposition 1.6] and [Ham19a, Theorem
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2.14]; additionally, we obtain an explicit coefficient for the −x2 term in the exponent, as well as
a quantified sub‐dominant correction.

Proof of Corollary 2.3. Let B be a rate two Brownian motion on [−d, d] started at zero. Writing
N(0, 4d) for a normal random variable with mean zero and variance 4d, we see that, by the
reflection principle for Brownian motion,

P

(
sup

s∈[−d,d]

|B(s)| ≥ x

)
≤ 2 · P

(
sup

s∈[−d,d]

B(s) ≥ x

)
= 4 · P

(
N(0, 4d) ≥ x

)
≤ 4 · e−x2/8d.

The last inequality is due to the Chernoff bound. Nowwe apply Theorem 2.2, and raise the value
ofG obtained from Theorem 2.2 to absorb the multiplicative constant of 4, to get the first bound
in Corollary 2.3. The second follows from the first by noting that sups∈[−d,d] |Pk(s) − Pk(−d)|
differs from sups∈[−d,d] |Ak(s)−Ak(−d)| by at most d2, and by bounding xd/4 + Cd1/6x5/3 by
C ′dx5/3, where C ′ is defined by say C ′ = C + 1.

The proof of Corollary 2.3 illustrates that the usefulness of Theorem 2.2 lies in allowing us to use
all of the many powerful probabilistic tools and symmetries available for Brownian motion and
the normal distribution in the problem of estimating the probabilities of very naturally arising
events for the parabolic Airy2 process.

Use of Theorem 2.2 in others’ work

As mentioned, Theorem 2.2 has proved to be an important tool in a number of KPZ studies
subsequent to [CHH19]. We discuss them briefly here.

First, Theorem 2.2 is used by [BGZ19] in an argument establishing the temporal covariance expo‐
nent in exponential LPP (which we will introduce in the next section) with flat initial conditions.
In terms of Brownian LPP, the analogous question would be to identify the order of growth in r
and n of Cov(P flat

n,1,P flat
r,1 ), where P flat

m,1 is the scaled weight profile as defined in (2.3), except the
starting point may be anywhere on the line indexed by n and ending point at (0, n − m + 1).
In other words, we are looking at the correlation of geodesic weight to height r and n, when the
corresponding geodesics may begin anywhere on the same bottom line; this initial condition is
the meaning of “flat”. The corresponding quantity in exponential LPP is shown in [BGZ19] to
be of order r/n as n → ∞ if r grows linearly with n. Interestingly, this is a different rate than
the narrow‐wedge case, where it was independently found to be (r/n)1/3in [BG18] and [FO19].

Next, Theorem2.2was used by [GH20a,GH20b]. [GH20b], with the companion paper [GH20a]
studies stability and chaos of geodesic overlap in a model of dynamical Brownian LPP, where the
Brownian environment is given an evolution over time. This evolution in time is not the same as
that of the KPZ fixed point, as additional environment (i.e., additional lines in Brownian LPP) is
not being revealed; instead, the entire environment (on a fixed number of lines) is changing with
time. The question they answer is, what is the time scale at which the geodesic in the original
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environment and in the perturbed environment are essentially statistically independent, with the
measurement in terms of the statistic of overlap of the geodesics? They show that the critical time
scale is of order n−1/3. Theorem 2.2 is used to obtain strong control over the probability of that
there is a path far from the geodesic whose weight is quite close to the geodesic weight; the third
pillar of this thesis mentioned earlier will study a similar event under general initial conditions.

A third work which makes use of Theorem 2.2 is [DSV20]. This work studies limiting geodesics
in Brownian LPP, and proves that they possess a finite three‐halves variation, analogous to how
Brownian motion possesses finite quadratic variation. They also show that the weight function
along the geodesic possesses cubic variation. Their analysis uses the form of Theorem 2.2 that
the Radon‐Nikodym derivative of P1 with respect to Brownian motion lies in all Lp spaces.

The final work that has thus far made use of Theorem 2.2, also in its Radon‐Nikodym form, is the
earlier mentioned [DZ21]. One of the results of this work is that the Airy line ensemble captures
weights of maximal weight disjoint collections of paths in a continuum LPP setting (where the
environment is given by the directed landscape), analogous to the role of the lower rows of the
Young diagram in Poissonian LPP.

2.3 Background on the geometric approach

Nowwe turn to the other stream of probabilistic and geometric investigations of KPZ. Unlike the
previous section, this does not rely on precise probabilistic structures like the Brownian Gibbs
property. Instead, it studies LPP problems by focusing on geometric properties of geodesics, often
with the central idea of considering the geodesic at different scales.

This line of approach was initiated by Basu, Sidoravicius, and Sly in [BSS14]. While that paper
works in both Poissonian LPP and an LPPmodel on the latticeZ2, much of the subsequent work,
including that pursued in Part III of this thesis, has focused on the lattice LPP model, and so we
introduce it now.

This time, the space is Z2. The random environment is given by an i.i.d. collection of non‐
negative random variables {ξv}v∈Z2 , one random variable for each vertex of Z2. The directed
paths are up‐right paths which move from one vertex to the one immediately above or immedi‐
ately to the right at each step. The weight of a path γ is the sum

∑
v∈γ ξv. We will label the LPP

value from (1, 1) to (r+z, r−z) byXz
r . (The notation does not match that for the similar object

Pn from Brownian LPP because we will be concerned with values of z up to |r|, i.e., much larger
than the transversal fluctuation scale r2/3.)

The exactly solvable cases

While universality suggests that similar behaviour should hold for a wide class of distributions of
the vertex weights, two distributions are distinguished for rendering the model exactly solvable.
These are the geometric distributions (for any parameter p ∈ (0, 1)) and the exponential distri‐
butions (which we may, without loss of generality, take to have rate one). Here, by the geometric
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distribution of parameter q, we mean the law of the random variable G such that

P(G ≥ k) = (1− q)qk for k ∈ N.

In these cases, Johansson showed convergence of Xz
r , suitable centred and scaled, to the GUE

Tracy‐Widom distribution [Joh00]:

Theorem 2.4 (Johansson). Let the vertex weight distribution be geometric of parameter q ∈ (0, 1)
or exponential of rate one. Let z = αr for some α ∈ (−1, 1), and let FTW be the GUE Tracy‐Widom
distribution. There exist constants µ = µ(α, q) and σ = σ(α, q) such that the following weak
convergence holds:

lim
r→∞

Xz
r − µr

σr1/3
d→ FTW.

Johansson’s result is explicit about what the constants µ and σ are, but we have not included
them as they are not very illuminating for our purposes. But we remark that the limit shape
given by µ as a function of α has non‐trivial curvature throughout the domain α ∈ (0, 1); i.e.,
without scaling, in the whole windows of O(r) and not just in the window of size O(r2/3) that
converges to the parabolic Airy2 process (this convergence is also known for these vertex weight
distributions).

We pause here to recall that an important feature of the GUE Tracy‐Widom distribution, namely
the “non‐Gaussian” behavior of its upper and lower tails. In particular, it is known, for example
from [Sep98b, page 224] or [RRV11, Theorem 1.3], that as θ → ∞,

FTW

(
[θ,∞)

)
= exp

(
−4
3
θ3/2 (1+ o(1))

)
and

FTW

(
(−∞,−θ]

)
= exp

(
− 1
12

θ3 (1+ o(1))
)
.

(2.4)

(In fact, these tail exponents of 3/2 and 3 are more universal in KPZ than just the GUE Tracy‐
Widom distribution. While the latter is the limiting distribution for narrow‐wedge initial data.
the same tail exponents are expected for a much wider class of initial data. For example, the
results of [CG18] assert that the suitably scaled solution to the KPZ equation has upper bounds
on the one‐point upper and lower tails with the same tail exponents, up to a certain depth into
the tail, under a wide class of general initial data. Similar upper bounds are known for the KPZ
fixed point under general initial data are known as well [MQR17, Proposition 4.7]. The same
exponents are also known from [RRV11] for the entire class of Tracy‐Widom(β) distributions,
where the GUE case corresponds to β = 2.)

The estimates (2.4) are obtained by precise asymptotic analysis of structures which are revealed
by the exactly solvable nature of objects like the GUE Tracy‐Widom distribution. Part III will
be devoted to obtaining a geometric understanding and derivation of the upper and lower tail
exponents of 3/2 and 3, as we will explain shortly in Section 2.4.
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Now, importantly for investigations in the prelimit, Johansson was also able to obtain a remark‐
able identity between Xz

r and certain determinantal point processes. This is simpler in the ex‐
ponential case and we restrict to that. Here, Xz

r has the same distribution as the top eigenvalue
of a random matrix ensemble known as the Laguerre Unitary Ensemble (LUE), also known as
complex Wishart matrices.

Using this identification, Ledoux and Rider [LR10], as well as Basu, Ganguly, Krishnapur, and
myself [BGHK19], were able to study the LUE to obtain tail estimates for Xz

r with the same
tail exponents as of the GUE Tracy‐Widom from (2.4). We also mention that an upper bound
on the upper tail was previously obtained by Seppaläinen [Sep98a] using large deviation and
superadditivity techniques. We state only the z = 0 case, where we setXr = X0

r ; for exponential
LPP, µ = 4 in this case (in the notation of Theorem 2.4).

Theorem 2.5 (Basu‐Ganguly‐H.‐Krishnapur, Ledoux‐Rider, Seppaläinen). There exist positive
finite constants c1, c2, c3, θ0, and r0 such that, for r > r0 and θ0 < θ < r2/3,

P
(
Xr > 4r + θr1/3

)
≤ exp

(
−c1θ

3/2
)

and

exp
(
−c2θ

3
)
≤ P

(
Xr < 4r − θr1/3

)
≤ exp

(
−c3θ

3
)
.

We remark that one of our main results will obtain the missing lower bound on the upper tail;
see Theorem 2.6.

The assumptions in the geometric approach

As mentioned earlier, the geometric approach typically adopts certain assumptions (which are
only known to be true in the exactly solvable cases currently) and utilizes geometric arguments
involving the geodesic, usually on many different scales, to obtain robust conclusions. Having
explained what is known in the exactly solvable cases, we can now introduce and appreciate the
forms of the assumptions adopted. Qualitatively, there are two main assumptions:

1. Curvature of the limit shape: The limit shape α 7→ µ(α) has curvature. This can some‐
times be for all α ∈ (−1, 1) (i.e., at all points away from the coordinate axes), all α in a
neighbourhood of zero, or just at zero itself.

2. One point upper and lower tail bounds on the n1/3 scale: Typically upper bounds on
both tails as in Theorem 2.5, though sometimes lower bounds may also be required. The
tail exponents often—but not always—need to be the optimal ones. Because there is no
general proof that fluctuations occur on the scale of n1/3, this must be assumed.

There have been many papers which have combined precise assumptions which fit this qualita‐
tive description with the study of geodesic geometry at different scales. As mentioned, the first
was [BSS14], where the following question was studied. Suppose we are in exponential LPP, but
the n vertex weights along the diagonal x = y within the square J1, nK2 are distributed as in‐
dependent Exp(1 − ε) random variables for some ε > 0 (and so each has mean (1 − ε)−1, i.e.,
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greater than 1). Then does the LPP value to (n, n) change to first order? That is, is it the case
that

lim
n→∞

E[Xn]

n
> 4

for all ε > 0? Note that the perturbation is a microscopic one in that onlyO(n)many vertices of
the environment have a different distribution assigned, out of the O(n2) many vertices in total,
but the question concerns whether this leads to a change which is in some sense macroscopically
apparent.

This questionwas raised by physicists but had no clear consensus on its answerwithin the physics
community. It was answered in the affirmative in [BSS14], by a strategy which relied on a sophis‐
ticated analysis that studied the geodesic at different scales, showing a degree of independence
between then, and the effect of the perturbation on paths which were near geodesics, i.e., had
weight very close to the maximum.

2.4 Results in the geometric stream: Bootstrapping

Themain aim of this part of this thesis is to demonstrate a geometric source for the tail exponents
of 3/2 and 3 for the Tracy‐Widom in the context of LPP. In other words, we will prove results
like Theorem 2.5, but under assumptions in the vein of the two listed in the previous section—
which is to say, without exactly solvable connections such as those available in the geometric and
exponential cases. The results in this section were originally proven in [GH20c] with Shirshendu
Ganguly.

First, we can observe a simple geometric source for why the upper tail exponent, 3
2 , is smaller

than the lower tail exponent, 3: for the LPP weight to be large, it is enough to have a single path
with large weight, while, for the LPP weight to be small, all paths need to have small weight. Of
course, this does not indicate at all why the tail exponents take their precise values, and that is
the main point of interest of the main result.

Here we will describe a simplified version of the assumptions that are adopted and give an infor‐
mal version of the main theorem; the assumptions will be precisely stated, along with a precise
version of the main theorem, in Chapter 7.

There are essentially three assumptions. We set µ = limr→∞ E[Xr]/r, i.e., the limiting linear
coefficient in the x = y direction.

1. Sharp concavity of limit shape and non‐random fluctuations in a neighbourhood of
zero: The limit shape is, to second order, parabolic, with a lower order correction, and
E[Xz

r ] is within O(r1/3) of the limit shape, for z ∈ [−ρr, ρr] with ρ some positive constant.

2. Upper bounds on tail probabilities, uniformly in directions: There is an α > 0 such
that, if z ∈ [−(1− ε)r, (1− ε)r], then we have tail bounds with tail exponent α:

a) P
(
Xz

r − E[Xz
r ] > θr1/3

)
≤ exp(−cθα)

b) P
(
Xz

r − E[Xz
r ] < −θr1/3

)
≤ exp(−cθα).
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Note that α > 0 is arbitrary. The main result will bootstrap this tail exponent to the
optimal 3/2 and 3 for the upper and lower tails.

3. Lowerboundson tail probabilities, in thediagonal direction: There are non‐trivial fluc‐
tuations of scale r1/3 in the diagonal direction, i.e., there is a δ > 0 and C > 0 such that

a) P
(
Xr − µr > Cr1/3

)
≥ δ

b) P
(
Xr − µr < −Cr1/3

)
≥ δ.

We discuss the assumptions (in their precise form) in more detail in Chapter 7.

While the assumptions are currently only known to hold for exponential and geometric LPP, we
emphasize again that their form precludes anything like the previous integrable techniques used
to prove the tail bound in those models. We have to rely completely on an understanding of the
geometry of weight maximizing paths and the interaction across scales.

Without further ado, here is an informal version of the main result.

MainTheorem 2.6 (Informal). Under the assumptions, there exist constants c1, c2, c3, and c4 such
that, for all large enough r and appropriate ranges of θ,

exp
(
− c1θ

3/2
)
≤ P

(
Xr > µr + θr1/3

)
≤ exp

(
− c2θ

3/2(log θ)−1/2
)

exp
(
− c3θ

3
)
≤ P

(
Xr < µr − θr1/3

)
≤ exp

(
− c4θ

3
)
.

This is given in its precise form as Theorems 7.4–7.7. The point of these results is the obtaining
of the correct upper and lower tail exponents even though we work in a non‐integrable setting
and rely on only geometric arguments.

Extremely briefly, the techniques which prove Theorem 2.6 rely on looking at the geodesic at
many different scales and utilizing a tension arising from the fact that fluctuations must have
exponent 1

3 on all of them; indeed, the results can be thought of as connecting the tail exponents
to the weight fluctuation exponent, with the formula 3

2 = 1/(1− 1
3) capturing the relation. (We

note in passing that the Gaussian tail exponent of 2 and the classical scaling exponent of 1
2 also

satisfy this relation.) For the lower tail bounds, similar ideas are combined with an analysis of
the weight and geometry of a large number of high weight disjoint curves. These aspects are
discussed in the form of a much more detailed overview in Section 7.3.

The techniques also get sharp bounds for the lower tail of constrained LPP values, a result which
was not previously known even in the case of integrable models. By constrained LPP values we
mean the following. Let U be a rectangle with one axis parallel to the line x = y, and having the
other set of parallel sides with midpoints (1, 1) and (r, r). We define XU

r to be the maximum
weight over all paths from (1, 1) to (r, r) which are constrained to remain within U . Suboptimal
tail bounds forXU

r have played important roles in previous geometric investigations of LPP, such
as [BSS14, BGHH20].

MainTheorem2.7 (Informal). Under the assumptions, there exist positive constants c1 and c2 such
that, ifU has width (measured in the direction of the line x = −y) ℓr2/3, then, for appropriate ranges
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of θ,

exp
(
−c1min(ℓθ5/2, θ3)

)
≤ P

(
XU

r − µr < −θr1/3
)
≤ exp

(
−c2min(ℓθ5/2, θ3)

)
This is stated in its precise form as Theorem 7.13.

2.5 Results combining the perspectives: Fractal geometry

So far in this chapter we have seen two broad approaches: the first made use of probabilistic
properties of weight profiles, such as the parabolic Airy line ensemble P , of natural LPP objects,
while the second studied geodesic geometry in discrete LPP models. And in fact, there will be no
interactions between the probabilistic properties of weight profiles and the geometry of geodesics
in the respective proofs.

In this section we introduce a result whose proof will require reasoning about both properties of
geodesic as well as probabilistic properties of weight profiles.

The result, while of interest in its own right, served as a technical input for a project [CHHM21]
regarding fractal properties of the KPZ fixed point that I undertook with Ivan Corwin, Alan
Hammond, and Konstantin Matetski. To motivate the result included in this thesis, we will first
spend a little time explaining the larger goal.

A return to Johansson’s conjecture

Recall Johansson’s conjecture [Joh03], discussed above, that the parabolic Airy2 process P1 al‐
most surely has a unique maximizer, which was proved in [CH14], as well as in [FQR13, Pim14].
Now, P1 is an instance of the KPZ fixed point, introduced at the end of Chapter 1, with narrow‐
wedge initial condition and at time one.

The resolution to Johansson’s conjecture also implies that at any fixed time t > 0, ht almost
surely has a unique maximizer when started from narrow‐wedge initial condition. But it does
not say that there do not exist exceptional times t where ht has multiple maximizers; for, since
there are uncountably many times in any given interval, a fixed time bound and a union bound
tell us nothing.

This can be thought of via an analogous situation involving a Brownian motion B. The proba‐
bility that Bt = 0 for any fixed t is zero. Yet, for any given interval there is positive probability
that B will hit zero in that interval; and, if B starts at zero and the interval is (0, x) for some x,
then the interval will almost surely contain a zero.

Continuing this example, note that the fixed time probability being zero implies, via Fubini’s
theorem, that the Lebesgue measure of the set of times where B equals zero is almost surely
zero:

E
[
Leb
(
{t ∈ [0, T ] : B(t) = 0}

)]
= E

[∫ T

0
1B(t)=0 dt

]
=

∫ T

0
P
(
B(t) = 0

)
dt = 0.
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So if we are interested in understanding the size of the set of exceptional times whenB is zero, the
Lebesgue measure is too crude a tool. We instead need a finer notion of sparsity: typically, this is
one of fractal dimension. While there are a number of different formulations of fractal dimension,
the most common one (and the one adopted in [CHHM21]) is that of Hausdorff dimension.

While we won’t give the precise definition here, the unfamiliar reader can heuristically think of
the Hausdorff dimension of a set X as the number α > 0 such that one needs order ε−α many
sets of diameter ε to cover X. It is easy to see that this notion recovers that the dimension of a
line is 1, of a square is 2, and so on. A good reference is [Mat99].

Now, it is a well‐known fact that the zero set of Brownian motion on an interval, conditionally
on it being non‐empty, almost surely has Hausdorff dimension 1

2 . [CHHM21] identifies the
Hausdorff dimension of the set of exceptional times where h has multiple spatial maximizers,
for a broad class of initial data (along the way also showing that the KPZ fixed point with these
initial data almost surely has a unique maximizer at any fixed time, thus extending the validity
of Johansson’s conjecture to beyond the narrow‐wedge case).

For T > 0 and A ≥ 0, let

TT,A =
{
t ∈ [0, T ] : ht has multiple maximizers at distance greater than A apart

}
.

The following is the main result of [CHHM21].

Theorem2.8 (Corwin‐Hammond‐H.‐Matetski). Fix T > 0 andA ≥ 0. Then, for a broad class of
initial data h0, TT 6= Ø with positive probability, and, conditionally on this event, TT almost surely
has Hausdorff dimension 2

3 .

We will define the precise class of initial conditions in Chapter 11.

In terms of geodesics, the exceptional times in TT are exactly those that exhibit polymer instability:
the instantswhere the endpoint of the geodesicwith the given initial condition and unconstrained
endpoint performs a macroscopic, discontinuous, jump. See Figure 2.4.

A common technique to prove bounds on Hausdorff dimension is to construct a measure sup‐
ported on the set in question. It can be useful to first consider a proxy set which is “fattened”
so as to have positive Lebesgue measure. In our case, the proxy set will be defined as the set of
times when an event we call ε‐twin peaks occurs. This event will be denoted TPε

A and is defined
as a subset of continuous functions by

TPε
A =

{
f : ∃x1, x2 s.t. |x1 − x2| > A and f(xi) > Max(f)− ε for i = 1, 2

}
;

inwords, there are two peaks (with one being themaximum) of theweight profile at least distance
A apart, such that they are within ε of each other.

Then our proxy set is defined by

T ε
T,A =

{
t ∈ [0, T ] : ht ∈ TPε

A

}
.
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exceptional time

Figure 2.4: In blue is the KPZ fixed point at various times (which advances as we go from the
left panel to the right one, as illustrated by the increasing height of the upper black line), while
in green is the geodesic in the heuristic continuum LPP model. Notice that the endpoint of the
geodesic is the maximizer of the KPZ fixed point at each time. In the left panel, the geodesic
is unique and has endpoint on the left, while a competing peak develops on the right. In the
centre panel, the KPZ fixed point has two maximizers, as the right peak has caught up to the
original left peak, and thus the corresponding time is an exceptional one where Johansson’s
conjecture on uniqueness of maximizer is broken. Correspondingly, there are two geodesics;
we believe, but it is not yet proven, that it is typical (in a precise sense, in spite of working on
an exceptional event) for this to occur without the two geodesics being completely disjoint, i.e.,
as depicted. In the final panel we see that the right peak has overtaken the left peak and is now
the maximizer; the geodesic endpoint is thus now on the right. In particular, as we advance
across time, and move across the exceptional instant of the middle panel, the geodesic endpoint
performs a macroscopic jump.

To construct a measure µ on TT,A, we instead consider the uniform measure µε on T ε
T,A and take

a limit as ε → 0. Of course, we need to scale µε to ensure that the limiting measure is non‐trivial.
The existence of a scaling such that the limit is non‐trivial is the main result of this part of this
thesis.

Main Theorem 2.9 (Informal). Let the initial state h0 lie in the broad class from Theorem 2.8, and
suppose that A > 0 and t > 0. There exists η > 0 such that, for all ε ∈ (0, 1),

P
(
ht ∈ TPε

A

)
≥ ηε. (2.5)

An implication of this result is that limε→0 ε
−1µε has total mass at least η, and so is non‐trivial.

The precise version of Theorem 2.9 is stated as Theorem 11.2.
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Remarks on the proof

An upper bound of order ε on the same probability is also proved in [CHHM21]. The fact that
the probability should be of order ε is easy to see if one expects ht to be Brownian: Brownian
motion has probability of order ε of coming within ε of its maximum on a given interval.

But note that while we have a very refined understanding of the Brownian nature of P1, that
is only the narrow‐wedge case, while Theorem 2.9 applied to a wide class of initial data. For
general initial data, an infinite ensemble analogous to the parabolic Airy line ensemble has not
been constructed, and if it were constructed, would not have a simple and explicit resampling
property like the Brownian Gibbs property.

It is for this reason that new techniques are needed to derive Theorem 2.9. The techniques de‐
veloped combine a study of geodesic geometry and the Brownian Gibbs property of the narrow‐
wedge case to obtain an understanding for general initial data. While amore detailed explanation
is given in Chapter 11, we will try to communicate here how it is that both types of reasoning can
be brought to bear upon the problem.

The key is a remarkable generalization of the RSK correspondence proved in [DOV18], and used
to great effect there to construct the parabolic Airy sheet (in terms of the heuristic continuum
LPP model from Chapter 1, this is a limiting object which encodes the joint distribution of LPP
values from any (y, 0) to (x, 1), i.e., with starting point also unconstrained, unlike P1).

Recall that given a Brownian environment B = (B1, . . . , Bn), we denoted LPP values through
the environment by B[(y, 1) → (x, n)], and defined Pn = (Pn,1, . . . , Pn,n) in (2.1) in terms of
last passage values starting at (0, 1) through B. In particular, we had

Pn,1(x) := B[(0, n) → (x, 1)]

and that Pn,1 > Pn,2 > . . . > Pn,n. Because the curves of Pn are ordered and all start at the
common value of zero at zero, it is easy to see that, if we consider Pn to be a new environment,
then

Pn[(0, n) → (x, 1)] = Pn,1(x) = B[(0, n) → (x, 1)].

In other words, LPP values are preserved when starting from (0, n)when we swap theB environ‐
ment for the Pn environment. The remarkable fact proved in [DOV18, Proposition 4.1] is that
they are preserved no matter the starting point, so long as it is on line n.

Proposition 2.10 (Dauvergne‐Ortmann‐Virág). Let y ≤ x. Then,

B[(y, n) → (x, 1)] = Pn[(y, n) → (x, 1)].

Note that this is not a statement of equality in distribution, but of actual values. In fact, this is
a particular case of an equality which holds deterministically between any environment defined
by a continuous f = (f1, . . . , fn) (analogous to B) and the environment analogous to Pn that is
defined from f in the same way that Pn is defined from B.
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Now recall the variational formula for the KPZ fixed point, given by

ht(x) = sup
y∈R

{
h0(y) + L(y, 0; x, t)

}
,

where L is the directed landscape and L(y, 0; x, t), in terms of the heuristic continuum LPP
model of Chapter 1, is the LPP value from (y, 0) to (x, t). Taking t = 1, this formula suggests
a prelimiting analogue h(n) of h1 that can be defined for Brownian LPP, taking into account the
correct scalings:

h(n)(x) = sup
y≥− 1

2n
1/3

{
h0(y) + n−1/3 (B[(2yn2/3, n) → (n+ 2xn2/3)]− 2n− 2n2/3(x− y)

)}
.

The important point of this formula is that the Brownian LPP term has starting point on line n
and ending point on line 1, and so can be replaced by the same LPP value in the environment
given by Pn via Proposition 2.10. Thus h(n) can be defined by an LPP problem through Pn.

Now, we know Pn is the same as Dyson’s Brownian motion, and so enjoys the Brownian Gibbs
property. Thus we have come upon an LPP problem in an environment that enjoys a convenient
probabilistic resampling property. The arguments to prove Theorem 2.9 will use both these as‐
pects (and then use the convergence of h(n) to h1, and invariance properties of h to handle other t),
thus combining the probabilistic and geometric streams.

2.6 Other graduate work

In this final section of the introductory portion of this thesis, I will briefly describe some of the
others projects relating to KPZ that I have worked on during my time in graduate school.

Aweight difference profile and Brownian local time

The first project [GH21] I mention was done with Shirshendu Ganguly, and also concerns fractal
geometry of a certain limiting LPP process. More precisely, let S : R2 → R be the previously
mentioned parabolic Airy sheet: in terms of the heuristic continuum LPP model of Chapter 1,
S(y, x) is the LPP weight from (y, 0) to (x, 1). The process under consideration is a weight
difference profile D : R → R, given by x 7→ S(yb, x)− S(ya, x) for some fixed yb > ya.

This process was first studied in [BGH19]. There, it was shown via a planarity argument that
D is non‐decreasing and that, almost surely, its set of non‐constant points has Hausdorff di‐
mension 1

2 . Given that this is also the Hausdorff dimension of the zero set of Brownian motion,
Manjunath Krishnapur raised the question of whether there is some precise connection between
D and Brownian local time.

In [GH21] we show that there is indeed a connection, on both global and local scales. On a
global scale, we prove a form of absolute continuity of D to Brownian local time (of rate four)
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by proving the existence of certain random intervals, or patches, such that the restriction ofD to
each patch is absolutely continuous to Brownian local time. We call this a Brownian local time
patchwork quilt, in analogy with similar terminology for an absolute continuity comparison of
the KPZ fixed point (at fixed time) with Brownian motion that was previously introduced and
proved by Alan Hammond [Ham19d]. On a local scale, we show that, under Brownian scaling,
the local limit of D, taken at various points of increase, is explicitly Brownian local time, i.e.,

lim
ε→0

ε−1/2 (D(τ + εt)−D(τ))

is Brownian local time of rate four, where the convergence is as processes in the topology of
uniform convergence on compact sets, and τ is, for example, the first point of increase of D
after a given point λ ∈ R, or a point of increase chosen uniformly from an interval [a, b] by
independently sampling from the probability measure defined by regarding D as a distribution
function (after suitable centering and normalizing) on this interval.

Geodesic watermelons in lattice LPP

This project [BGHH20]was undertakenwith RiddhipratimBasu, ShirshenduGanguly, andAlan
Hammond. The object of study was the geodesic watermelon, i.e., for a given n ∈ N and k ∈J1, nK, the maximum weight collection of k disjoint paths from (1, 1) to (n, n) (more precisely,
from and to a set of k points adjacent to (1, 1) and (n, n) respectively). The name “watermelon”
arises from the fact that the maximizing collection of disjoint curves look vaguely like the stripes
of the watermelon fruit, and the nomenclature originated in the physics literature. As we have
seen in earlier sections, in the exactly solvable cases, the weight of the geodesic watermelon has
important connections to determinantal objects like eigenvalues of the LUE and, in the limit, the
Airy point process.

This work, following the theme of geometric investigations, adopted some general assumptions
regarding curvature of the limit shape and estimates on one point tail probabilities (of only the
weight of the geodesic and not the geodesic watermelon) to study both the weight and geome‐
try of geodesic watermelons. We showed that the the weight of the k‐geodesic watermelon has
fluctuations of order k5/3n1/3 below the leading order linear term of order kn—matching predic‐
tions from asymptotics of the Airy point process. We also show that the width of the geodesic
watermelon is of order k1/3n2/3.

One interesting point is that starting with just information about the k = 1 case of the weight
of the geodesic—that it fluctuates on scale n1/3—we are able to prove the correct order of fluctu‐
ation for the weight of the k‐geodesic watermelon. Another interesting feature is an important
deterministic property of geodesic watermelons that is proved and centrally used, namely that
the curves of the k‐ and (k + 1)‐geodesic watermelons interlace; see Figure 2.5.

Finally, as one half of the argument proving the weight fluctuation statement, the paper con‐
structs k disjoint paths with collective weight of the appropriate order. This was used later in
the bootstrapping argument of [GH20c], which forms Part III of this thesis, and, as a result, we
also include the construction in Chapter 10 of this thesis.



CHAPTER 2. PROBABILISTIC AND GEOMETRIC VIEWPOINTS 42

Figure 2.5: The interlacing of geodesic watermelons. In blue is the 3‐geodesic watermelon and
in red the 2‐geodesic watermelon. In green is the geodesic itself, which crosses over the blue
curves but interlaces with the red, illustrating that interlacing does not give much information
about the geometry of geodesic watermelons beyond consecutive values of k.

A law of iterated logarithm in exponential LPP

The final project wemention was in collaboration with Riddhipratim Basu, Shirshendu Ganguly,
and Manjunath Krishnapur. We proved an upper law of iterated logarithm for the LPP value
from (1, 1) to (n, n) in exponential LPP. More precisely, we showed that there is a deterministic
constant c > 0 such that, almost surely,

lim inf
n→∞

Xn − 4n
n1/3(log logn)1/3

= −c.

(Recall that, to first order,Xn grows like 4n in exponential LPP.)

This complements results of Ledoux [Led18], who proved that the same lim inf is not −∞, and
that the lim sup of the same quantity, with the power of log logn being 2

3 instead of
1
3 , is also a

finite positive deterministic constant.

As part of our argument in [BGHK19], we proved an optimal (in terms of tail exponent) lower
bound for the lower tail of the top eigenvalue of the Laguerre β‐ensemble—which, in the β = 2
case, translates to the lower bound on the lower tail ofXn in exponential LPP that was stated in
Theorem 2.5.
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Part II

Brownian regularity
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Chapter 3

Proof context

This part of the thesis, i.e., Chapters 3–6, forms the first pillar of this thesis, concerning the
probabilistic resampling viewpoint within KPZ. It consists of material from [CHH19] in work
done with Jacob Calvert and Alan Hammond.

It will be convenient for the Airy‐type processes to have, in some sense, a local diffusion rate of
one instead of their usual two. To do this, we will henceforth, in this part, work with a version
denoted L of the parabolic Airy line ensemble, for which we will use the additional adjective
“standardized”, defined by

L(i, x) = 2−1/2P(i, x) = 2−1/2(A(i, x)− x2),

where P is the parabolic Airy line ensemble, A is the Airy line ensemble, P(i, x) = Pi(x) and
similarly for A.

3.1 Pertinent recent work

We start by giving a brief account of the general background of the Airy2 process. The inter‐
ested reader is referred to the survey [QR14] for a more detailed review, though from the slightly
different viewpoint of integrable probability.

The locally Brownian nature of the Airy2 process has been previously established in a number of
different formulations. One relatively weak version is to consider local limits of the Airy2 process;
i.e., to study the Gaussianity of ε−1/2 (A(x+ ε)−A(x)) for a given x ∈ R as ε ↘ 0. The
appearance of Brownian motion in this limit was proven in [Häg08, CP15, QR13]. The final
of these three articles, [QR13], also establishes Hölder 1

2− continuity of the Airy2 (as well as
Airy1) process, which is extended to limiting weight profiles arising from a very general class of
initial conditions in [MQR17, Theorem 4.13]. A stronger notion of the locally Brownian nature
of the Airy2 process is absolute continuity ofA with respect to Brownian motion on a unit order
compact interval. This was first proved in [CH14].
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Another line of work has established various Brownian features in the pre‐limitingweight profiles.
For instance, [BG18] establishes local Brownian fluctuations (in the sense of sub‐Gaussian tails)
in the weight profile of point‐to‐point exponential LPP, while [Ham19c] establishes a (sharp)
version of theHolder 1

2− continuitymentioned above for the pre‐limitingweight profiles in Brow‐
nian LPP (which also applies with quite general initial conditions).

However, none of these results addresses the question of bounding probabilities involving the
Airy2 process in terms of Brownian probabilities, or, equivalently, providing growth bounds on
the Radon‐Nikodym derivative with respect to some Brownian process.

A result in this direction was proved in [Ham19a]. There the comparison was between a modifi‐
cation of L, denoted L[−d,d], that is defined by affinely shifting L to be zero at both endpoints of
[−d, d], and Brownian bridge, instead of between a vertically shifted version of L and Brownian
motion as in Theorem 2.2. The form of the result, however, is otherwise much the same:

Theorem3.1 (Theorem1.10 of [Ham19a]). Let d ≥ 1, k ∈ N, and let C0,0 be the space of continuous
functions which vanish at both endpoints of [−d, d]. Let A be a Borel measurable subset of C0,0,
and let ε = B[−d,d](A), where B[−d,d] is the law of standard Brownian bridge on [−d, d] (i.e., with
vanishing endpoints). There exists ε0 = ε0(d) > 0 and an absolute finite constant G such that, if
ε ∈ (0, ε0), then

P
(
L[−d,d]

k ( · ) ∈ A
)
≤ ε · exp

(
Gd2(log ε−1)5/6

)
.

This also follows immediately from Theorem 2.2 and the fact that performing the affine shift
described on Brownian motion results in Brownian bridge.

Theorem 3.1 and our new Theorem 2.2 are formally very similar, the latter obtained merely by
substituting Brownian motion for Brownian bridge. However, it is found in many contexts that
Theorem 3.1 is unable to provide the kind of information that is desired. This is because, though
the processL( · )−L(−d) can be obtained from the bridgeL[−d,d]( · ) and the endpoint L(d), the
desired information gets away from us due to potentially pathological correlations between these
two random objects. Controlling this correlation is especially required to understand the slope
or maximum of L on an interval; the slope or maximum are often of relevance in LPP problems,
as can be seen in the applications discussed in Section 2.2.

The proof of Theorem 2.2 is significantly more involved and subtle than the proof of Theorem 3.1
in [Ham19a] because of the need to handle these correlations. We make some more comments
contrasting the proofs in Section 3.2.

Theorem 3.1 was a crucial tool in the four‐part study of Brownian LPP undertaken in [Ham19a,
Ham19c, Ham19b, Ham19d]. In the final paper [Ham19d], a form of Brownian regularity was
proved for pre‐limiting weight profiles for general initial conditions, to which we return shortly.
But we first turn to discussing the Brownian Gibbs property, a crucial idea in the proofs of The‐
orem 3.1 as well as our own main result.
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The Brownian Gibbs property

A central player in our approach is the Brownian Gibbs property, and here we discuss previous
work in this line of study. The Brownian Gibbs property was first employed in [CH14], to study
the Airy line ensemble. Recall from Chapter 1 that the Airy line ensemble is an N‐indexed collec‐
tion of continuous, non‐intersecting curves, whose uppermost curve is the Airy2 process. The
Brownian Gibbs property is an explicit spatial Markov property enjoyed by the Airy line ensem‐
ble after a parabolic shift and multiplication by a factor 2−1/2 (to allow comparison to Brownian
objects of diffusion rate one), resulting in the standardized parabolic Airy line ensemble. In short,
the Brownian Gibbs property says that the conditional distribution of any set of k consecutive
curves on an interval [a, b], conditionally on all the other curves on all of R and the k curves
themselves on (a, b)c, is given by k independent rate one Brownian bridges between appropri‐
ate endpoints and conditioned to intersect neither each other nor the preceding and succeeding
curves.

The Brownian Gibbs property and various softenings of it have proved to be a versatile tool
in probabilistic investigations of KPZ. Beyond the already mentioned [CH14], there have been
numerous works on line ensembles enjoying this or an analogous property, which we briefly
discuss.

The Brownian Gibbs property itself was a central theme in the previously mentioned four‐part
study [Ham19a, Ham19c, Ham19b, Ham19d] of Brownian LPP. While [CH14] established that
the Brownian Gibbs property is enjoyed by the Airy line ensemble, and hence by the limiting
weight profiles in a number of LPP models, Brownian LPP is special in that its weight profile
satisfies the Brownian Gibbs property even in the pre‐limit. This is a crucial integrable input
first observed by [OY02] (who related the energy profiles in Brownian LPP to Dyson Brownian
motion), and is the reason why Brownian LPP is the setting of the mentioned four‐part study, as
well as why our main results will apply to it. Apart from this four‐part study, we mention some
other works in this vein. The work [CS14] establishes the ergodicity of the Airy line ensemble
using the Brownian Gibbs property. The fractal nature of a certain limiting weight difference
profile in Brownian LPP is investigated in [BGH19], using inputs from the four‐part study men‐
tioned earlier. The Brownian Gibbs property is used in [CIW19a, CIW19b] to analyse tightness
of families of non‐intersecting Brownian bridges above a hard wall, subject to a tilting of measure
in terms of the area the curves capture below them; they also establish that an area‐tilted form of
the Brownian Gibbs property is enjoyed by the limiting ensemble.

A softened version of Brownian Gibbs, in which intersection is not prohibited but suffers an
energetic penalty, was used in an investigation of the scaled solution to the KPZ equation with
narrow‐wedge initial condition [CH16], establishing for that process absolute continuity with
respect to Brownian motion on compact intervals. This form of Brownian Gibbs was also used
in the recent [CG18] to obtain bounds on the one‐point upper and lower tails for the solution
to the KPZ equation from quite general initial data, and in [CGH19] to establish the rate of
decay of correlations with time of the narrow wedge solution at the origin. A discrete Gibbsian
property was used in [CD18] to study the transversal fluctuation exponent and tightness of the
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appropriately scaled height function in the asymmetric simple exclusion process and stochastic
six vertex model, started with step initial conditions. A sequence of discrete line ensembles
associated to the inverse gamma directed polymer, which obeys a softened discrete version of the
Brownian Gibbs property, was shown to be tight in [Wu19].

Finally, we mention the valuable contribution [DOV18], aided by [DV18], which establishes the
existence of the space‐time Airy sheet using Brownian LPP and the Brownian Gibbs property.

3.2 Method of proof

In this final section of the chapter we compare, on a high level, the method of proof of the main
theorem with that of Theorem 3.1 as given in [Ham19a]. A more general form of the main result
will be stated in Chapter 4 as Theorem 4.8. Chapter 5 is devoted to describing the general frame‐
work for the proof of our main result, with Section 5.2 addressing the conceptual framework
specific to the main result Theorem 4.8.

At the highest level, the method of proof of Theorem 3.1 in [Ham19a] relies on embedding the
parabolic Airy2 curve as the uppermost curve in the parabolic Airy line ensemble and employing
the Brownian Gibbs property. In [Ham19a], a significant amount of additional technical appa‐
ratus, known as the jump ensemble, was developed to further this technique, which culminated
in the proof of Theorem 3.1.

The proof of our main theorem is based squarely on the Brownian Gibbs property via the jump
ensemble as well, but the details of the proof differ quite substantially from that of Theorem 3.1
because of the difficulties that arise from possibly pathological correlations between the bridge
L[−d,d] and the endpoints L(−d) and L(d).
A flavour of this difficulty can be seen even in a purely Brownian toy example quite easily, and
this example will be fairly representative because of the Brownian Gibbs property. Suppose we
are trying to bound the probability that a Brownian process lies in a particular measurable subset
of continuous functions. We are contrasting the situation when the Brownian process is Brown‐
ian motion with when it is Brownian bridge; we note that applying the affine shifting procedure
described before Theorem 3.1, which definesL[−d,d] fromL, to Brownian motion results in Brow‐
nian bridge. Let B be a standard rate one Brownian motion on [−d, d] started at zero, and let
B[−d,d] be the Brownian bridge on [−d, d] resulting from the affine shifting procedure.

A standard fact is that B[−d,d] is independent of the original endpoint value B(d) of the Brownian
motion. Thus, when evaluating the probability that B[−d,d] lies in some subset of continuous
functions, one simply has to integrate over B(d); the conditional probability given B(d) is the
same for all of them.

In contrast, consider the probability that B lies in a subset A of continuous functions. If we
here try to decompose the process by conditioning on its endpoint value B(d), the conditional
probability of A depends on B(d). More importantly, the nature of the dependence is not the
same for allA, and so there is no clear way to decouple the conditional probability ofA from the
endpoint values in an event‐agnostic way.
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Figure 3.1: The Brownian Gibbs property and an independence property of Brownian bridges
essentially reduces the proof of Theorem 3.1 given in [Ham19a] to understanding the probabil‐
ity of non‐intersection with the lower curve (i.e., the second curve of the parabolic Airy line
ensemble) conditionally on the endpoint values at −d and d. This probability has an impor‐
tant monotonicity property which substantially simplifies the proof of Theorem 3.1: if we raise
the endpoint values, the top curve is more likely to be fully above the lower curve. This can be
seen by the stochastic domination depicted here, as the top curve with lower endpoint values
(blue and dotted) intersects the lower curve (thick and in black), while on raising the endpoint
values, non‐intersection is achieved. This monotonicity will not be available in the proof of
the main result here. This is because we do not have access to the independence property of
Brownian bridges, which is what allowed the decoupling of the probability of the event under
consideration from the probability of non‐intersection.

The Brownian Gibbs property in some sense relates the statement to be proved, here regarding
the process L in the form of Theorem 2.2, to considerations similar to this toy example. Recall
that, in a loose sense, the Brownian Gibbs property says that the conditional distribution of L
on an interval is that of a Brownian bridge with appropriate endpoints conditioned on being
above a lower curve over the whole interval; the lower curve is the second curve of the standard‐
ized parabolic Airy line ensemble. We are considering the probability that L[−d,d] belongs to
an event A. On a heuristic level, applying the Brownian Gibbs property and the independence
from endpoints enjoyed by Brownian bridge, bounding the conditional probability of A given
non‐intersection and the endpoint values L(−d) and L(d) reduces to bounding the probability
of non‐intersection given L(−d) and L(d); the probability of A under Brownian bridge factors
out.

A simplifying feature of the conditional probability of non‐intersection given L(−d) and L(d) is
that it enjoys an intuitive monotonicity in the endpoint values: when they are higher, avoiding
the lower curve is more probable (see Figure 3.1). Using this monotonicity, it is sufficient for
the proof of Theorem 3.1 to bound the non‐intersection probability by obtaining a bound on
the endpoint value density in only the case when the endpoints are very low. This is a crucial
technical result in [Ham19a], stated as Lemma 5.17. (This description is not completely accurate
as in the proof of Theorem 3.1 the technical apparatus of the jump ensemble allows the non‐
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intersection condition to be not with the entire lower curve but only a certain subset of it. We
ignore this point here.)

However, for the process L( · )−L(−d), analogous to the Brownian motion discussion, the prob‐
ability of an event A and the probability of non‐intersection cannot be decoupled given the end‐
point values, and the probability of the combined event does not enjoy a monotonicity property
in the endpoint values. (Of course, for certain events this monotonicity property would be true,
but it does not hold in an event‐agnostic manner.) Thus, while in the proof of Theorem 3.1 it was
sufficient to have an endpoint value density bound in only the case where the endpoint values are
very low, for the main result here we will need corresponding density bounds for the remaining
ranges of endpoint values as well. The case of low endpoint values is handled by using the same
statement of [Ham19a], Lemma 5.17 there, here stated as Proposition 6.1, but the other ranges of
endpoint values give rise to additional cases of greater technical difficulty.

A fuller discussion of the ideas and approach of the proof is provided in Chapter 5, with Sec‐
tion 5.1 discussing the jump ensemble and Section 5.2 discussing the framework specific to the
proof of the main result.

3.3 Organization of Part II

In Chapter 4, we introduce the Brownian Gibbs property and the more general objects to which
our results apply, and then state themain result in its general form as Theorem 4.8. Chapter 5 sets
up the framework in which our proof operates: in Section 5.1 we introduce the jump ensemble,
and in Section 5.2 we provide a conceptual framework for the proof of the principal result. Finally,
the main theorem is proved in Chapter 6 across four sections, each covering a different case.



50

Chapter 4

Notation and setup

In this chapter we introduce some notation we will be using throughout Part II of the thesis; give
the definitions of the main objects of study; and then state the main result, Theorem 4.8.

4.1 Notation, Brownian Gibbs, and regular ensembles

General notation

We take the set of natural numbers N to be {1, 2, . . .}. For k ∈ N, we use an overbar to denote
a k‐vector, i.e., x ∈ Rk. We denote the integer interval {i, i + 1, . . . , j} by Ji, jK. For a function
f : JkK × R → R, we write f(x) for (f(1, x), . . . , f(k, x)). A k‐vector x = (x1, . . . , xk) ∈ Rk

is called a k‐decreasing list if x1 > x2 > . . . > xk. For a set I ⊆ R, let Ik> ⊆ Ik be the set of
k‐decreasing lists of elements of I, and Ik≥ be the analogous set of k‐non‐increasing lists.

For a real valued function f whose domain of definition contains an interval [a, b], we define
f [a,b] : [a, b] → R to be the affinely shifted bridge version of f that is zero at both endpoints, i.e.,
for x ∈ [a, b],

f [a,b](x) := f(x)− x− a

b− a
· f(b)− b− x

b− a
· f(a).

For an interval [a, b] ⊆ R, we denote the space of continuous functions with domain [a, b]which
vanish at a by C0,∗([a, b],R), and the space of continuous functions which may take any value at
the endpoints by C∗,∗([a, b],R). The asterisk should be thought of as a wildcard indicating that
any value may be taken.

Line ensembles and the Brownian Gibbs property

Definition 4.1 (Line ensembles). Let Σ be an (possibly infinite) interval of Z, and let Λ be a
(possibly unbounded) interval of R. Let X be the set of continuous functions f : Σ × Λ → R
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endowed with the topology of uniform convergence on compact subsets of Σ × Λ, and let C
denote the Borel σ‐algebra of X .

AΣ‐indexed line ensembleL is a random variable defined on a probability space (Ω,B,P), taking
values in X such that L is a (B,C)‐measurable function. We regard L as a Σ‐indexed collection
of random continuous curves (despite the usage of the word “line”), each of which maps Λ into
R. We will slightly abuse notation and write L : Σ × Λ → R, even though it is not L which is
such a function, but rather L(ω) for each ω ∈ Ω. A line ensemble is ordered if, for all i, j ∈ Σ
with i < j, it holds that L(i, x) > L(j, x) for all x ∈ Λ. Statements such as this are understood
as being asserted almost surely with respect to P.

Definition 4.2 (Normal, Brownian bridge, and Brownian motion laws). We will use N(m,σ2)
to denote the normal distribution with mean m and variance σ2, and sometimes, with abuse of
notation, a random variable with this distribution.

Let k ∈ N, a, b ∈ R with a < b, and x, y ∈ Rk
>. We write B[a,b]

k;x,y for the law of k independent
Brownian bridges (B1, . . . , Bk) of diffusion parameter one, with Bi : [a, b] → R and Bi(a) = xi

and Bi(b) = yi, for i = 1, . . . , k.

We will also need the law of standard Brownian motion started at 0 on the interval [a, b], which
we will denote by B[a,b]

0,∗ ; i.e., B
[a,b]
0,∗ is the law of a rate one Brownian motion B with B(a) = 0.

Now let f : [a, b] → R ∪ {−∞} be a measurable function such that xk > f(a) and yk > f(b).
Define the non‐intersection event on a set A ⊆ [a, b] with lower boundary curve f by

NonIntAf =
{
for all x ∈ A , B(i, x) > B(i+1, x) for each 1 ≤ i ≤ k−1, and B(k, x) > f(x)

}
.

When A = [a, b], we omit its mention in the notation, i.e., we write NonIntf .

With this definition, we can move to defining the Brownian Gibbs property.

Definition 4.3 (Brownian Gibbs property). Let n ∈ N, I ⊆ R be an interval, k ∈ JnK, and
a, b ∈ I with a < b. LetDk;a,b = JkK× (a, b) andDc

k;a,b = (JnK× I)\Dk;a,b. Let L : JnK× I → R
be an ordered line ensemble. We say that L has the Brownian Gibbs property if the following
holds for all such choices of k, a, and b:

Law
(
L|Dk;a,b

conditionally on L|Dc
k;a,b

)
= B[a,b]

k;x,y ( · | NonIntf ) ,

where x = L(a), y = L(b), and f( · ) = L(k + 1, · ) on [a, b].

In words, the conditional distribution of the top k curves of L on [a, b], given the form on L on
Dc

k;a,b, is the law of k independent Brownian bridges, the ith from L(i, a) to L(i, b), which are
conditioned to intersect neither each other nor the lower curve L(k + 1, · ) on [a, b].

In the next definition we define regular ensembles, which are the general objects to which our
main result will apply. The definition is the same as [Ham19a, Definition 2.4], with the parameter
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φ in that definition taking the value (1/3, 1/9,∞); the value of ∞ for the third parameter is a
formal device to indicate that the range of s in point (2) below is [1,∞) instead of [1, nφ3 ] for a
finite value of φ3.

Definition 4.4 (Regular Brownian Gibbs ensemble). Consider a Brownian Gibbs ensemble that
has the form

L : JnK × [− zn,∞
)
→ R ,

and which is defined on a probability space under the law P. The number n = n(L) of ensemble
curves and the absolute value zn of the finite endpoint may take any values in N and [0,∞). (In
fact, we may also take zn = ∞, in which case we would take the domain of L to be JnK×R.) Let
C and c be two positive constants. The ensemble L is said to be (c, C)‐regular if the following
conditions are satisfied.

1. Endpoint escape. zn ≥ cn1/3.
2. One‐point lower tail. If z ≥ −zn satisfies |z| ≤ cn1/9, then

P
(
L
(
1, z
)
+ 2−1/2z2 ≤ −s

)
≤ C exp

{
− cs3/2

}
for all s ∈

[
1,∞

)
.

3. One‐point upper tail. If z ≥ −zn satisfies |z| ≤ cn1/9, then

P
(
L
(
1, z
)
+ 2−1/2z2 ≥ s

)
≤ C exp

{
− cs3/2

}
for all s ∈ [1,∞).

We reserve the symbols c and C for this usage in the remainder of this part of the thesis.

The symbol nwill be reserved in the rest of this part of the thesis for the number of curves in the
regular ensemble under consideration, which we will denote by Ln.

Though the definition of regular ensembles only includes one‐point tail information for the top
curve, this actually extends to the lower curves as well [Ham19a, Proposition 2.7]. Though we do
not state this result, we will have need of two associated sequences of constants for the statement
of our main results. For a (c, C)‐regular ensemble, define C1 = 140C, c1 = 2−5/2c ∧ 1/8; and,
for each k ≥ 2,

Ck = max
{
10 · 20k−15k/2

(
10

3−23/2

)k(k−1)/2
C , ec/2

}
and

ck =
(
(3− 23/2)3/22−15−3/2

)k−1
c1. (4.1)

These symbols will retain these meanings throughout this part of the thesis.

One example of a regular Brownian Gibbs line ensemble is the standardized parabolic Airy line
ensemble, given by

L(i, x) = 2−1/2(A(i, x)− x2),
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for (i, x) ∈ N × R, where A : N × R → R is the Airy line ensemble. (We include a factor of
2−1/2 to allow comparisons to be made with rate one Brownian objects.) The Airy line ensemble
was constructed as an ensemble of continuous non‐intersecting curves in [CH14, Theorem 3.1],
and tightness estimates furnished by each of [DV18], [DNV19], and [Ham19a] lead to simplified
constructions. It is defined as follows.

Definition 4.5 (Airy line ensemble). The Airy line ensemble A : N × R → R is a collection of
random continuous curvesA(j, · ) for j ∈ N. For any finite set I ⊂ R, define the random object
A[I] to be the point process on I × R given by

{(
s,A(j, s)

)
| j ∈ N , s ∈ I

}
. The law of A

is defined as the unique distribution supported on such collections of continuous curves such
that, for each finite I = {t1, · · · , tm}, A[I] is a determinantal point process whose kernel is the
extended Airy2 kernelKext

2 , specified by

Kext
2

(
s1, x1; s2, x2

)
=

{∫∞
0 e−λ(s1−s2)Ai

(
x1 + λ

)
Ai
(
x2 + λ

)
dλ if s1 ≥ s2 ,

−
∫ 0
−∞ e−λ(s1−s2)Ai

(
x1 + λ

)
Ai
(
x2 + λ

)
dλ if s1 < s2 ,

where Ai : R → R is the Airy function. The Airy line ensemble’s curves are ordered, withA(1, · )
uppermost.

4.2 An important example of regular ensembles: Brownian LPP weight pro‐
files

Here we introduce the Brownian last passage percolation model, which will generate an impor‐
tant example of regular ensembles via the RSK correspondence, and weight profiles from general
initial conditions. These definitions are not logically required for the proof of our main theorem,
but do motivate our decision to prove the result in the more general context of regular ensembles.
Many of these objects were introduced in Section 2.1, but we recall aspects of their definitions
here.

First is the weight profile of Brownian LPP, Pn,1, from (2.1). As we saw in Chapter 2, the func‐
tion y 7→ 2−1/2Pn,1(y) (which we call the weight profile) is a tight sequence of random functions
which converges to L1, the standardized parabolic Airy2 process, which is the top curve in the
standardized parabolic Airy line ensemble mentioned above. These inferences follow from the
relation between Pn and Dyson Brownian motion proved in [OY02] and the fact that the scaling
limit of Dyson Brownian motion is the Airy2 process [AVM05] in the sense of finite‐dimensional
distributions, upgraded to the space of continuous functions by [CH14]. The equality in distri‐
bution with Dyson Brownian motion for the top line alone was proved earlier in [GTW01] and
also [Bar01].

Again recalling from Chapter 2, we may regard this function y 7→ Pn,1(y) as the top line in an
ensemble of n continuous curves which we denote Pn : JnK× [−1

2n
1/3,∞) → R. We also recall

Theorem 2.1 that Pn converges to the parabolic Airy line ensemble under the standard notion



CHAPTER 4. NOTATION AND SETUP 54

of weak convergence given the locally uniform topology on curves. This is proved by the same
references mentioned in the previous paragraph for the top line of the ensemble.

Our reason for considering this ensemble of curves is that it enjoys the Brownian Gibbs property
and is in fact regular.

Proposition 4.6. There exist choices of the positive constants c and C such that each of the scaled
Brownian LPP line ensembles 2−1/2Pn : JnK × [− 1

2n
1/3,∞

)
→ R, n ∈ N, is

(
c, C

)
‐regular.

In fact, this is almost [Ham19a, Proposition 2.5], which proves that 2−1/2Pn is (c, C) regular in a
slightly weaker sense, namely with point (2) in Definition 4.4 holding for s ∈ [1, n1/3] only. Below
we point out how to modify that proof to obtain the complete claimed range of s.

Proof. [Ham19a, Proposition 2.5] proves that 2−1/2Pn satisfies points (1) and (3) of Definition 4.4,
and so we only need to prove point (2) for all of s ∈ [1,∞). To do this, we simply replace the use
of [Ham19a, Lemma A.1(1)] in the proof of [Ham19a, Proposition 2.5] with [DV18, Theorem 3.1];
this latter theorem is an improved moderate deviation bound for the kth line of Dyson Brownian
motion (equivalently, the kth eigenvalue of the Gaussian Unitary Ensemble), which we need for
only k = 1.

We have stated this slightly improved regularity of 2−1/2Pn in comparison to the statement of
[Ham19a, Proposition 2.5] for completeness. If Proposition 4.6 were used in place of [Ham19a,
Proposition 2.5] in the arguments of [Ham19a], minor improvements to certain statements quoted
from [Ham19a] that we use later, in Section 5.1, could be made. However, in view of the minor
and technical nature of these improvements, we do not formally claim, state, or use them in
our arguments, and therefore we will not carry through these improved effects of Proposition 4.6
further.

Basic parabolic symmetry of regular ensembles.

Here we record a straightforward proposition that allows us to translate the interval of consider‐
ation and still retain a regular ensemble (with an extra linear term).

Let Q : R → R denote the parabola Q(x) = 2−1/2x2, and let l : R2 → R be given by l(x, y) =
−2−1/2y2 − 21/2y(x − y). Note that x 7→ l(x, y) is the tangent line of the parabola x 7→ −Q(x)
at the point (y,−Q(y)). Note also that, for any x, y ∈ R,

Q(x) = −l(x, y) +Q(x− y). (4.2)

For zn ≥ 0, consider a regular ensemble Ln : JnK × [−zn,∞) → R. For any yn > −zn, define
Lshift

n,yn : [1, n]× [−zn − yn,∞) → R to be the shifted ensemble given by

Lshift
n,yn(i, x) = Ln (i, x+ yn)− l (x+ yn, yn)

By (4.2), Lshift
n,yn = Ln(i, x+ yn) +Q(x+ yn)−Q(x).
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Lemma 4.7 (Lemma 2.26 of [Ham19a]). Let c, C > 0 and n ∈ N. Suppose that Ln : JnK ×
[−zn,∞) → R is a (c, C)‐regular ensemble. Whenever yn ∈ R satisfies |yn| ≤ c/2 · n1/9, the
ensemble Lshift

n,yn is (c/2, C)‐regular.

This lemma will allow our main result to apply to an interval [K − d,K + d] not necessarily
centred at the origin.

4.3 Main result

For k ∈ N, letDk be a sequence of constants depending only on k, given by

Dk = max
{
k1/3c

−1/3
k

(
2−9/2 − 2−5

)−1/3
, 36

(
k2 − 1

)
, 2
}

(4.3)

for k ≥ 2, and set D1 = D2; here ck is as given in (4.1). This will be the value of Dk for the rest
of Part II of the thesis.

Our main result will concern an interval [K − d,K + d] for K ∈ R and d ≥ 1. For such K,
define the linear function ℓK,d : R → R by

ℓK,d(x) = 21/2K(x−K + d).

Our main result is a generalization of Theorem 2.2 that applies even when the interval under
consideration is not centred at zero.

Theorem 4.8. Suppose that Ln is an n‐curve (c, C) regular ensemble for some (c, C) ∈ (0,∞)2.
Let d ≥ 1 denote a parameter. Let K ∈ R satisfy [K − d,K + d] ⊂ c/2 · [−n1/9, n1/9], and let
k ∈ N.
Suppose that n ≥ k ∨ (c/3)−18 ∨ 636. For any Borel measurable A ⊂ C0,∗

(
[K − d,K + d]

)
,

write ε = B[K−d,K+d]
0,∗ (A). Suppose that ε satisfies the (k, d)‐dependent upper bound ε < e−1 ∧

(17)−1/kC−1/k
k D−1

k ∧ exp(−(24)6d6/D3
k); as well as the n‐dependent lower bound

ε ≥ exp
{
−
(
c/2 ∧ 21/2

)
D−1

k n1/12
}
. (4.4)

Then there exists G < ∞ such that

P
(
Ln

(
k, ·
)
− Ln

(
k,K − d

)
+ ℓK,d( · ) ∈ A

)
≤ ε ·G · exp

{
4932 · d ·D5/2

k

(
log ε−1

)5/6}
.

Specifically, this probability is ε · exp
{
d(log ε−1)5/6Ok(1)

}
, where Ok(1) denotes a k‐dependent

term that is independent of ε and d.

Remark 4.9. The upper bound on ε is only a technical one and is of no real consequence. The
rapid decay in n of the lower bound (4.4) means that no difficulty is created in applications, since,
roughly put, events whose probabilities have decay that is superpolynomial in n are in practice
irrelevant. In the case that n = ∞, such as for the standardized parabolic Airy line ensemble,
this lower bound becomes the vacuous ε > 0.
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Remark 4.10. The linear term ℓK,d introduced in the event in the general result is necessary. It
arises from the parabolic curvature of regular ensembles, which cannot be ignored when the
interval [K − d,K + d] is far from the origin. In fact, we will prove the theorem forK = 0, and
then use the parabolic invariance introduced in Section 4.2 to get the general statement, as we
have Lshift

n,K(k, · )− Lshift
n,K(k,−d) = Ln

(
k, ·+K

)
− Ln

(
k,K − d

)
+ ℓK,d( · +K) on [−d, d].

Next, we present a result that permits us to dispense with Theorem 4.8’s inconsequential but
practically irksome Brownian probability hypothesis of a d‐ and k‐dependent upper bound on ε.

Corollary 4.11. Under the circumstances of Theorem 4.8, suppose on the parameter ε we assume
only the lower bound ε ≥ exp(−gn1/12) holds, where g = g(k) = (c/2 ∧ 21/2)D−1

k . Then there
existsH = H(k) such that

P
(
Ln(k, ·)− Ln(k,K − d) + ℓK,d(·) ∈ A

)
≤ ε · exp

{
Hd6

}
exp

{
Hd
(
log ε−1

)5/6}
.

Proof. Let h = e−1∧ (17)−1/kC−1/k
k D−1

k ∧exp(−(24)6d6/D3
k) be the expression upper bounding

ε in Theorem 4.8.

When ε satisfies the upper bound ε ≤ h of Theorem 4.8 in addition to the assumed lower bound
ε ≥ exp(−gn1/12), the claim follows from the same theorem by taking H = H(k) ≥ 4932D5/2

k

large enough that exp(Hd6) ≥ G, where G is as in that theorem; this can be done such that H
does not depend on d since d ≥ 1.

When we instead have ε ≥ h, note that ε · h−1 ≥ 1, and so

P
(
Ln(k, ·)− Ln(k,K − d) + ℓK,d(·) ∈ A

)
≤ 1 ≤ ε · h−1.

Now let H = H(k) be such that h−1 ≤ exp(Hd6), which is possible by the definition of h and
since d ≥ 1. This yields our claim since exp(Hd(log ε−1)5/6) ≥ 1.
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Chapter 5

Proof framework

In this chapter we introduce the two frameworks required for our proof: the first is the jump en‐
semble, a general technique introduced in [Ham19a] which allows one to analyse regular Brown‐
ian Gibbs line ensembles using a more explicitly Brownian proxy; while the second is specific to
our proof of Theorem 4.8 and is a conceptual framework of costs. We will also reduce the proof
of Theorem 4.8 to a statement, Theorem 5.11, about the jump ensemble, and Chapter 6 will be
devoted to providing a major part of the proof of this statement using the introduced framework
of costs.

5.1 The jump ensemble

We start with a working description of the technical framework in which our proof approach
operates, known as the jump ensemble. The jump ensemble should be thought of as a sort
of “half‐way house” between Brownian motion and the line ensemble Ln that we wish to study.
Roughly speaking, what we mean by this is that the jump ensemble conditioned on a certain
manageable event has the same distribution asLn; but since the jump ensemble can be described
in terms of Brownian objects, we can estimate probabilities involving the jump ensemble using
knowledge about Brownian motion.

The construction we describe is the same as that in [Ham19a, Chapter 4]. The reader is referred
to that article for a fuller discussion; here we restrict ourselves to providing a complete, though
perhaps sometimes not fully motivated, description of the jump ensemble that allows the reader
to understand the proofs. The notation used in this section is largely the same as in [Ham19a]
for the convenience of the reader. We stress that some of the proofs underlying the correctness
and usefulness of the jump ensemble as given in [Ham19a] are technically involved, and so we
choose to not reproduce them here, instead focusing only on illustrating the ideas and statements
of the jump ensemble.

We use only three statements from [Ham19a], reproduced here as Lemma 5.3, Proposition 5.9,
and Lemma 5.10. We call these three statements the side interval test; the jump ensemble candidate
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proficiency; and the high probability of the favourable event. The reason for the use of these names
will become clearer over the next few subsections.

Motivation andmain themes

Before turning to the details of the jump ensemble, let us bring to focus some of the main themes.
Recall that we aim to study the kth curve of Ln. To do this, we initially consider the top k curves
together. The basic tool we have at our disposal in studying regular line ensembles is the Brow‐
nian Gibbs property. To recall it, let FBB be the σ‐algebra generated by the following collection
of random variables (where the BB subscript stands for “Brownian bridge”):

• all the lower curves Ln : Jk + 1, nK × [−zn,∞) → R;
• and the top k curves Ln : JkK × ([−zn, ℓ] ∪ [r,∞)) → R outside (ℓ, r).

(Though this σ‐algebra’s definition clearly depends on k, we suppress this dependence in the
notation FBB.)

The statement of the BrownianGibbs property is then that, conditionally onFBB, the top k curves
of Ln on [ℓ, r] have the same distribution as a collection of k independent Brownian bridges, the
ith from Ln(i, ℓ) to Ln(i, r), with the curves in the collection conditioned on intersecting neither
Ln(k + 1, · ) nor each other on all of [ℓ, r].

Candidate ensembles

We interpret this description as a resampling property, which is to say that, given the data in FBB,
the top k curves of Ln on [ℓ, r] are obtained by rejection sampling collections of k independent
Brownian bridges with the given endpoints until they fully avoid Ln(k+ 1, · ) and each other on
[ℓ, r]. We call the curves’ avoidance of each other on [ℓ, r] internal non‐intersection.

This resampling interpretation suggests a slightly different viewpoint on the Brownian Gibbs
property. Let us call the collection of k independent Brownian bridges with the given endpoints
a candidate ensemble; it has forgotten all information about the lower curve, as its definition
only involves Ln on JkK × {ℓ, r}. Our desire is for the candidate ensemble to gain the correct
FBB‐conditional distribution of the top k curves of Ln on [ℓ, r]. In order for this to happen, the
candidate ensemble must reconstruct the effect of the forgotten data as well as satisfy the other
constraints that Ln does.

The basic relation between the (k + 1)st curve of Ln and the top k‐curves of Ln is that the top
k curves must not intersect the (k + 1)st; beyond this, the additional constraint that the top k
curves of Ln satisfy which the Brownian bridge candidate does not necessarily is of internal non‐
intersection. The mentioned reconstruction is done by passing a test of non‐intersection, both
with the lower curve and internally. The reinterpretation of the Brownian Gibbs property is that
the candidate ensemble, on passing the non‐intersection test, gains the target line ensemble’s
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FBB‐conditional distribution. In terms of rejection sampling, the rejection sampling probability
is exactly the probability of the candidate ensemble passing this test.

Here, the role of FBB is to specify the data which the candidate ensemble, on passing the non‐
intersection test, must conform to. In particular, the distribution attained by the candidate en‐
semble on passing the non‐intersection test is theFBB‐conditional distribution ofLn. The data in
FBB should be thought of as the data conditioned on, and so available to the candidate ensemble,
some of which it then forgets. The data not in FBB is, of course, not available to the candidate
ensemble at all.

This idea that the candidate ensemble forgets some amount of data available to it is an important
one, and onewhichwewill develop further over the next few pages. In particular, wewill consider
the effects of retaining and forgetting different quantities of data; as we shall see shortly, the
example here, of forgetting the entire bottom curve, is too extreme and will not be useful for our
purposes.

So the broad theme may be described as follows in a two‐step process. First, we condition on a
certain selection of data, here represented by FBB; and second, we consider candidate ensembles
which retain some subset of this data and forget the rest. The candidate ensemble recovers the
correct conditional distribution, specified by the data first conditioned on, in spite of the forgot‐
ten data, by resampling till the appropriate constraint is met, which is that of non‐intersection.

Remark 5.1. The language of “retaining data” we are using in this discussion is slightly at odds
with the usage in [Ham19a]. There, retained data refers to the data contained in a σ‐algebra
such as FBB, with respect to which the conditional distribution of Ln is considered. Here, by
retained data we mean the data contained in this σ‐algebra which is further retained by the
candidate ensemble, in the sense that the further retained data is involved in the specification
of the candidate ensemble. Thus, by retaining different quantities of data in this sense, we can
generate various candidate ensembleswhich, on passing the respective non‐intersection tests, will
each have the distribution of Ln conditionally on the same σ‐algebra.

Features of a useful candidate

So we see that we must consider other candidate ensembles, and the jump ensemble will be one
such. What are the features of a useful candidate?

The final aim is to estimate probabilities for the kth curve of the line ensembleLn. So the features
we need of a candidate ensemble to reach this aim is that we must be able to

(i) estimate probabilities of interest for the candidate ensemble; and
(ii) translate them to estimates on probabilities for the line ensemble.

To successfully estimate probabilities for the candidate ensemble, it must be amenable to the tools
at our disposal, which in practice means it must be sufficiently Brownian (this is also imposed
by our intention to use the Brownian Gibbs property); while to successfully translate estimates
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to the line ensemble, it should be intuitively clear that we need the probability of passing the
non‐intersection test to be not too low.

The high jump difficulty

So let us consider how the Brownian bridge candidate fares in meeting the aims (i) and (ii). Since
the candidate is an ensemble of independent Brownian bridges, the point (i) from the previous
paragraph is clearly easily met. But on (ii) unfortunately, because of the weak control that we
have over Ln(k + 1, · ) and the intricacies of that random function, it is difficult to obtain suffi‐
ciently strong control on the probability of passing the non‐intersection test with the lower curve.
(Roughly speaking, the Brownian bridge candidate was the one used in [CH14] to analyse the
absolute continuity of Brownian Gibbs ensembles with respect to Brownian motion, and a large
part of that paper was spent obtaining control over exactly this non‐intersection test passing
probability.)

In these terms, we do not have good control over the test passing probability of pure Brownian
bridge, and so this candidate is not directly useful. This points to the need to look for better‐
suited candidate processes. To understand how a better candidate process should be designed,
let us consider what made the Brownian bridge candidate have a low test passing probability.

Ln(2, ·)

Ln(1, r)

Ln(1, `)

` r

5

5

Ln(2, ·)

Ln(1, r)

Ln(1, `)

` r

5

5

Figure 5.1: Two illustrations in the k = 1 case of instances of data from the lower curve which
are difficult for the Brownian bridge candidate to handle. The black crosses indicate the values
ofLn(1, · ) at the endpoints, which are the points betweenwhich the Brownian bridge candidate
must move. In the left panel there is a moderate sized peak very close to the left side of [ℓ, r],
which causes difficulty because of the immediacy of the jump required by the candidate. In the
right panel there is a large peak which causes difficulty because of its height.

In essence, the Brownian bridge candidate ensemble forgot too much of the data in FBB, and is
thus too far in nature from Ln, to have a high probability of lower curve non‐intersection. In
particular, it forgot all data of the profile of Ln(k + 1, · ) that it might have used to increase
its probability of avoidance. We shall consider two instances of the lower curve data which is
difficult for the Brownian bridge to avoid in order to illustrate two features that our replacement
candidate will need. These instances are depicted in Figure 5.1.
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For the first instance, suppose that the lower curve has a peak inside [ℓ, r] which is close to
one side of the interval, say ℓ, as illustrated in the first panel of Figure 5.1. Then the Brownian
bridge candidate, to succeed in the non‐intersection test, must execute a jump immediately. The
difficulty is that since the space to make the jump is limited, a more extreme jump is needed even
if the peak is not very large. The low probability of Brownian bridgesmaking such a jump in turn
makes the non‐intersection test passing probability of the Brownian bridge candidate ensemble
low. This discussion suggests the first feature that will aid a successful candidate: we can provide
it extra space to make a run‐up before any required jump.

Turning to the second panel of Figure 5.1, the second instance of difficult lower curve data is
when it exhibits an extremely large peak somewhere inside [ℓ, r] (which is not necessarily close
to either side). It may seem that giving space for a run‐up would address this difficulty as well,
as a Brownian bridge is clearly more likely to make a bigger jump over a larger interval. However,
giving a run‐up is in fact not sufficient to handle this sort of datawhilemaintaining a not‐too‐low
non‐intersection probability; quantitative reasoning for this conclusion is explored more fully in
the beginning of [Ham19a, Chapter 4] and also briefly, in the context of the jump ensemble, in
Remark 5.7 ahead. (The discussion in [Ham19a] concerns a setup incorporating a run‐up which
we will introduce shortly in Subsection 5.1.)

Heuristically, the reason for the difficulty of this data is that the Brownian bridge, having forgot‐
ten the entirety of the lower curve, does not know when the jump is required. And so, as alluded
to earlier, the second feature of assistance a successful candidate should make use of is to retain
more information about the lower curve. More formally, by “using retaining data”, we mean that
the candidate ensemble will be conditioned to avoid intersection with a curve formed from the
retained data (apart from retaining data to specify the values of the candidate ensemble at the
endpoints). This will become clearer as our discussion progresses.

(One might wonder about the likelihood of encountering the sort of lower curve data we have
been discussing, and whether we cannot exclude such difficult data from FBB in the analysis. In
our final argument wewill indeed restrict ourselves to data in a σ‐algebra analogous toFBBwhich
is favourable and extremely likely. However, even under such a restriction to more favourable
data, our control on the lower curve is not strong enough to exclude data such as what has been
discussed.)

Next we move to discussing in more detail the two changes we have mentioned: retaining more
data and giving a run‐up.

A coarsened lower curve profile

We first discuss the second feature we mentioned, namely retaining a selection of data from
the lower curve profile. It should be clear that we should not retain all the data, as this would
result in the candidate essentially being the same as the top k curves of Ln itself; it is difficult
to estimate the probabilities of such an ensemble. So we must make a careful selection which
balances between retaining no information, as in the Brownian bridge ensemble, and retaining
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full information, as in the pure line ensemble; further, the retained information must provide a
rough view of the overall geometry of the lower curve.

In fact, we will have the candidate ensemble retain a coarsened version of the lower curve. More
precisely, the candidate will be conditioned on avoiding this coarsened version. This coarsened
non‐avoidance can be thought of as a preliminary test to the full non‐intersection test; the can‐
didate, on passing the preliminary test, will naturally have a more suitable overall geometry to
pass the final test, and thus will have a higher probability of doing so. The exact form of this
coarsening, which we will describe in Section 5.1, is at the heart of the jump ensemble method.

Making space

Now let us turn to see how we can provide the first kind of assistance, namely to provide the
candidate ensemble with space to make a run‐up to more successfully jump over the lower curve.
The only way to make space is to step back from the interval [ℓ, r]. In fact, we will work in an
interval [−2T, 2T ] which contains [ℓ, r], with the parameter T ’s value to be assigned later. Let
us label as side intervals the intervals [−2T, ℓ] and [r, 2T ], and as the middle interval the interval
[ℓ, r].

Working in [−2T, 2T ] means that the values of the candidate are not pre‐determined at ℓ and r,
as in Figure 5.1, but at ±2T . Of course, simply working on a bigger interval does not gain us
anything immediately, since, in our current setup of conditioning on FBB, the non‐intersection
must now be done on the larger interval.

To deal with this, we change the setup by changing the data we condition on. Instead of con‐
ditioning on FBB, we consider the σ‐algebra F generated by the following collection of random
variables:

• all the lower curves Ln : Jk + 1, nK × [−zn,∞) → R;
• the top k curves Ln : JkK × ([−zn,−2T ] ∪ [2T,∞)) → R outside (−2T, 2T );
• and the 2k standard bridges L[−2T,ℓ]

n (i, · ) and L[r,2T ]
n (i, · ) for i = 1, . . . , k.

(Recall here the notation f [a,b] introduced in Section 4.1 for the affinely shifted bridge version of
a function f , though mildly abused here to refer to the bridge version of the ith curve of the en‐
semble and not the ith curve of an undefined bridge version of the ensemble.) We again suppress
the k dependence of the σ‐algebra in the notation F .
Inwords, we retain data of the entirety of all the lower curves; the top k curves outside (−2T, 2T );
and, on [−2T, ℓ] and [r, 2T ], the standard bridge paths of the top k curves on these intervals,
which we will call the side bridges. Nothing is retained on [ℓ, r], and, in particular, the values of
the candidate ensemble at ℓ and r are not determined.

Remark 5.2. The side bridges may appear to be complicated objects to condition upon; in fact,
they are easy to handle because of the Brownian Gibbs property and an independence property
possessed by the corresponding side bridge decomposition of Brownian bridges. See Lemma 5.4
ahead.
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The σ‐algebra F and the selection of data included in it is of great importance for the jump
ensemble method, and will be used throughout the arguments of Theorem 4.8. As such, the
conditional law P( · | F) will be used extensively, and so we use the notation

PF( · ) := P( · | F)

to denote it. In this notation, our aim is to understand the law of the top k curves of Ln on
[−2T, 2T ] under PF .
Why does conditioning on F help? Our reasoning was that lower curve avoidance on [ℓ, r] with‐
out a run‐up is difficult, and so we need to give a run‐up. This was done by expanding the inter‐
val to [−2T, 2T ]. However, we then need to enforce lower curve avoidance on all of [−2T, 2T ],
which is more difficult. But by including the side bridges of the top k curves of Ln, we can use
that data to help make the non‐intersection easier on the side intervals. This is because the ge‐
ometries of the top k side bridges of Ln are already well suited for lower curve avoidance with
Ln(k+1, · ), and the candidate ensemble can piggyback on this success. Thus, we get almost the
best of both worlds: the lower curve avoidance is made easier in the middle interval of [ℓ, r] due
to the space for a run‐up, while at the same time the lower curve avoidance on the side intervals
is manageable using the data of the top k side bridges of Ln.

How do we make use of this data? We will combine the candidate ensemble on [ℓ, r] with the
data from F to create a new ensemble on [−2T, 2T ]. The form of this combination is dictated
by the Brownian Gibbs property and the linear operation involved in the definition of f [a,b].

Let the candidate ensemble be denoted by X : JkK × [ℓ, r] → R; the new ensemble created
using X and data from F will be called the resampled ensemble Lre,X : JkK × [−2T, 2T ] → R.
Intuitively, the values of the candidate ensemble at ℓ and r are used to affinely shift the side
bridges; the affinely shifted bridges define the resampled ensemble on [−2T, ℓ]∪[r, 2T ], while the
candidate ensemble determines the resampled ensemble on [ℓ, r]. This is illustrated in Figure 5.2,
and the formal definition of Lre,X is given by the following, for i = 1, . . . , k:

Lre,X(i, x) =


L[−2T,ℓ]

n (i, x) + x+2T
ℓ+2T ·X(i, ℓ) + ℓ−x

ℓ+2T · Ln(i,−2T ) x ∈ [−2T, ℓ]
L[r,2T ]

n (i, x) + 2T−x
2T−r

·X(i, r) + x−r
2T−r

· Ln(i, 2T ) x ∈ [r, 2T ]

X(i, x) x ∈ [ℓ, r].

(5.1)

(Implicit in the above discussion is the promise that the resampled ensemble Lre,X will be able
to pass the non‐intersection test on the side intervals sufficiently well due to the use of data in F .
We discuss and make good on this promise in Section 5.1.)

As with the earlier discussion of the Brownian bridge ensemble and FBB, the Brownian Gibbs
property says that for certain candidate ensembles X, the distribution of Lre,X , conditioned
on passing the non‐intersection tests on [−2T, 2T ], will be the F ‐conditional law of Ln onJkK × [−2T, 2T ]. The candidate ensembles X for which this is true are Brownian bridge en‐
sembles conditioned on avoiding the lower curve on some subset of [ℓ, r]; the jump ensemble,
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Figure 5.2: Constructing Lre,X from the candidate process X (top two curves in blue on
[−2T, 2T ] in the second figure, and on [ℓ, r] in the third) when k = 2. In the first figure
we have the original line ensemble Ln. In the second figure, the black elements are the data
available in F , namely the entirety of the (k + 1)st curve, the positions at ±2T of the first k
curves (denoted by crosses), and the bridges obtained from the side intervals by affine shift.
The blue curves comprise the candidate processX (though technicallyX is restricted to [ℓ, r]).
In the final figure we complete the reconstruction by pasting the side interval bridges according
to the positions dictated byX (blue crosses at ℓ and r) on [ℓ, r]. Note that in this figure, Lre,X

passes both the side interval tests and the middle interval test.

which will be conditioned on avoiding a coarsened version of the lower curve, will fit this descrip‐
tion. Section 5.1 is devoted to setting up a precise version of this statement, which is recorded in
Lemma 5.5.
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In summary, we are looking to define a candidate process which has estimable probabilities by
virtue of being in some sense Brownian, and which has a not‐too‐low probability of passing the
non‐intersection test. To accomplish this, we saw in this subsection and the previous that the
candidate process will make use of a coarsened version of the lower curve profile in its definition;
and will use extra space for a run‐up, for which we work with a more sophisticated selection
of data captured by F . This data will be combined with the candidate ensemble to give the
resampled ensemble.

In the next subsection we expand on the idea that including the data of the side bridges in F
makes it easy for the candidate ensemble to pass the non‐intersection test on the side intervals.

The side intervals test

We formulate the non‐intersection test on the side intervals as the side intervals test. The side
intervals test has two parts: that Lre,X(k, · ) does not intersect Ln(k + 1, · ); and that Lre,X(i, · )
does not intersect Lre,X(i + 1, · ) for i = 1, . . . , k − 1—both of these on [−2T, ℓ] ∪ [r, 2T ]. A
look at the first two cases in the definition (5.1) of Lre,X suggests that whether this test is passed
is simply a question of whether X(i, ℓ) and X(i, r) are high enough in value, as the remaining
quantities are F ‐measurable and thus not affected by the candidateX. This intuition is roughly
correct, and a precise version is the content of the next lemma, which we refer to as the side
intervals test criterion.

Lemma 5.3 (Side intervals test criterion, Lemma 3.8 of [Ham19a]). There exist F‐measurable
random vectorsCornerℓ,F ,Cornerr,F ∈ Rk

≥ such thatLre,X passes the side intervals tests if and only

if X̄(x)− Corner
x,F ∈ (0,∞)k> for x = ℓ, r.

The proof is given in [Ham19a], but we include here Figure 5.3 which captures the essential
argument.

The conclusion we draw from Lemma 5.3 is that analysing the passing of the side interval tests
by the candidateX is very simple in practice: we merely need to consider the event that X̄(ℓ)−
Cornerℓ,F ∈ (0,∞)k> and X̄(r)− Cornerr,F ∈ (0,∞)k>.

Next we give a precise description of candidate ensembles X which are such that Lre,X , condi‐
tioned on the non‐intersection tests, has the F ‐conditional distribution of the top k curves of
Ln.

Applying Brownian Gibbs toLre,X

The resampled ensemble Lre,X passing the non‐intersection tests on [−2T, 2T ] requires

• Lre,X(i, x) > Lre,X(i+ 1, x) for i = 1, . . . , k − 1 and x ∈ [−2T, 2T ]; and
• Lre,X(k, x) > Ln(k + 1, x) for x ∈ [−2T, 2T ].
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Ln(·,−2T )

−2T `

1

2

3

−2T ` −2T `

Corner`,F

−2T `

Figure 5.3: Building Cornerℓ,F for k = 3. Cornerℓ,F is a vector, the (i − 1)st entry of which is
the unique smallest value which Ln(i − 1, ℓ) can adopt via affine translation before crossing
Ln(i, · ) on [−2T, ℓ]. The line L(2, · ) (red) intersects Ln(3, · ) (black) on [−2T, ℓ] (first panel),
so Ln(2, · ) (dotted red) is affinely translated until just touching, but not crossing Ln(3, · ) (sec‐
ond panel); the translated value of Ln(2, ℓ) is Corner

ℓ,F
2 . This process is then repeated for the

line Ln(1, · ) (blue). Then Ln(1, · ) (dotted blue) intersects the translated curve Ln(2, · ) (red),
so Ln(1, · ) is affinely translated until just touching, but not crossing Ln(2, · ) (third panel);
the translated value of Ln(1, ℓ) is Corner

ℓ,F
1 . The result of these translations is shown in the

fourth panel. This procedure depends on the collection of bridges on [−2T, ℓ], justifying the
dependence of Cornerℓ,F on F .

We denote by Pass(X) the indicator for the event described by these two bullet points. (In
[Ham19a], an analogous indicator obtained by restricting these two bullet points to x ∈ [ℓ, r] is
denoted T3(X), where 3 represents the test of non‐intersection on the middle interval being the
third in a sequence of tests.)

Now we may describe a class of candidate ensembles which, conditioned on {Pass(X) = 1},
have the desired F ‐conditional distribution. Let A ⊆ [ℓ, r] be an F ‐measurable random closed
set. Define the candidate ensembleX : JkK× [ℓ, r] → R as a collection of k independent Brown‐
ian bridges, the ith one from (−2T,Ln(i,−2T )) to (2T,Ln(i, 2T )), conditioned onNonIntALn(k+1,·).
(Recall that NonIntAf is the event that the bottom curveX(k, x) is larger than f(x) for all x ∈ A.)
Also define X ′ : JkK × [ℓ, r] → R in the same way, with the additional conditioning that
X̄ ′(x) − Corner

x,F ∈ (0,∞)k> for x ∈ {ℓ, r}; we introduce this variant candidate ensemble
as it is the form that the jump ensemble will take.

BothX andX ′ have the desiredF ‐conditional distribution on passing the non‐intersection tests.
To prove this, we first need a fact about decompositions of Brownian bridges. This property
of Brownian bridges also explains why there is no difficulty in conditioning on the potentially
complicated objects, the side bridges of Ln, as mentioned in Remark 5.2. The proof of this fact
is a straightforward checking of covariances and is omitted.

Lemma 5.4. Let T > 0 and x1, . . . , xm ∈ [−2T, 2T ] with x1 < . . . < xm, for some m ∈ N.
Let x0 = −2T and xm+1 = 2T . Let B be a Brownian bridge (with arbitrary fixed starting and
ending point values) on [−2T, 2T ]. Then, conditionally on

(
B(x1), . . . , B(xm)

)
, the distribution of
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(
B[xi,xi+1]

)m
i=0

is that ofm+ 1 independent Brownian bridges, with the ith one of duration xi−xi−1.

Lemma5.5. ForX as defined above, conditionally onF , the following two laws on C∗,∗([−2T, 2T ],R)k
are equal:

PF
(
Lre,X ∈ · | Pass(X) = 1

)
and PF

(
Ln ∈ ·

)
.

The same holds withX ′ in place ofX .

Proof. Let B : JkK × [ℓ, r] → R be the restriction to [ℓ, r] of a collection of k independent Brow‐
nian bridges on [−2T, 2T ], with the ith having starting and ending points (−2T,Ln(i,−2T ))
and (2T,Ln(i, 2T )). Lemma 5.4, combined with the Brownian Gibbs property possessed by Ln,
implies that the F ‐conditional distribution of Ln restricted to the top k curves on [ℓ, r] is that
of Lre,B conditioned on the event {Pass(B) = 1}. It is immediate that this latter distribution is
the same as that of Lre,X conditioned on {Pass(X) = 1}, as the law of X is just that of B with
an additional conditioning that is consistent with {Pass(B) = 1}. That is, {Pass(B) = 1} is a
subset of NonIntALn(k+1,·), and the distribution of B conditioned on NonIntALn(k+1,· ) is that of X.

Since the law of X ′ is that of X conditioned on passing the side interval tests, and since condi‐
tioning on {Pass(X) = 1} is a stronger one than conditioning on X passing the side intervals
test, i.e., the former event is contained in the latter, the argument of the previous paragraph holds
for the candidate ensembleX ′ as well.

Having completed the general set up and groundwork of candidate ensembles, we may now turn
to describing the jump ensemble itself.

Parameters of the jump ensemble

We start with two parameters, k ∈ N and ε > 0. The first is simply the number of curves of Ln

that we are studying, which will also be the number of curves in the jump ensemble. The second
is to be understood as the Brownian probability of the event that we wish to analyse under the
law of Ln, but is formally simply a positive parameter. The logic of the jump ensemble is to set
the parameters according to the event we wish to study.

Though in the discussion in the preceding subsections we were working with a deterministic
interval [ℓ, r], for the jump ensemble we will in fact need to work on a particular random subin‐
terval [l, r] of [−2T, 2T ] which will be defined shortly. All the arguments and statements of the
previous subsections of Section 5.1 will hold true with l and r in place of ℓ and r, as can be easily
checked, since l and r will be defined in terms of only the lower curve Ln(k + 1, · ); this data is
present in F , and so, conditional on F , l and r can safely be thought of as being deterministic.

In Section 5.1 we introduced a parameter T . For the jump ensemble, the value of T is determined
by both parameters k and ε, and is given by

T := Dk(log ε−1)1/3, (5.2)
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where Dk is given by (4.3). The value of T given in (5.2) will be its fixed value for the remainder
of Part II.

Remark 5.6. Though not needed for our arguments, here is a heuristic idea of why this is the
form of T we select; a fuller discussion is available in the beginning of [Ham19a, Chapter 4].
We see that a larger value of T gives more space for a run‐up, which helps the candidate pass
the non‐intersection test on the middle interval. However, as T gets larger we must also grapple
with the globally parabolic curvature of Ln, which means that the starting and ending points
of the candidate ensemble will fall quadratically. Simply put, there is more space for the run‐up
before the jump, but the required jump is higher as the starting point is lower. This selection of
T—in particular the 1/3 exponent of log ε−1—balances these opposing forces and in some sense
maximises the non‐intersection test probability of the to‐be‐defined jump ensemble.

Remark 5.7. This same reasoning of balancing these opposing forces of curvature and run‐up
advantage is what shows that a run‐up is not sufficient to handle the second instance of lower
curve data discussed in Subsection 5.1, as explained in the beginning of [Ham19a, Chapter 4].
Indeed, what that discussion essentially shows is that even with the well‐tuned choice of T made
above, there exists data in F with sufficiently high probability for which the Brownian bridge
candidate ensemble (which has forgotten all data about the lower curve) is unable to pass the
non‐intersection test with sufficiently high probability.

We now record a certain upper and lower bound that the parameter ε is required to meet for
technical reasons; these constraints also previously appeared in the statement of Theorem 4.8.

ε < e−1 ∧ (17)−1/kC−1/k
k D−1

k ∧ exp
{
− (24)6d6/D3

k

}
and

ε > exp
{
−
(
c/2 ∧ 21/2

)
D−1

k n1/12
}
.

(5.3)

As we noted in Remark 4.9, both these bounds do not cause any difficulties in practice. And, in
the case that n = ∞, the lower bound becomes simply ε > 0.

With these definitions, we may start making precise the notion introduced earlier of a coarsened
version of the underlying curve.

Coarsening the lower curve

Let c+ : [−T, T ] → R be the least concave majorant of Ln(k + 1, · ) : [−T, T ] → R, and define
a random interval [l, r] by

l = inf
{
x ∈ [−T, T ] | c′+(x) ≤ 4T

}
and

r = sup
{
x ∈ [−T, T ] | c′+(x) ≥ −4T

}
.

We can think of c+ as a first coarsening of the lower curve Ln(k + 1, · ). As indicated earlier,
the interval [l, r] will play the role of [ℓ, r] in Section 5.1. Note that though random, l and r are
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functions of the curve Ln(k + 1, · ) and not of the k curves we are attempting to study. The
purpose of defining this random interval is that on it we are guaranteed some control over the
coarsened lower curve profile (which we will be further coarsening before using in the definition
of the jump ensemble); we will not use any data about Ln(k + 1, · ) outside of [l, r] in defining
the jump ensemble, though it is available.

By the concavity of c+, it follows that l ≤ r, and in fact on a high probability favourable event
we will discuss in Section 5.1, [l, r] will be an interval of length at least T . We use the σ‐algebra
F defined in Section 5.1 on page 62, except with l and r in the place of ℓ and r. Though l and r
are random, the definition of F is adequate as l and r are determined by the lower curve data,
which is already present in its entirety in F .
We came to the conclusion in the heuristic discussion in Section 5.1 that the candidate process
X would need to use information about a coarsened version of the lower curve Ln(k + 1, · ) in
its definition, in order to have a high enough probability of passing the middle interval non‐
intersection test. So far we have defined a preliminary coarsening, the least concave majorant
c+, which was used to define the interval [l, r]. Now we define a further (and final) coarsening,
which we will then use in the next subsection to finally define the jump ensemble J .

To precisely describe the final coarsening of Ln(k + 1, · ) on [l, r], we first define a subset of
extreme points of c+. Let xExt(c+) be the x‐coordinates of the set of extreme (or corner) points
of the convex set {(x, y) : l ≤ x ≤ r, y ≤ c+(x)}. Note that necessarily l, r ∈ xExt(c+). Then
define the pole set P to be a subset of xExt(c+) such that

• l, r ∈ P ,
• p1, p2 ∈ P, p1 6= p2 =⇒ |p1 − p2| ≥ dip, and
• if x ∈ xExt(c+), then some element p ∈ P satisfies |p− x| ≤ dip.

Here dip ∈ [1, r− l] is a parameter called the inter‐pole distance; typically it is set to a unit order
quantity independent of ε and k, and usually it is comparable to the interval of interest under
study. For example, in the proof of our results, we will set it to be a multiple of d. The parameter
dip defines the minimum separation between consecutive elements of P . These elements of the
pole set P will be called poles. These above three properties do not necessarily define P uniquely,
and to address this we take P to be the subset satisfying these conditions of maximal cardinality,
and then maximal in lexicographic order.

Remark 5.8. By the definition of dip, it is clear that the size of the pole set, |P |, is at most 2T/dip.
So for constant order values of dip, |P | is potentially rather large. However, in arguments the only
poles which must be considered are essentially the ones within or adjacent to the interval under
study. In the proof of our main result our arguments will be focused on the single pole contained
in the interval [−2d, 2d] (if it is present), and will in one instance make use of the preceding
and succeeding poles. We guarantee ourselves this control on the number of poles in [−d, d] by
making an appropriate choice of dip.

The coarsened profile ofLn(k+1, · ) that will be used in defining the jump ensemble J is exactly



CHAPTER 5. PROOF FRAMEWORK 70

Ln(2, ·)

J(1, ·)

Ln(1, 2T )Ln(1,−2T )

l r−2T 2T

5
5

Figure 5.4: The jump ensemble candidate J (in blue) when k = 1. The lines in red are the poles,
i.e., the elements of the pole set P , which J is conditioned to jump over (recall that necessarily
l, r ∈ P ). The dashed red piecewise linear function is the Tent map. The lower curve is drawn
dotted and in light gray to indicate that J does not have access to this data, only the heights of
the solid poles. Making this jump forces the candidate to avoid a coarsened version of the lower
curve profile, which makes it more likely that it also avoids the full lower curve, as in this figure.
Moving back to [−2T, 2T ] from [l, r] gives the candidate space to make the jump. Though we
have shown the blue curve on the entirety of [−2T, 2T ], J is only the restriction to [l, r], and so
does not need to avoid the lower curve outside [l, r] (though it does in the illustrated instance).
The avoidance on the full interval [−2T, 2T ] is a requirement imposed only on Lre,J , which is
made by combining J with the data in F as in Figure 5.2.

the set {(p,Ln(k + 1, p) | p ∈ P )}, which J will be conditioned to jump over. We next make
precise what we mean by J jumping over the poles, and also give the definition of J .

Defining the jump ensemble

Conditional on F , let B : JkK × [−2T, 2T ] → R, with {B(i, · )}ki=1 a collection of k inde‐
pendent Brownian bridges on [−2T, 2T ] and B(i, · ) having endpoints (−2T,Ln(i,−2T )) and
(2T,Ln(i, 2T ) for i = 1, . . . , k. Note that the required information about the endpoint values
of Ln is present in F . The jump ensemble J : JkK × [l, r] → R is the restriction to [l, r] of B
conditioned on

(i) B(x)− Corner
x,F ∈ (0,∞)k> for x ∈ {l, r}; and

(ii) B(i, p) ≥ Ln(k + 1, p) for all p ∈ P and i = 1, . . . , k.

As we saw in Lemma 5.3, the conditioning present in point (i) ensures that J passes the side
interval tests. We will refer to the event in point (ii), namely J(p) ≥ Ln(k + 1, p) for p ∈ P , as
jumping over the pole p.
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As we noted when we stated its definition, the pole set P represents the coarsened version of the
lower curve Ln(k + 1, · ) that J has access to. By conditioning J to avoid this coarsened version
of Ln(k+ 1, · ), we increase the probability of J successfully avoiding all of Ln(k+ 1, · ) on [l, r],
compared (heuristically) to a candidate process with no information about the underlying curve.
Indeed we will see ahead in Proposition 5.9 that this increased probability is high enough to be
useful for our intended application.

It will be necessary in our arguments to consider howmuch J deviates from the shape defined by
the poles. To do this, define the F ‐measurable random piecewise affine function Tent : [l, r] →
R which linearly interpolates between the points (p,Ln(k+ 1, p)) for p ∈ P . Note that from the
definition of c+ we have that Tent is concave, and from the definition of l and r we have that the
slope of every linear segment of Tent lies in [−4T, 4T ], which for future reference we will express
(with abuse of notation, as Tent is only piecewise linear and not linear) as

slope(Tent) ∈ [−4T, 4T ]. (5.4)

See Figure 5.4 for an illustration of the jump ensemble and the Tent map.

We also note here that Lemma 5.5 implies that Lre,J , conditionally on F and {Pass(J) = 1},
has the F ‐conditional distribution of the top k curves of Ln on [−2T, 2T ]. Since Lre,J = J onJkK× [l, r], this implies that the distribution of J , conditionally on F and {Pass(J) = 1}, is that
of the top k curves of Ln on [l, r].

The probability that J passes the non‐intersection test

Now we shall address whether the jump ensemble is in fact able to pass the non‐intersection
test on the whole interval [−2T, 2T ] with sufficiently high probability, the task for which we
specifically defined the coarsened version of Ln(k + 1, · ) that J is conditioned to jump over.
Recall from Section 5.1 that we have an easy criterion for J passing the non‐intersection test on
the side intervals of [−2T, l] and [r, 2T ], which we called the side‐intervals test. This criterion is
that (J(i, x) − Cornerx,Fi )ki=1 ∈ (0,∞)k> for x ∈ {l, r}, which J is in fact conditioned to satisfy
above in point (i) of its definition. Thus all that remains is for J to pass the non‐intersection test
on the middle interval [l, r], i.e., for J to satisfy

J(1, x) > J(2, x) > . . . > J(k, x) > Ln(k + 1, x) ∀x ∈ [l, r].

In other words, the indicator of this last event is the same as the indicatorPass(J). It is important
for our approach that the event {Pass(J) = 1} being conditioned on does not have too low a
probability. Unlike the side intervals test, there is no simple criterion for the middle interval test.
In fact, an analysis was undertaken in [Ham19a] to obtain an appropriately strong lower bound
on this probability, which holds on a high probability F ‐measurable favourable event Fav (that
we will define shortly). As that argument does not serve out expository purpose, we do not
present it here; instead we reproduce the statement from [Ham19a] in the next Proposition 5.9.
This is the statement we previously referenced as jump ensemble candidate proficiency.
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Proposition 5.9 (Jump ensemble candidate proficiency, Proposition 4.2 of [Ham19a]). We have
that

PF
(

Pass(J) = 1
)
≥ exp

{
−3973k7/2d2ipD2

k

(
log ε−1

)2/3} · 1Fav.

We will now define Fav, before returning to discuss the important role of Proposition 5.9 in our
approach.

The definition of Fav& the role of Proposition 5.9

The favourable event Fav is defined as the intersection

Fav = F1 ∩ F2 ∩ F3,

where

F1 =
{
Ln(i, x) ∈ T 2[−2

√
2− 1,−2

√
2+ 1] for (i, x) ∈ JkK × {−2T, 2T}

}
F2 =

{
−T 2 ≤ Ln(k + 1, x) ≤ T 2 for x ∈ [−T, T ]

}
,

F3 =
⋂
i∈JkK

{
Cornerl,Fi ∈

[
−T 2, T 2

]}
∩
{
Cornerr,Fi ∈

[
−T 2, T 2

]}
.

Note that Fav is anF ‐measurable event. As its name suggests, this event fixes good data inF on
which we have strong enough control to make our arguments. The reader should view this data
as being fixed in the arguments involving the jump ensemble, as we will be working only on this
event; the bound on P(Favc) just ahead allows us to take this liberty.
The form of the favourable event respects the parabolic curvature possessed by Ln. In particular,
since we are working on the interval [−2T, 2T ], we expect that at the endpoints the location of
Ln will be O(−T 2), which dictates the form of the three subevents F1, F2, and F3 above.

It is a simple calculation based on the definition of l and r that, on F2,

l ≤ −T/2 and r ≥ T/2.

We need the knowledge that the favourable event occurs with sufficiently high probability; this
is provided to us from [Ham19a]:

Lemma 5.10 (High probability of favourable event, Lemma 4.1 of [Ham19a]).

P (Favc) ≤ ε2
−5ckD

3
k .

In fact for our purposes it will be sufficient to note that 2−5ckD3
k ≥ 1 for all k, and so the upper

bound above is further bounded by ε.

Now we may discuss the central role of Proposition 5.9 in our argument. We will use it to reduce
the problem of understanding the probability of an event under the F ‐conditional law of Ln to
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understanding the same under the law of J . For concreteness, let us illustrate this by attempt‐
ing to bound the probability that the vertically shifted kth curve Ln(k, · ) − Ln(k,−d) lies in a
measurable subset A ⊆ C0,∗([−d, d],R) of continuous functions vanishing at −d, where d > 0.
Recall again that the F ‐conditional distribution of Ln on [l, r] is the same as the distribution of
Lre,J on [l, r] conditioned on the event that Pass(J) = 1, and also that Lre,J(i, · ) = J(i, · ) on
[l, r]. We assume that ε is small enough that [−d, d] ⊆ [−T/2, T/2] ⊆ [l, r], the last inclusion on
the event Fav. (This assumption on ε is implied by the condition that ε < exp(−(24)6d6/D3

k)
that is imposed in Theorem 4.8.) We also have to set the last parameter of the jump ensemble,
the inter‐pole distance dip, which we set as

dip = 5d, (5.5)

which will be its value in our application of the jump ensemble. Then we see that

P
(
Ln(k, · )− Ln(k,−d) ∈ A

)
= E [PF(Ln(k, · )− Ln(k,−d) ∈ A) · 1Fav] + P(Favc)
= E

[
PF
(
J(k, · )− J(k,−d) ∈ A | Pass(J) = 1

)
· 1Fav

]
+ P(Favc)

≤ E
[
PF(J(k, · )− J(k,−d) ∈ A)

PF (Pass(J) = 1)
· 1Fav

]
+ P(Favc)

≤ E
[
PF
(
J(k, · )− J(k,−d) ∈ A

)
· 1Fav

]
· exp

{
Ok(1)

(
log ε−1

)2/3}
+ P(Favc),

(5.6)

using Proposition 5.9 in the last inequality.

Theorem 4.8 asserts a bound of the form ε · exp(Ok(1)(log ε−1)5/6) on the left‐hand side of the
first line of the above display, where ε is the probability of A under the law of Brownian motion.
So in order to prove Theorem 4.8, the main step to be effected is to bound the first term after
the last inequality by a quantity of the same form. The notational equivalence we have just
made between the parameter ε of the jump ensemble and the Brownian motion probability of
the event of interest is one we will adopt formally: in the remainder of the proof of Theorem 4.8,
the parameter ε of the jump ensemble will have the value

ε := B[−d,d]
0,∗

(
A
)
. (5.7)

(As we will record formally soon, the parabolic invariance Lemma 4.7 allows us to reduce The‐
orem 4.8 to the case where K = 0.) With this choice of ε, the importance of Proposition 5.9 in
achieving the goal mentioned in the last paragraph is now clear, in particular that the exponent
of the log ε−1 in the exponent of the statement of Proposition 5.9 is 2/3 < 5/6. Looking back at
(5.6), to actually achieve this goal we need two bounds: that PF

(
J(k, · ) − J(k,−d) ∈ A

)
· 1Fav

and P(Favc) are both bounded by ε exp(Ok(1)(log ε−1)5/6).

The second bound is implied by Lemma 5.10. Finally, in the following Theorem 5.11, we have the
first bound, proving which will be the work of the next chapter. After stating this theorem and
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an immediate corollary, we will end this section by giving a brief summary of the jump ensem‐
ble. Recall that B[−d,d]

0,∗ is the law on C0,∗([−d, d],R) of a Brownian motion started at coordinates
(−d, 0).

Theorem5.11. Let d ≥ 1 andA ⊆ C0,∗([−d, d],R). There exist ε0 = ε0(d, k) = exp(−(24)6d6/D3
k)

and absolute constant G < ∞ such that, if B[−d,d]
0,∗ (A) = ε < ε0,

PF
(
J(k, · )− J(k,−d) ∈ A

)
· 1Fav ≤ ε ·Gd

1
2 ·D4

k(log ε
−1)

4
3 · exp

(
792 · d ·D5/2

k · (log ε−1)5/6
)
.

Given this theorem we may prove the main Theorem 4.8:

Proof of Theorem 4.8. By applying the parabolic invariance Lemma 4.7 with yn = −K, proving
Theorem 4.8 reduces to the caseK = 0. The condition that [K − d,K + d] ⊂ c/2 · [−n1/9, n1/9]
is exactly the one required to apply Lemma 4.7.

We have that

P
(
Ln(k, · )− Ln(k,−d) ∈ A

)
= E

[
PF
(
J(k, · )− J(k,−d) ∈ A

∣∣ Pass(J) = 1
)
· 1Fav

]
+ P(Favc)

≤ E

[
PF
(
J(k, · )− J(k,−d) ∈ A

)
PF (Pass(J) = 1)

· 1Fav

]
+ P(Favc).

By Lemma 5.10, P(Favc) < ε for the choice of Dk we have assumed. This bound requires (4.4),
whichwe have also assumed. By Proposition 5.9 andTheorem5.11, we find that the last expression
is bounded up to a constant factor by

ε · d
1
2 ·D4

k(log ε
−1)

4
3 · exp

(
792 · d ·D5/2

k · (log ε−1)5/6 + 3973k7/2d2ipD
2
k

(
log ε−1

)2/3)
+ ε

≤ 2ε · d
1
2 ·D4

k(log ε
−1)

4
3 · exp

(
4931 · d · k7/2 ·D5/2

k · (log ε−1)5/6
)
;

we have used that dip = 5d from (5.5), d ≥ 1, D1/2
k (log ε−1)1/6 ≥ 24d from the assumed upper

bound on ε, and 3973 × 52/24 + 792 ≤ 4931. Since x11/5 ≤ ex for all x ≥ 1, we may ab‐

sorb the factor d
3
2D

11
2
k (log ε−1)

11
6 by increasing the coefficient of the exponent by 1. This proves

Theorem 4.8.

Hence the remaining task is to prove Theorem 5.11. This is accomplished in Chapter 6. Be‐
fore proceeding to this, we give in the next subsection an important statement about stochastic
domination relations between the jump ensemble and certain Brownian bridges, and finally a
concluding subsection giving a brief summary of the jump ensemble which may act as a quick
reference for the reader.
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A stochastic domination property of the jump ensemble

In our proof of Theorem 5.11, at various points we will need to stochastically dominate J(k, · ) by
or have J(k, · ) stochastically dominate certain Brownian bridges. For this we will make use of
the following statement, which will be proven essentially using Lemma 5.4 to reduce stochastic
domination of processes to obvious stochastic dominations of point‐values.

Lemma 5.12. Fix n ∈ N and k ≤ n. Let ϕstart ≥ Ln(k,−2T ) and ϕend ≥ Ln(k, 2T ), and let
x ∈ [l, r]. Then, on Fav and conditionally on F ,

(i) The law of J(k, · ) (as a law on [l, r]) stochastically dominates the law of a Brownian bridge
from (l,−T 2) to (r,−T 2).

(ii) Conditionally on J(k, x), the law of J(k, · ) restricted to [l, x] stochastically dominates the
law of a Brownian bridge from (l,−T 2) to (x, J(k, x)). Under the same conditioning, the
law of J(k, · ) restricted to [x, r] stochastically dominates the law of a Brownian bridge from
(x, J(k, x)) to (r,−T 2).

(iii) The law of J(k, · ) is stochastically dominated by the law of the restriction to [l, r] of a
Brownian bridge from (−2T, ϕstart) to (2T, ϕend) which is conditioned to be above all poles,
above (l,Cornerl,Fk ), and above (r,Cornerr,Fk ).

(iv) Conditionally on J(k, x), the law of J(k, · ), restricted to [x, r], is stochastically dominated
by the law of the restriction to [x, r] of a Brownian bridge from (x, J(k, x)) to (2T, ϕend)which
is conditioned to be above all poles in [x, r] and above (r,Cornerr,Fk ).

Proof. Lemma 5.12(i) follows from (ii) by taking x = r and averaging, and noting that, on Fav,
J(k, r) ≥ Cornerr,Fk ≥ −T 2. So we prove (ii); in fact, we prove the first part of (ii) as the second
part is analogous.

Let B be a Brownian bridge from (l, J(k, l)) to (x, J(k, x)). Letting m = |P | and x1, . . . , xm

be the elements of P , we may apply Lemma 5.4 to decompose B at the elements of P . Since,
conditionally on J(k, l) and J(k, x), the distribution of J(k, · ) is that of B conditioned on the
values of B at elements of P being sufficiently high, the decomposition provided by Lemma 5.4
yields that the law of J(k, · ), conditionally on its values at l and x, stochastically dominates that
of B. Since, on Fav, J(k, l) ≥ Cornerl,Fk ≥ −T 2, it is clear that B stochastically dominates the
Brownian bridge described in Lemma 5.12(i), yielding the claim.

Now we turn to (iii). Given two intervals Ix for x ∈ {l, r}, consider the restriction to [l, r] of a
Brownian bridge B with starting point (−2T,Ln(k,−2T )) and ending point (2T,Ln(k, 2T )),
conditioned on B(x) ≥ Ln(k + 1, x) for all x ∈ P , and on B(x) ∈ Ix for x ∈ {l, r}. Call this
law B(Il, Ir).
Conditionally on J(k − 1, · ) as a process on [l, r], the law of J(k, ·) is B(Il, Ir) with Ix a finite
interval determined by J(k − 1, · ), in such a way that inf Ix = Cornerx,Fk , for x ∈ {l, r}. Using
the same decomposition from Lemma 5.4, it is clear that B(Il, Ir) is stochastically dominated by
B(I ′l , I ′r), where I ′x = [Cornerx,Fk ,∞) for x ∈ {l, r}.
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Averaging over J(k−1, · ), we find that the law of J(k, · ) is stochastically dominated by B(I ′l , I ′r).
On Fav, the law of the process described in Lemma 5.12(iii) is that of the Brownian bridge B in
the definition of B(I ′l , I ′r)with the endpoints shifted vertically upwards, which clearly maintains
the described stochastic domination.

The proof of (iv) is along the same lines as (iii).

Summary of the jump ensemble

The definition of the jump ensemble was rather involved, and here we provide a quick summary
of the main aspects of its definition which the reader should keep in mind in order to understand
the arguments leading to the proof of Theorem 5.11.

The jump ensemble has three parameters, ε > 0, k ∈ N, and dip > 0; and is defined on an interval
[−2T, 2T ], where T = Dk(log ε−1)1/3, with Dk given by (4.3). The interval [−2T, 2T ] contains
a random subinterval [l, r]. The jump ensemble J is the restriction to [l, r] of a collection of k
independent Brownian bridges, the ith from (−2T,Ln(i,−2T )) to (2T,Ln(i, 2T )), conditioned
on J(x) − Cornerl,F ∈ (0,∞)k> for x ∈ {l, r} and on J(p) > Ln(k + 1, p) for all p in the pole
set P . The elements of the pole set P have a minimum separation of dip, and are a subset of
[l, r]. This interval is defined in terms of the underlying curve Ln(k + 1, · ), and the relevant
consequence of its definition is that the slope (of each linear segment) of the Tent map (which
linearly interpolates the points (p,Ln(k + 1, p))) lies in [−4T, 4T ].
In our application, ε is set according to the Brownian motion probability of the event under
consideration, and dip = 5d.

We gain control over several of the random objects present in the above paragraph on a high
probability favourable event Fav. On this event, we have that [−T/2, T/2] ⊆ [l, r]; that Cornerl,F ,
Cornerr,F ∈ [−T 2, T 2]k; that Ln(k + 1, x) ∈ [−T 2, T 2] for x ∈ [−T, T ]; and that Ln(i, x) ∈
T 2[−2

√
2− 1,−2

√
2+ 1] for (i, x) ∈ JkK × {−2T, 2T}.

In the next section we discuss the conceptual framework underlying the proof of Theorem 5.11.

5.2 A conceptual framework in terms of costs

Notation. Wewill use the notationA . B to indicate that there exists a constantG < ∞which
is independent of ε, k, and d such that A ≤ GB. The value of Gmay however vary from line to
line.

We now begin discussing the ideas underlying the approach of the proof of Theorem 5.11. We fix
the curve index k that we are studying, and for the proof of Theorem 5.11 in this section and in
Chapter 6 adopt the abuse of notation

J( · ) = J(k, · ),
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which we will refer to as the jump curve; none of our arguments will involve the other curves of
the full jump ensemble.

The overarching conceptual framework is one of costs that a certain joint density of the jump
curve J must satisfy. This section will set up the quantities the proof will be working with,
introduce the costs these quantities must interact with, and conclude by showing that the proof
of Theorem 5.11 can be reduced to showing that these costs are met.

We would like to study the probability that the jump curve J lies in some A ⊆ C0,∗([−d, d],R),
where the probability of A under the law of Brownian motion is ε. As mentioned at the end of
the last section, the parameters of the jump ensemble are ε and k, with dip = 5d. Our aim is to
get a bound of ε on the jump curve probability ofA, up to a constant multiplicative factor which
is subpolynomial in ε−1.

Recall that the jump ensemble involves the notion of a pole set. We are provided control over the
minimum separation of consecutive poles, and so by our choice of dip = 5d we ensure that there
is at most one pole in the larger interval [−2d, 2d]. Thus there are two possibilities: either the
interval [−2d, 2d] contains a single pole, or no poles.
In the case where there are no poles in [−2d, 2d], there can of course be poles which are arbitrarily
close to [−2d, 2d], and we will see in our analysis that our bounds become too weak if a pole
is too close to a point under consideration. This is why we consider the presence of poles in
[−2d, 2d] even though the interval of interest is [−d, d]: when there is no pole in [−2d, 2d] we
can focus the analysis at the points ±d, which are then ensured a distance of at least d from the
nearest pole. When there is a pole, we will adopt a trick that will be described later to allow us
to step back from it, again giving us an order d distance from it.

In the scenario where there is no pole in [−2d, 2d], the jump curve is essentially just a Brownian
bridge on [−2d, 2d], and the argument for the probability comparison we claim is much more
straightforward. So for the purposes of the exposition in this sectionwe discuss themore difficult
case where there is a pole in [−2d, 2d].
By the Brownian Gibbs property, we have a direct way to write the probability of A for the jump
curve, given its endpoint values J(−2d) and J(2d), in terms of the Brownian bridge probability
ofA between those endpoint values. In some sense, our task is to show that this Brownian bridge
probability becomes a Brownianmotion probability when we take expectations over J(−2d) and
J(2d).

Translating between Brownianmotion and Brownian bridge

It is instructive to look at how Brownian motion probabilities translate to Brownian bridge prob‐
abilities. We remind the reader of a useful property of Brownian motion: if B is a Brownian
motion, then the distribution of B on an interval [x1, x2], conditionally on B(x1) and B(x2), is
that of Brownian bridge from (x1, B(x1)) to (x2, B(x2)).

Now suppose we are again working on [−2d, 2d], and suppose B is a rate one Brownian motion
started from x‐coordinate −4d according to some probability distribution µ. Right now it is
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not clear why we need the device of the measure µ, but we will retain it to give ourselves some
freedom which, by proper choice at a later point, will make the requirements more lenient. At
present it can be thought of as, and indeed will later be defined to be, the uniform measure on a
very large interval centred at 0.

On a heuristic level, the probability that B(−4d) ∈ [y, y + dy] and B(4d) ∈ [z, z + dz] is
given by (16πd)−

1
2 exp(−(y − z)2/16d) dµ(y) dz. By the Markov property, B( · ) − B(−d) is

standard Brownianmotion started at coordinates (−d, 0)when restricted to [−d,∞). Now, recall
that B[−d,d]

0,∗ is the law of standard Brownian motion on [−d, d], started at coordinates (−d, 0),

and that B[−4d,4d]
y,z is the law of rate one Brownian bridge from (−4d, y) to (4d, z). Then for

A ⊆ C0,∗([−d, d],R), we have the calculation

B[−d,d]
0,∗

(
A
)
= P

(
B( · )− B(−d) ∈ A

)
= E

[
P
(
B( · )− B(−d) ∈ A | B(−4d), B(4d)

)]
=

1√
16πd

∫ ∞

−∞

∫ ∞

−∞
B[−4d,4d]
y,z

(
Ã
)
· e−(y−z)2/16d dµ(y) dz, (5.8)

where Ã is the set of functions f in C∗,∗([−4d, 4d],R) such that f( · ) − f(−d), regarded as a
function with domain [−d, d], lies in A. As we said before, (16πd)−

1
2 exp(−(y − z)2/16d) is

exactly the conditional density of B(4d) at z given that B(−4d) is y. A very similar calculation
holds for the jump curve, which points us to what we should try to prove. Let fJ(y, z) be the
joint density of

Y ∗ := J(−4d) and Z∗ := J(4d)

at the point (y, z) ∈ R2; the ∗ is an adornment that will be removed in the final definition of Y
and Z that will be used in our actual arguments.

Suppose now, for simplicity, that the pole p in [−2d, 2d] is at zero and has height zero (i.e., p = 0
and Tent(p) = 0). Then, on Fav ∩ {P ∩ [−2d, 2d] 6= Ø},

PF
(
J( · )− J(−d) ∈ A

)
= EF

[
PF
(
J( · )− J(−d) ∈ A

∣∣∣ J(−4d), J(4d))]
= EF

[
B[−4d,4d]
J(−4d),J(4d)

(
Ã | J(0) ≥ 0

)]
≤
∫ ∞

−∞

∫ ∞

−∞

B[−4d,4d]
y,z

(
Ã
)

B[−4d,4d]
y,z

(
J(0) ≥ 0

) · fJ(y, z) dy dz.
(5.9)

In essence, our aim is to run this calculation forward, and the previous one backwards, in order
to get from the jump curve probability of A to the standard Brownian motion probability of A.
Then by direct comparison of the integrands, in order for the last line of the second calculation
to be roughly equal to the last line of the first calculation we would need

fJ(y, z) “ = ” B[−4d,4d]
y,z

(
J(0) ≥ 0

)
· d−

1
2 exp

(
−(y − z)2

16d

)
· dµ
dy

(y)
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= P
(
N

(
y + z

2
, 2d
)

≥ 0
)
· d−

1
2 exp

(
−(y − z)2

16d

)
· dµ
dy

(y).

Of course, we will have to provide ourselves some error margins in order to succeed. This is
hiding in the “=” symbol above, which means that the left side is bounded above by the right
side, possibly multiplied by a constant of the form exp(G(log ε−1)5/6), which we will often refer
to as the leeway factor; the notation of “=”, however, we use only in this instance. Since T =
Dk(log ε−1)1/3, we will also often refer to constants of the form exp(GT 5/2) as leeway factors.

So equivalently, what we require is that

fJ(y, z) ·
[
P
(
N

(
y + z

2
, 2d
)

≥ 0
)]−1

· d
1
2 exp

(
(y − z)2

16d

)
≤ exp

(
G(log ε−1)5/6

)
. (5.10)

Notice that we have temporarily ignored the issue of choosing µ and the slightly stronger demand
(than the above inequality) that will arise from its Radon‐Nikodym derivative with respect to
Lebesgue measure. We will return to this in a few paragraphs, but only promise here that the
cost will be polynomial in log ε−1 instead of exponential, and so will not substantively affect the
analysis.

Remark 5.13. This correspondence between the random variables, Y and Z (temporarily with
the ∗ adornment added), and the arguments of their joint density, y and z, is one that will be
maintained throughout the proof of Theorem 5.11. Sometimes we will also refer to the marginal
densities of Y or Z. By an abuse of notation (as Y and Z do not necessarily have the same
distribution), we will refer to both densities as fJ , distinguishing whether we mean that of Y or
Z based on whether the argument is y or z. This will not cause any confusion as at no point
will we refer to a marginal density at a specific value. Similarly, fJ(z | y) will be the conditional
density of Z given Y = y, evaluated at the point z, and so on.

The vault and slope costs

With this simplification, let us focus on the two terms multiplying fJ(y, z) on the left‐hand side
of (5.10). They arise from two conceptually distinct sources. The first of these two terms comes
from the potential difficulty a Brownian bridge faces in order to jump or vault over the pole, a
task which J is conditioned to accomplish. Accordingly we refer to this factor as the vault cost,
and it will be denoted by V ∗ (the ∗ being again an adornment that will be removed in the final
corrected version of V which we will use). The second of the two terms, on the other hand, is the
potential difficulty faced by a Brownian motion to attain the slope specified by y and z, which
may be equivalently be thought of as an increment, across an interval of length 4d. We refer to
this as the slope cost, and denote it by S∗. Thus,

V ∗ :=

[
P
(
N

(
y + z

2
, 2d
)

≥ 0
)]−1

S∗ := d
1
2 · exp

(
(y − z)2

16d

)
.

(5.11)
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Note that V ∗ behaves differently depending on the values of y and z; for example, if y + z is
positive, the probability is bounded below by a constant, and so V ∗ is bounded above by a
constant and is easily managed by the margin of error we have provided. On the other hand, if
y + z is negative, V ∗ can be seen to be roughly d

1
2 exp((y + z)2/16d), thus posing a much more

serious demand. More precisely,

V ∗ .
{
1 y + z > 0

d
1
2 · exp

(
(y+z)2

16d

)
y + z ≤ 0,

(5.12)

Our analysis will later break into cases based on this fact.

Thus, (5.10) says that roughly what we need to show, for some G < ∞, is that

fJ(y, z) · V ∗ · S∗ ≤ exp
(
G(log ε−1)5/6

)
.

The above heuristic description was idealised to highlight the main features of the approach,
but is in essence correct. We now discuss which aspects of the description change in the actual
approach. There were three simplifying assumptions: that the pole position p equals zero; that
the height of the pole is zero; and the postponement of the choice of µ. In addressing each of
these simplifications, we will come to the final quantities V and S, and we will see that V and S
respectively equal V ∗ and S∗ up to the leeway factor.

Addressing the simplifications

Pole position p = 0.

The first simplifying assumption we made in the heuristic description was that the pole in
[−2d, 2d] lies at 0. In general, of course, we have very limited control over the pole position as it
is determined by the (k + 1)st curve of the original line ensemble. This point will be addressed
essentially by changing our frame of reference horizontally.

Call the pole position p ∈ [−2d, 2d] and suppose p 6= 0. The coefficient of 1/2 for each of y
and z in V ∗ was due to the pole position of 0 being equidistant from −4d and 4d. One option
would be to maintain the random variables Y ∗ and Z∗ to be the values at ±4d, in which case
the coefficients would not be 1/2 but λ and 1 − λ for some λ ∈ [0, 1]. While the subsequent
analysis could possibly be adapted for this case, this would introduce an undesirable level of
complication to the formulas. So to maintain the symmetric coefficient of 1/2, we instead have
Y ∗ and Z∗ be the values at p− 4d and p+ 4d, i.e., J(p− 4d) and J(p+ 4d) respectively. (We will
introduce a further modification shortly which will be the final definition of Y and Z, without
the ∗ adornment.)
While on some level this is merely a trick, it is one which leads to very useful simplifications.
At a technical level, though p is a random variable, it is an F ‐measurable one, and so this trick
is sound: the relevant point is that, given the F ‐data, there is no obstacle to writing the law of
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J(·)

−2d 2dpp− 4d p+ 4d

−Y
Z

Figure 5.5: Illustrating the definition of Y and Z when P ∩ [−2d, 2d] 6= Ø. The Tent map is
depicted as the piecewise linear function drawn in dashed red. The single pole p in [−2d, 2d] is
depicted as a vertical red line. The jump curve is blue. In this figure Y is negative as J is below
Tent at p− 4d, and thus the distance indicated is−Y . The quantity Z is positive as J is above
Tent at p+ 4d.

the jump curve on [−2d, 2d] as the marginal of Brownian bridge on [p − 4d, p + 4d], between
correctly distributed endpoints, which is conditioned to jump over the pole at p.

Pole height Tent(p) = 0.

Now we address the height of the pole. Here also we essentially employ a change in the frame
of reference. At this point in our discussion, we have Y ∗ and Z∗ being the values of J(p − 4d)
and J(p+ 4d) themselves, i.e., the deviation from 0 = Tent(p). When Tent(p) 6= 0, the obvious
choice is to let Y and Z respectively represent the deviations of J(p − 4d) and J(p + 4d) from
Tent(p). But to make certain derivations slightly simpler in the sequel, we instead let the final
definitions of Y and Z be the respective deviations of J from Tent at p− 4d and p+ 4d, i.e.,

Y := J(p− 4d)− Tent(p− 4d),

Z := J(p+ 4d)− Tent(p+ 4d).
(5.13)

See Figure 5.5. This is the final definition of Y and Z which will be maintained for the rest of
the argument, at least on the event that P ∩ [−2d, 2d] 6= Ø. (On the other event, where there is
no pole, they will have conceptually analogous but different definitions.)

The choice ofµ.

We still have to make a suitable choice for µ. We start by providing some intuition as to the role
of µ.
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Since our approach tomove from jump curve probabilities (5.9) to Brownianmotion probabilities
(5.8) is somewhat crude, in the sense that we are trying to directly compare the integrands to
conclude that the integrals are comparable, in order to succeed we cannot allow the integrand
in (5.8) to be zero when the integrand in (5.9) is not small. This suggests that the support of µ
should be the support of the law of Y , i.e., the support of fJ(y) (recall from Remark 5.13 that
this is the marginal density of Y ). However, it is reasonable to assume that fJ(y) > 0 on the
entire real line, and we run into a problem when we try to find a full support measure µ that
also satisfies the constraints imposed by the costs V and S. This will be shown in the discussion
in the following paragraphs. Heuristically, the solution will be to let µ have support only where
fJ(y) is not too small in some sense that we will specify.

From the above expressions for V ∗ and S∗, we see that, in the worst case, the total cost to be

paid is exp
(

y2

8d +
z2

8d

)
. This tells us that we cannot afford for dµ

dy to be too small anywhere, as

the additional cost corresponding to the choice of µ will be the reciprocal of this derivative. The
logic behind this inference is as follows: in the worst case, we have (without loss of generality)
y < 0, as well as the condition J(0) ≥ 0, where for the sake of simplified discussion we have
again assumed p = 0 and Tent(p) = 0. A Brownian bridge forced to make a large jump (from
y to 0) in unit order time will, because of the difficulty, make the required jump with very little
extra margin. So heuristically we may think of the J(0) ≥ 0 condition as being J(0) = 0. But
the density of a Brownian motion which is 0 at 0 having value y at −4d and z at 4d is exactly
(8πd)−1 exp

(
−y2/8d− z2/8d

)
. Thus we expect that this is the best density bound we can hope

for J as well, which means any extra requirement imposed by dµ
dy must be absorbable in the

leeway factor of exp
(
G(log ε−1)5/6

)
.

In other words, we require

dµ
dy

(y) ≥ exp
(
−G(log ε−1)5/6

)
. (5.14)

This bound cannot hold for all y for the density of a probabilitymeasure. But a closer look at (5.9)
shows a modification we may make to that calculation: we can look for the density bound on
fJ(y, z) that we have been discussing for y and z in a good region, and find a separate argument
for why the contribution of the integral from the bad regions is O(ε). More precisely, call the
good region G(1)

R ⊆ R2 (R is a parameter we will set later, and the 1 in the superscript refers
to the fact that this is the first case, when a pole is present), and let ỹ = y + Tent(p − 4d),
z̃ = z + Tent(p+ 4d); this is so that Y = y implies J(p− 4d) = ỹ, and similarly Z = z implies
J(p+ 4d) = z̃. Then, on Fav ∩ {P ∩ [−2d, 2d] 6= Ø},

PF
(
J( · )− J(−d) ∈ A

)
(5.15)

= EF

[
PF
(
J( · )− J(−d) ∈ A | J(p− 4d), J(p+ 4d)

)]
≤ EF

[
PF
(
J( · )− J(−d) ∈ A | J(p− 4d), J(p+ 4d)

)
· 1

(Y,Z)∈G(1)
R

]
+ PF

(
(Y, Z) 6∈ G(1)

R

)
= EF

[
B[p−4d,p+4d]
J(p−4d),J(p+4d)

(
Ã | J(p) ≥ Tent(p)

)
· 1

(Y,Z)∈G(1)
R

]
+ PF

(
(Y, Z) 6∈ G(1)

R

)
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≤
∫∫

G(1)
R

B[p−4d,p+4d]
ỹ,z̃

(
Ã
)

B[p−4d,p+4d]
ỹ,z̃

(
J(p) ≥ Tent(p)

) · fJ(y, z) dy dz + PF
(
(Y, Z) 6∈ G(1)

R

)
,

where, recall, Ã is the set of functions f in C∗,∗([−4d, 4d],R) such that f( · ) − f(−d), regarded
as a function with domain [−d, d], lies in A. Thus we see that, if we can show the second term
in the final displayed line is O(ε), then we only require the density bounds associated with V

and S for (y, z) ∈ G(1)
R , and the same holds true for the lower bound on dµ

dy (y). It will turn out

that including the condition (y, z) ∈ [−RT 3/2, RT 2]2 in the definition of G(1)
R allows us to obtain

the O(ε) bound on the second term. (We will remark later in Section 5.2 on why we require the
lower bound to be −RT 3/2 and not −RT 2.) So we only need to meet the condition (5.14) for
y, z ∈ [−RT 3/2, RT 2]. An easy choice which meets this requirement is the uniform measure on
[−RT 2, RT 2], and so we let µ be this measure. Thus, we set

dµ
dy

(y) = (2RT 2)−1,

for y ∈ [−RT 2, RT 2]. We will treat separately the corresponding cost, which is equal to 2RT 2,
and not include it in either V or S.

The good regions

We now give the definition of G(1)
R as a subset of R2.

G(1)
R =

(y, z) ∈ R2 :
y ∈ (−RT 3/2, RT 2),
z ∈ (−RT 3/2, RT 2),
|y − z| < 2RT 3/2

 . (5.16)

We have included an extra condition that |y − z| ≤ 2RT 3/2. To have the O(ε) upper bound
on the probability of (Y, Z) ∈ G(1)

R means that the increment of J across an interval of 8d must
be bounded by O(T 3/2) = O((log ε−1)1/2) with probability at least 1 − ε. This is plausible,
on the basis that the probability that a Brownian motion has an increment of size greater than
O((log ε−1)1/2) over a unit order interval is polynomial in ε. In fact, we have the following bound
on the event that (Y, Z) ∈ G(1)

R .

Lemma 5.14. We have for R ≥ 3 and d ≥ 1

PF
(
(Y, Z) 6∈ G(1)

R

)
·1Fav,P∩[−2d,2d] ̸=Ø .

(
εR

2D3
k/8d + ε(R−3)2D3

k/2
)
·exp

(
13R2D

5/2
k

(
log ε−1

)5/6)
.

To prove this, we will actually make use of a similar but weaker statement about a good region
G(2)
R ⊆ R2, the difference being that the bound on the probability that (Y, Z) ∈ G(2)

R will hold
regardless of the presence or absence of a pole in [−2d, 2d]. We define

G(2)
R =

(y, z) ∈ R2 :
y ∈ (−RT 2, RT 2),
z ∈ (−RT 2, RT 2),
|y − z| < 2RT 3/2

 . (5.17)
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Our earlier definitions of Y and Z were on the F ‐measurable event that P ∩ [−2d, 2d] 6= Ø and
do not make sense otherwise, as they are deviations of J from Tent at points defined relative to
p. So on the event that P ∩ [−2d, 2d] = Ø, we define

Y := J(−d)− Tent(−d)

Z := J(d)− Tent(d).
(5.18)

In the following lemma, Y and Z are defined in this case‐specific manner.

Lemma 5.15. We have that for R ≥ 3

PF
(
(Y, Z) 6∈ G(2)

R

)
· 1Fav .

(
εR

2D3
k/4d + ε(R−3)2D3

k/2
)
exp

(
13R2D

5/2
k

(
log ε−1

)5/6)
.

While we defer the proofs of these lemmas to Section 6.1, let us say a fewwords about its approach.
The statements about Y and Z being bounded above in absolute value by RT 2 are proved by
stochastically dominating J by an appropriate Brownian bridge on Fav, and similarly with the
roles of J and the Brownian bridge reversed for the lower bound. The slightly trickier issue is
bounding the increment across the interval of length 8d. We postpone discussing this point.

Based on the form of the statements of Lemmas 5.14 and 5.15, we set R (somewhat arbitrarily) as

R = 6
√
d, (5.19)

so that, for small enough ε, and since d ≥ 1 andDk ≥ 2 (see (4.3)),

PF
(
(Y, Z) 6∈ G(1)

R

)
· 1Fav,P∩[−2d,2d] ̸=Ø ≤ ε and PF

(
(Y, Z) 6∈ G(2)

R

)
· 1Fav ≤ ε.

The final costs

Having addressed the three simplifications in the heuristic derivation, let us see how the costs
have changed. Recall that the random variables Y and Z are respectively the quantities J(p −
4d) − Tent(p − 4d) and J(p + 4d) − Tent(p + 4d). As immediately preceding (5.15), let ỹ =
y+Tent(p− 4d) and z̃ = z+Tent(p+ 4d), so that Y = y implies J(p− 4d) = ỹ, and similarly
Z = z implies J(p+ 4d) = z̃. The final definitions of V and S are

V := B[p−4d,p+4d]
ỹ,z̃

(
J(p) ≥ Tent(p)

)−1
= P

(
N

(
y + z

2
, 2d
)

≥ Tent(p)− Tent(p− 4d) + Tent(p+ 4d)
2

)−1

S := d
1
2 · exp

(
1
16d

(ỹ − z̃)2
)

= d
1
2 · exp

(
1
16d

(y − z + Tent(p− 4d)− Tent(p+ 4d))2
)
.
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For (y, z) ∈ G(1)
R , we have that S and V differ from S∗ and V ∗ by factors which can be absorbed

within the leeway factor, which we show now. We will have, on expanding the second square in
the exponent of S, some extra terms apart from the (y− z)2/16d present in S∗. The extra factor
is

exp
(

1
16d

(Tent(p− 4d)− Tent(p+ 4d))2 +
1
8d

(y − z)(Tent(p− 4d)− Tent(p+ 4d))
)
.

(5.20)
In this expression, we see immediately that the first term in the exponent does not cause a
problem: since Tent has slope bounded in absolute value by 4T (recall (5.4)), it follows that
|Tent(p− 4d)− Tent(p+ 4d)| ≤ 32Td, so that

1
16d

(Tent(p− 4d)− Tent(p+ 4d))2 ≤ 64T 2d,

which is well belowO((log ε−1)5/6). We need the same bound to hold for the second term in the
exponent in (5.20) as well. Again using that Tent has absolute value of slope bounded by 4T ,
and that |y − z| ≤ 2RT 3/2 on G(1)

R , what we find is

(y − z)(Tent(p− 4d)− Tent(p+ 4d))) ≤ 2RT 3/2 · 32Td = 64RT 5/2d.

This is why we included the bound on |y − z| of order T 3/2 in the definition of G(1)
R . In other

words, we have that

S . S∗ · exp
(
64T 2d+ 8RT 5/2

)
≤ d

1
2 · exp

(
1
16d

(y − z)2 + 10RT 5/2

)
, (5.21)

the last inequality since d ≤
√
T/24, R ≥ 6 from (5.19), and 64/24 ≤ 3.

Remark 5.16. We here used that d ≤
√
T/24, which is equivalent to the assumption ε ≤

exp
(
−(24)6d6/D3

k

)
made in Theorems 4.8 and 5.11; we had previously made use of this inequal‐

ity in the proof of Theorem 4.8. Wewill bemaking use of this inequalitymany times in the sequel
as well, as here to bound expressions of the form T 2d by T 5/2/24, and also to reduce coefficients
when we have a margin to convert a small power of d to T .

Let us now finally analyse V in comparison with V ∗, which will show us why we included in
G(1)
R that y, z ≥ −RT 3/2.

We first focus on the right‐hand quantity in the probability expression of V , namely

Tent(p)− Tent(p− 4d) + Tent(p+ 4d)
2

.

By the fact that the slope of Tent is bounded in absolute value by 4T , this quantity is bounded
above by

1
2
× 4d× 4T +

1
2
× 4d× 4T = 16Td.
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Thus V is bounded as

V ≤ P
(
N

(
y + z

2
, 2d
)

≥ 16Td
)−1

.

As in the analysis of V ∗ in (5.12), we see that this quantity behaves differently depending on the
value of y + z:

V .
{
1 y + z > 32Td

d
1
2 · exp

(
1
16d(y + z − 32Td)2

)
y + z ≤ 32Td.

(5.22)

The bound in the worse case, on expanding the exponent and including only the factors which
differ from those of V ∗, is

exp
(
64T 2d− 4(y + z)T

)
.

Again the first term in the exponent, being (log ε−1)2/3, does not cause a problem, and so we
turn to the second term. Firstly we see that we have the trivial upper bound of 0 on the term
−4(y + z)T when y + z ≥ 0. When y + z < 0, we use that y, z ≥ −RT 3/2 from the definition
of G(1)

R to see that
−(y + z) · T ≤ 2RT 5/2.

We note that any weaker lower bound on y, z would not have been sufficient to obtain an upper
bound of order T 5/2 on the above quantity. From the previous few paragraphs we conclude that,
when y + z ≤ 32Td,

V . d
1
2 · exp

(
1
16d

(y + z)2 + 11RT 5/2d

)
, (5.23)

since d ≤
√
T/24 and R ≥ 1 imply 64T 2d+ 8RT 5/2 ≤ (64/24)T 5/2 + 8RT 5/2 ≤ 11RT 5/2.

So overall what we have observed is that for (y, z) ∈ G(1)
R , it is true that

V ≈ V ∗

S ≈ S∗,

in the sense that the left sides are bounded by the right sides up to multiplication by the factor
exp

(
G(log ε−1)5/6

)
. Thus, while we will work with V and S, the reader is advised to keep in

mind the more convenient expressions from (5.21) and (5.23) after ignoring the leeway factor.

The bound to be proved

With the quantities V and S defined, the following is what we will prove for (y, z) in the good
region G(1)

R and when P ∩ [−2d, 2d] 6= Ø:

fJ(y, z) · V · S ·
(
dµ
dy

(y)

)−1

≤ G1 · exp
(
G2(log ε−1)5/6

)
, (5.24)



CHAPTER 5. PROOF FRAMEWORK 87

for some finite constants G1 = G1(ε, k, d) and G2 = G2(k, d), and for ε < ε0 for some ε0 > 0.
Since the Radon‐Nikodym derivative term is 2RT 2, it is therefore sufficient to prove

fJ(y, z) · V · S ≤ G′
1 · exp

(
G′
2(log ε

−1)5/6
)
, (5.25)

for some G′
1 = G′

1(ε, k, d) < ∞ and G′
2 = G′

2(k, d) > 0; then (5.25) implies (5.24) with G1 =
G′
1 · 2RT 2 and G2 = G′

2. We end this section by showing that if we have (5.24), then we will
almost have our main Theorem 5.11. More precisely, we have the following lemma, which, along
with a proposition about the no‐pole case, will allow us to prove Theorem 5.11 modulo proving
these input statements.

Lemma 5.17. Suppose for all (y, z) ∈ G(1)
R we have (5.24). Then with G1 and G2 as in (5.24) we

have

PF
(
J( · )− J(−d) ∈ A, (Y, Z) ∈ G(1)

R

)
· 1Fav,P∩[−2d,2d] ̸=Ø . G1 · ε · exp

(
G2(log ε−1)5/6

)
.

Proof. Let B be a Brownian motion begun at p − 4d according to the distribution µ. We have
on Fav ∩ {P ∩ [−2d, 2d] 6= Ø},

PF
(
J( · )− J(−d) ∈ A, (Y, Z) ∈ G(1)

R

)
≤
∫∫

G(1)
R

B[p−4d,p+4d]
ỹ,z̃

(
Ã
)

B[p−4d,p+4d]
ỹ,z̃

(
J(p) ≥ Tent(p)

) · fJ(y, z) dy dz
Using (5.24), this integral is bounded by

G1d
− 1

2 exp
(
G2(log ε−1)5/6

) ∫∫
G(1)
R

B[p−4d,p+4d]
ỹ,z̃

(
Ã
)
e−

1
16d (ỹ−z̃)2 dµ(y) dz

. P
(
B( · )− B(−d) ∈ A

)
·G1 · exp

(
G2(log ε−1)5/6

)
= B[−d,d]

0,∗ (A) ·G1 · exp
(
G2(log ε−1)5/6

)
= G1 · ε · exp

(
G2(log ε−1)5/6

)
.

The second‐to‐last equality follows from the Markov property of Brownian motion.

In fact, we will establish (5.24) with G2 = 792 · d · D5/2
k and G1 = G′RT 4, where G′ is an

absolute constant independent of d, k, ε. This is the content of Lemmas 6.3, 6.6, and 6.14 ahead,
as 792d ≥ max(22R2, 41R) fromR’s value set in (5.19), and the observation above that to go from
(5.25) to (5.24) we must multiply G′

1 by 2RT 2. We will also establish the following proposition
in the no‐pole case:

Proposition 5.18. There exists a positive constant ε0 = ε0(d) > 0 such that if ε < ε0, then, on
Fav ∩ {P ∩ [−2d, 2d] = Ø},

PF
(
J( · )− J(−d) ∈ A, (Y, Z) ∈ G(2)

R

)
. ε · exp

(
756 · d ·D5/2

k · (log ε−1)5/6
)
.

Admitting these statements for now, namely Lemmas 5.14, 5.15, Proposition 5.18, and that we have
(5.24) with G1 = G′RT 4 and G2 = 792 · d ·D5/2

k , we may complete the proof of Theorem 5.11.
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Proof of Theorem 5.11. The quantity P (J( · )− J(−d) ∈ A) · 1Fav satisfies the following upper
bound:

P (J( · )− J(−d) ∈ A) · 1Fav

≤
[
PF
(
J( · )− J(−d) ∈ A, (Y, Z) ∈ G(1)

R

)
+ PF

(
(Y, Z) 6∈ G(1)

R

)]
1Fav,P∩[−2d,2d] ̸=Ø

+
[
PF
(
J( · )− J(−d) ∈ A, (Y, Z) ∈ G(2)

R

)
+ PF

(
(Y, Z) 6∈ G(2)

R

)]
1Fav,P∩[−2d,2d]=Ø.

(5.26)

Focus on the first term after the inequality of (5.26). By Lemma 5.14 and our choice of R = 6
√
d

from (5.19),

PF
(
(Y, Z) 6∈ G(1)

R

)
· 1Fav,P∩[−2d,2d] ̸=Ø . ε · exp

(
468 · d ·D5/2

k (log ε−1)5/6
)
.

From our assumption that we have (5.24) with G2 = 792 · d · D5/2
k and G1 = G′RT 4 for all

(y, z) ∈ G(1)
R , we get from Lemma 5.17

PF
(
J( · )− J(−d) ∈ A, (Y, Z) ∈ G(1)

R

)
· 1Fav,P∩[−2d,2d] ̸=Ø

. ε · d
1
2 ·D4

k(log ε
−1)

4
3 · exp

(
792 · d ·D5/2

k (log ε−1)5/6
) (5.27)

Now we turn to the second line of (5.26). From Lemma 5.15 and our choice ofR = 6
√
d in (5.19),

PF
(
(Y, Z) 6∈ G(2)

R

)
· 1Fav,P∩[−2d,2d]=Ø . ε · exp

(
468 · d ·D5/2

k (log ε−1)5/6
)
.

Finally from Proposition 5.18 we have

PF
(
J( · )− J(−d) ∈ A, (Y, Z) ∈ G(2)

R

)
. ε · exp

(
756 · d ·D5/2

k · (log ε−1)5/6
)
.

Substituting these bounds into (5.26) gives

PF
(
J( · )− J(−d) ∈ A

)
. ε · d

1
2 ·D4

k(log ε
−1)

4
3 · exp

(
792 · d ·D5/2

k · (log ε−1)5/6
)
,

completing the proof.

At this point we pause to review our progress. We have defined good regions G(1)
R and G(2)

R to
which we can restrict our analysis. We have also defined the costs that need to be met on G(1)

R in
order to prove Theorem 5.11, and indeed we have given the proof of Theorem 5.11 modulo these
costs being met and a few additional statements being proven. Concretely, our task is now to
establish (5.25) with the claimed values of G′

1 and G′
2; to prove Lemmas 5.14 and 5.15; and to

prove Proposition 5.18.

Establishing (5.25) will break into separate cases that will each require different arguments which
will all be handled in the next Chapter 6. An easy and amoderate case, respectively when y, z < 0
or y + z > 0, will also supply us the bounds we need to prove Lemmas 5.14 and 5.15. Chapter 6
will also address the case where a pole is not present in [−2d, 2d], i.e., Proposition 5.18.
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Chapter 6

Proving the density bounds

This chapter proves the statements of Chapter 5 that are needed in the proof of Theorem 5.11 as
given in Section 5.2; in particular, we prove here Lemmas 5.14 and 5.15, Proposition 5.18, and that
equation (5.24) holds with the claimed constants. In essence, these all follow from the last item,
i.e., (5.24), which is a bound on the density fJ(y, z).

The proof of this density bound is broken up into four sections. The first three are when a pole
is present in [−2d, 2d] and are distinguished by the values of Y = J(p− 4d)−Tent(p− 4d) and
Z = J(p + 4d)− Tent(p + 4d), roughly corresponding to an easy case of being below the pole
on both sides (Section 6.1); a moderate case of being above the pole on both sides (Section 6.2);
and a difficult case of being above and below the pole on either side (Section 6.3). Lemmas 5.14
and 5.15 are proved at the end of the moderate case, Section 6.2. The last section, Section 6.4,
addresses when there is no pole in [−2d, 2d], i.e., Proposition 5.18.

6.1 The easy case: Below the pole on both sides

Having set up the problem and identified what bounds (5.25) we require on fJ(y, z), we now
prove such a bound in a simple case. This case is when y < 0 and z < 0, which implies, from
(5.21) and (5.23), that

V · S . exp
(
y2

8d
+

z2

8d
+ 21RT 5/2

)
.

So, it is sufficient to prove

fJ(y, z) . d−1 · exp
(
− y2

8d
− z2

8d

)
. (6.1)

In this case we are aided by the presence of the pole. Essentially, the desired density of J at (y, z)
is bounded by the density of a particular pair of independent Brownian bridges at (y, z). More
precisely, on the event Fav∩{P∩[−2d, 2d] 6= Ø}, let p− and p+ be the elements ofP immediately
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preceding and succeeding p; and define

σ2−4d = 4d · (p− p− − 4d)
p− p−

σ24d = 4d · (p
+ − p− 4d)
p+ − p

.

The first quantity is the variance of a Brownian bridge defined on the interval [p−, p] at the point
p− 4d, while the second is the same for a Brownian bridge defined on [p, p+] at the point p+ 4d.

The following proposition is exactly the case which arose in [Ham19a] in the analysis of the
Brownian bridge regularity of regular ensembles, where it was Proposition 5.17. The proof is
fairly straightforward and we will shortly reproduce it here for completeness and because it aids
our exposition.

Proposition 6.1. We have that for y, z < 0,

1. Joint bound

fJ(y, z) · 1Fav,P∩[−2d,2d] ̸=Ø . d−1 · exp
(
− 1
2σ2−4d

y2 − 1
2σ24d

z2
)
· 1Fav,P∩[−2d,2d] ̸=Ø.

2. Marginal bounds

fJ(y) · 1Fav,P∩[−2d,2d] ̸=Ø . d−
1
2 · exp

(
− 1
2σ2−4d

y2
)
· 1Fav,P∩[−2d,2d] ̸=Ø

fJ(z) · 1Fav,P∩[−2d,2d] ̸=Ø . d−
1
2 · exp

(
− 1
2σ24d

z2
)
· 1Fav,P∩[−2d,2d] ̸=Ø.

We note that we have the following simple bounds on the variances:

Lemma 6.2. On Fav ∩ {P ∩ [−2d, 2d] 6= Ø}, we have σ24d, σ2−4d ∈ [45d, 4d].

Proof. The upper bound is obvious from the defining expressions. For the lower bound, we have

σ2−4d = 4d
(
1− 4d

p− p−

)
≥ 4d

(
1− 4d

5d

)
=
4
5
d,

since p− p− ≥ dip = 5d. A similar argument proves the corresponding bound for σ24d.

With these variance bounds and the density bounds of Proposition 6.1, the sufficient bound (5.25)
is immediate:

Lemma6.3. When y < 0 and z < 0, we have (5.25)withG′
2 = 21RD

5/2
k and withG′

1 independent
of ε, k, and d.
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Proof. From (5.21) and (5.23), the total cost is bounded above as

V · S . d · exp
(
y2

8d
+

z2

8d
+ 21RT 5/2

)
Proposition 6.1 combined with Lemma 6.2 says that fJ(y, z) . d−1 exp

(
− y2

8d −
z2

8d

)
, so we are

done.

Proof of Proposition 6.1. The second statement follows from the first by integrating out one of
the variables, so we prove only the first statement on the joint density bound. We are in the
situation where P ∩ [−2d, 2d] 6= Ø, and p is the unique element in this intersection. Let p− and
p+ be the adjacent elements of P . Let F [p−, p, p+] denote the σ‐algebra generated by F and the
random variables J(x) for x ∈ {p−, p, p+}. (These random variables provide extra information
only when P ∩ [−2d, 2d] 6= Ø.) The density fJ(y, z) has a counterpart f

F [p−,p,p+]
J under the

augmented σ‐algebra, and it is enough to show that

f
F [p−,p,p+]
J (y, z) · 1P∩[−2d,2d] ̸=Ø . σ−1

−4d · σ
−1
4d · exp

(
− y2

2σ2−4d
− z2

2σ24d

)
,

since then Proposition 6.1(1) will arise by averaging.

Under the law PF [p−,p,p+], the processes J( · ) on [p−, p] and [p, p+] are conditionally independent.
Since the data in F [p−, p, p+] causes {P ∩ [−2d, 2d] 6= Ø} to occur, it is thus enough to argue
that

• the conditional density ofY at s ≤ 0 is atmost a constantmultiple ofσ−1
−4d exp

(
−s2/2σ2−4d

)
;

• and the conditional density of Z at t ≤ 0 is at most σ−1
4d exp

(
−t2/2σ24d

)
.

These statements are straightforward to verify. Indeed, the conditional law under F [p−, p, p+]

of J(p − 4d) is normal with mean
(
1− 4d

p−p−

)
J(p) + 4d

p−p−
J(p−) and variance σ2−4d. Note that

J(p−) ≥ Tent(p−) and J(p) ≥ Tent(p) since p−, p ∈ P , and that Tent is affine on the interval
between consecutive pole set elements p− and p; thus, we see that this mean is at least Tent(p−
4d). The first bullet point statement follows from the form of the normal density since we have
shown that EF [p−,p,p+][Y ] ≥ 0, and we are concerned with the density only on (−∞, 0]. The
second bullet point is proved in the same fashion. This proves Proposition 6.1(1).

6.2 Themoderate case: Above the pole on both sides

In this section, we address the case of bounding fJ(y, z) when y + z > 0. Here is the main
proposition to be proved.

Proposition 6.4 (Density bound on increment). Let l/2 < x1 < x2 < r/2 be F‐measurable,
σ2 = x2 − x1 ≥ d, R be as in (5.19), and suppose that σ ≤ T 2 ·

√
d/2. Suppose also that
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x1 x2

s

t
6RTσ2

σ2

Figure 6.1: Illustrating Proposition 6.4 when s < t. The requirement that |s − t| ≥ 6RTσ2

comes from an error in an estimate of a certain slope; the blue curve on the left shows the
Gaussian‐like density centred at t− 6RTσ2 that dominates the joint density fx1,x2

J (s, t). Note
that the proposition does not require or use the presence of a pole in [x1, x2].

[x1 − d, x1 + d] ∩ P = Ø and [x2 − d, x2 + d] ∩ P = Ø. Let fx1,x2
J (s, t) be the joint density of

(J(x1)− Tent(x1), J(x2)− Tent(x2)) at (s, t). If s, t ∈ [−RT 2, RT 2] and |s− t| > 6RTσ2, then

fx1,x2
J (s, t) · 1Fav . σ−1 · d−

1
2T 2 · exp

(
− 1
2σ2

(
|s− t| − 6RTσ2

)2
+
4R2T 2

σ2
+ 36R2σ2

)
.

We also have that fx1,x2
J (s, t) . d−1 for all s, t ∈ R.

Remark 6.5. The condition that |s − t| > 6RTσ2 arises in the proof of Proposition 6.4 from
the error of an estimate on certain slopes; see Figure 6.1. For our purposes it does not cause any
difficulty, as when |y− z| < 6RTσ2 the costs will be always absorbable in the leeway factor. For
example, this is seen in the proof of Lemma 6.6 below.

Itmay not be immediately clear what is the relation of this proposition to the casewhere y+z > 0.
In fact, this proposition has been carefully stated to apply to a more general situation than just
the case of this section. For example, unlike Proposition 6.1, this proposition does not require a
pole to be present, and we will make use of it in the no‐pole case addressed in Section 6.4 as well.
We will also use Proposition 6.4 to prove Lemmas 5.14 and 5.15 near the end of the section, as it
provides a density bound in terms of the increment |y − z|, and so can be easily used to bound
the increment of J across an interval, a requirement which was briefly discussed in Section 5.2.

Before proving Proposition 6.4, we apply it to show that it yields the sufficient bound (5.25) in
the case that y + z > 0. To see that Proposition 6.4 is sufficient for this purpose, note that by
(5.22), when y + z > 0, V can be absorbed in the leeway factor, and so we essentially only need
to consider S. This cost, being d

1
2 exp((y + z)2/16d) up to the leeway factor, is in essence met

by the density bound provided by Proposition 6.4 by taking x1 = p − 4d and x2 = p + 4d; this
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is consistent with the ideas that Proposition 6.4 controls the increment and that the slope cost S
is a cost associated with large increments.

Lemma 6.6. When y + z > 0 and (y, z) ∈ G(1)
R , we have (5.25) with G′

2 = 22R2D
5/2
k and G′

1 =
G′T 2, where G′ is a constant independent of ε, k, and d.

Proof. In this case, we see that

V .
{
1 y + z > 32Td

d
1
2 · exp

(
64T 2d

)
0 < y + z < 32Td,

i.e., in this case V is bounded by the leeway factor d
1
2 · exp

(
G2T

5/6
)
with G2 = 8, since d ≤√

T/24 by the assumption ε ≤ exp(−(24)6d6/D3
k) (note that 8 < 22R2 sinceR ≥ 1 from (5.19)).

So we merely need to handle S, which from (5.21) is bounded above as

S . d
1
2 · exp

(
1
16d

(y − z)2 + 10RT 5/2

)
.

Note that if we set x1 = p− 4d and x2 = p+ 4d in Proposition 6.4, then σ2 = 8d. So with these
parameters, we see from the second part of Proposition 6.4 that, when |y − z| < 48RTd,

fJ(y, z) · V · S . exp
(

1
16d

|y − z|2 + 64T 2d+ 10RT 5/2

)
≤ exp

(
(48× 3R2 + 64)T 2d+ 10RT 5/2

)
≤ exp

(
19R2T 5/2

)
,

the last inequality sinceR ≥ 1 and again using that d ≤
√
T/24; we have also used that 64/24 ≤

3.

When |y− z| > 48RTd, we again make use of Proposition 6.4 with x2 = p+4d and x1 = p−4d.
The assumptions of Proposition 6.4 are satisfied since dip = 5d. So we obtain the bound

fJ(y, z) · 1Fav . d−1T 2 exp
(
− 1
16d

(|y − z| − 48RTd)2 +
4R2T 2

8d
+ 36R2 × 8d

)
when |y − z| > 48RTd. So, for |y − z| > 48RTd,

fJ(y, z) · V · S

. T 2 · exp
(
6RT |y − z| − 48× 3R2T 2d+

1
2
R2T 2 + 36R2 × 8d+ 64T 2d+ 10RT 5/2

)
≤ T 2 · exp

(
12R2T 5/2 + 10RT 5/2

)
= T 2 · exp

(
22R2T 5/2

)
,

the last inequality since we have |y − z| ≤ 2RT 3/2 on G(1)
R and using that 1 ≤ d ≤

√
T/24 and

R ≥ 1 from (5.19) to see that 36R2 × 8d ≤ 12R2T 1/2, allowing us to drop the middle four terms.
This verifies (5.25) with the claimed values.
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We may now turn to discussing the proof strategy of Proposition 6.4. In the proof of Propo‐
sition 6.1, we were greatly aided by the presence of the pole and the difficulty that a Brownian
bridge faces in making large jumps while remaining negative on either side. An interesting fea‐
ture of that argument is that no extra reasoning was needed to obtain a density bound from a
comparison with a Brownian object. Typically, such comparisons easily yield bounds on tail
probabilities, but these do not immediately imply a pointwise density bound.

In the proof of Proposition 6.4, aswell as in the case addressed in Section 6.3, both of these features
will be missing. Firstly, when J (still thought of as essentially a Brownian bridge) is allowed to
be positive on one side, the pole assists its attainment of the values on either side, and so it is
not clear why the Brownian density should bound that of the jump curve. This is especially true
for the case analysed in the next Section 6.3, where essentially the same bound as that proved
in Section 6.1 must hold. Secondly, we will not be able to access density bounds directly, but
will need to make further technical arguments to move from tail probability bounds to density
bounds. To accomplish the latter, we will make use of a technique of local randomization, in both
the case of this section as well as that of Section 6.3.

A short description of what we mean by local randomization is the following: Suppose that we
wish to obtain a bound on the density of J(x) for some x. We first obtain bounds on the tail
probabilities of J at certain points, say x−η and x+η for some η > 0, with no pole contained in
[x− η, x+ η]. To convert this to a density bound at x, we use that J , conditionally on its values
at x− η and x+ η, is a Brownian bridge on [x− η, x+ η]. Then the distribution of J at x can be
written as a convolution of the distributions at x− η and x+ η with a normal random variable,
which, when combined with the tail bounds, can be used to give a density bound. Heuristically,
the tail bound is being propagated and smoothed by the Brownian bridge to a density bound.

At the level of this description, no importance is given to the exact value of η and we have not
explained what we mean by “local” in local randomization. To aid our discussion, let us say
that a random variable X has a pseudo‐variance at most σ2 if we have a tail bound of the form
P(X < t) ≤ exp(−t2/2σ2). As the discussion of V and S in Section 5.2 showed, we require
the pseudo‐variance we obtain in sub‐Gaussian density bounds to be essentially optimal. And
indeed, if we knew that the distributions of J(x− η) and J(x+ η) were actually Gaussian, then
the density bound arising from the convolution mentioned would be precisely the correct one.
However, when all we have is a sub‐Gaussian tail bound and not an actual Gaussian distribution,
there is some extra gain in the pseudo‐variance we obtain for the final density bound. This is
captured in the following lemma, whose proof will be given at the end of the section.

Lemma6.7. LetX be a random variable such that P(X < x) ≤ A exp(− 1
2σ22

(x−x0)
2) for x < x0,

and let N be a normal random variable with mean 0 and variance σ21 which is independent of X .
Then the density f ofX +N satisfies

f(x) ≤ A+ 1√
2πσ1

· exp
(
− (x− x0)

2

2(σ1 + σ2)2

)
(6.2)

for x < x0, and is bounded by 1/
√
2πσ1 for all x ∈ R.
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The point we were expressing is seen in this formula by the fact that the pseudo‐variance guar‐
anteed by this bound is (σ1 + σ2)

2, which is greater than σ21 + σ22 as it would be had we known,
in the notation of the lemma, thatX has Gaussian distribution with variance σ22.

For η a positive constant, this gain in pseudo‐variance gives a density bound that is too weak for
our purposes; indeed, the bound is weaker than that claimed in Proposition 6.4. The solution is,
roughly, to take η → 0. In the language of the lemma, if σ2(η) → σ and σ1(η) → 0 as η → 0,
then

lim
η→0

(σ1 + σ2)
2 = σ2 = lim

η→0
(σ21 + σ22) ;

i.e., there is no gain in pseudo‐variance in the limit. However, taking η → 0 leads to a blow
up in the constant in front of the exponential in (6.2), and so we actually take η to be a small
ε‐dependent quantity, small enough that the gain in pseudo‐variance is manageable. This is the
argument of Proposition 6.4, which we turn to next. We will then give the pending proofs of
Lemmas 5.14 and 5.15, and finish the section by proving the technical tool Lemma 6.7.

The proof of Proposition 6.4 will actually obtain the claimed bound on the conditional density
fx1,x2
J (s | t), so we also need that the marginal density fx2

J (t) is bounded.

Lemma 6.8 (Marginal density is bounded). For any F‐measurable x ∈ [−2T, 2T ] such that [x−
d, x + d] ∩ P = Ø, let fx

J be the density of J(x) − Tent(x) conditionally on F . Then we have on
Fav that fx

J (s) ≤ π− 1
2d−

1
2 for all s ∈ R.

Proof. By assumption there is no pole in [x− d, x+ d]. So J(x), conditionally on J(x− d) and
J(x+ d), is given by

J(x) =
1
2
J(x− d) +

1
2
J(x+ d) +N

(
0,
1
2
d

)
.

Thus a formula for fx
J is

fx
J (s) =

1√
πd

∫ ∞

−∞
exp

(
−1
d
(t− s)2

)
dν(t),

where ν is the law of 1
2J(x− d) + 1

2J(x+ d). From this formula the claim follows.

We next cite a standard bound on normal probabilities before turning to the proof of Proposi‐
tion 6.4.

Lemma 6.9 (Normal bounds). Let σ2 > 0. If t > σ for the first inequality and t > 0 for the
second,

σ

2
√
2πt

exp
(
− t2

2σ2

)
≤ P

(
N(0, σ2) > t

)
≤ exp

(
− t2

2σ2

)
.
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Proof. Replacing t by σt, it suffices to take σ = 1. The standard lower bound

P(N(0, 1) > t) ≥ (2π)−1/2
t

t2 + 1
exp

(
−t2/2

)
for t ≥ 0 may be found in [Wil91, Section 14.8]. Note that t

t2+1 ≥ (2t)−1 for t ≥ 1. The upper
bound is simply the Chernoff bound.

The proof of Proposition 6.4 has two steps, as described in the earlier discussion. The first is a
tail bound on a quantity close to J(x1), conditionally on J(x2) (and with the roles of x1 and x2
reversed); the second is to convert this tail bound into a density bound using Lemma 6.7. The
first step is isolated in the next lemma, while the second step is performed in the immediately
following proof of Proposition 6.4.

Lemma 6.10. Let l/2 < x1 < x2 < r/2 be F‐measurable, σ2 = x2 − x1 ≥ d, and R be as in
(5.19). Suppose also that [x1 − d, x1 + d] ∩ P = [x2 − d, x2 + d] ∩ P = Ø. Then on Fav, for
r < t+ Tent(x2)− 4σ2(R + 2)T and any η < d/2,

PF
(
1
2J(x1 + 2η) + 1

2J(x1 − 2η) < r
∣∣ J(x2) + Tent(x2) = t

)
≤ exp

(
− 1
2σ2η

(
r − t− Tent(x2) + 4σ2(R + 2)T

)2)
,

where σ2η = σ2 · x1−l
x2−l

− η.

Similarly, for r < t+ Tent(x1)− 4σ2(R + 2)T and on Fav,

PF
(
1
2J(x2 + 2η) + 1

2J(x2 − 2η) < r
∣∣ J(x1) + Tent(x1) = t

)
≤ exp

(
− 1
2σ̃2η

(
r − t− Tent(x1) + 4σ2(R + 2)T

)2)
,

where σ̃2η = σ2 · r−x2
r−x1

− η.

Proof. We will only prove the first bound as the second bound is analogous, by repeating the
below argument with the roles of x1 and x2 switched, and r in place of l.

By assumption, there is no pole in [x1 − 2η, x1 + 2η] for all η ≤ d/2. For every such η, the
distribution of J(x1) given J(x2), J(x1 − 2η), and J(x1 + 2η) depends on only J(x1 − 2η) and
J(x1 + 2η), and is given by

J(x1) =
1
2
J(x1 − 2η) +

1
2
J(x1 + 2η) +N (0, η) . (6.3)

Given J(x2) = t + Tent(x2) and on Fav, Lemma 5.12(ii) implies that J , restricted to [l, x2],
stochastically dominates the Brownian bridge with endpoints (l,−T 2) and (x2, t + Tent(x2)).
We call this Brownian bridge B. Then the slope of the line connecting these two points is

m :=
t+ Tent(x2) + T 2

x2 − l
,
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and so E[B(x1 + r)] = t+ Tent(x2)− (x2 − x1 − r)m for any r such that x1 + r ∈ [l, x2]. Now,
conditionally on J(x2), we have a coupling such that

1
2
J(x1 + 2η) +

1
2
J(x1 − 2η) ≥ 1

2
B(x1 + 2η) +

1
2
B(x1 − 2η). (6.4)

Since the covariance of B is given for r1 ≤ r2 by

Cov(B(r1), B(r2)) =
(r1 − l)(x2 − r2)

x2 − l
,

it follows after some algebraic simplification that the variance of the right hand side of (6.4) is
σ2η. The mean of

1
2B(x1 + 2η) + 1

2B(x1 − 2η) is

t+ Tent(x2)− 1
2(x2 − x1 − 2η)m− 1

2(x2 − x1 + 2η)m = t+ Tent(x2)− σ2m.

Thus we have that, for r < t+ Tent(x2)− σ2m, on Fav ∩ {[x1 − d, x1 + d] ∩ P = Ø},

PF
(
1
2J(x1 + 2η) + 1

2J(x1 − 2η) < r
∣∣ J(x2) + Tent(x2) = t

)
≤ PF

(
N
(
t+ Tent(x2)− σ2m,σ2η

)
< r
)

≤ exp
(
− 1
2σ2η

(
r − t− Tent(x2) + σ2m

)2)
, (6.5)

the last inequality obtained for r < t+ Tent(x2)− σ2m via the upper bound from Lemma 6.9.

Now returning to the definition ofm, on Fav,

m =
t+ Tent(x2) + T 2

x2 − l
≤ (R + 2)T 2

T/4
= 4 (R + 2)T,

sincewe have assumed that t ≤ RT 2; that x2 ≥ l/2; and since, on Fav, l ≤ −T/2 andTent(x2) ≤
T 2.

Using this bound onm in (6.5) completes the proof of Lemma 6.10.

Proof of Proposition 6.4. We prove only the case of s < t; the other case is analogous, making
use of the second inequality of Lemma 6.10 instead of the first as we do in the case of s < t.

We first note that

σ2η =
(x2 − x1)(x1 − l)

x2 − l
− η ≤ σ2 − η. (6.6)

We will apply Lemma 6.7 to Lemma 6.10 using (6.3). The parameters of Lemma 6.7 are set as
follows (the formal notational conflict between σ1 or σ2 and ση should not cause confusion):
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X = 1
2J(x1−2η)+

1
2J(x1+2η)−Tent(x1), σ

2
1 = η, σ22 = σ2η, x0 = t+Tent(x2)−Tent(x1)−σ2m,

and A specified by the constant represented by . in the first inequality of Lemma 6.10.

This yields, on the event Fav∩{[x1−d, x1+d]∩P = Ø}, for each η < d/2, the following bound
on the conditional density of J(x1)− Tent(x1), conditionally on J(x2)− Tent(x2) = t:

fx1,x2
J (s | t) . η−

1
2 · exp

(
− 1

2 (ση + η1/2)
2

(
s− t+ Tent(x1)− Tent(x2) + 4σ2(R + 2)T

)2)

≤ η−
1
2 · exp

(
− 1
2 (σ2 + 2η1/2σ)

(
s− t+ Tent(x1)− Tent(x2) + 4σ2(R + 2)T

)2)
for s < t + Tent(x2) − Tent(x1) − 4σ2(R + 2)T . We used (6.6) when expanding the square in
the denominator of the exponent in the last inequality. Note that∣∣∣Tent(x1)− Tent(x2)

∣∣∣ ≤ 4T (x2 − x1) = 4Tσ2.

Using the previous equation, we obtain, on Fav ∩ {[x1 − d, x1 + d] ∩ P = Ø}, that

fx1,x2
J (s | t) . η−

1
2 · exp

(
− 1
2 (σ2 + 2η1/2σ)

(
s− t+MTσ2

)2)
,

for s ≤ t−MTσ2, whereM = 4+ 4(R+ 2) = 4(R+ 3).Now using the inequality (1+x)−1 ≥
1− x for x = 2η1/2σ−1, we find

fx1,x2
J (s | t) . η−

1
2 · exp

(
− 1
2σ2

(
s− t+MTσ2

)2
+

η1/2

σ3
(
s− t+MTσ2

)2)
. (6.7)

Let us focus on bounding the second term in the exponent. We expand the square and drop the
cross‐term, since s− t ≤ 0, to get that the second term is bounded above by

η1/2

σ3
(
(s− t)2 +M 2T 2σ4

)
≤ η1/2

σ3
(
4R2T 4 +M 2T 2σ4

)
,

the last inequality since s− t ∈ [−2RT 2, 0]. We now use this bound in (6.7) and set η1/2 = T−2σ
(which satisfies η < d/2 by assumption), to obtain

fx1,x2
J (s | t) . T 2

σ
exp

(
− 1
2σ2

(s− t+MTσ2)2 +
4R2T 2

σ2
+M 2σ2

)
.

The argument is complete by noting that fx2
J (t) . d−

1
2 by Lemma 6.8 and thatM ≤ 6R, since

M = 4R + 12 ≤ 4R + 2× 6
√
d = 6R from (5.19) and d ≥ 1.

The final statement in Proposition 6.4 of a constant bound on fx1,x2
J (s, t) for all values of s and

t follows immediately from (6.3) and the latter assertion of Lemma 6.7 with the parameters σ21 =
η = d/4, and again using that the marginal density satisfies fx2

J (t) . d−
1
2 from Lemma 6.8.
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We will now move towards the proofs of Lemmas 5.14 and 5.15, which use Propositions 6.1 and
6.4. Then we will conclude this section and this part of the argument by proving Lemma 6.7.

For the proofs of Lemmas 5.14 and 5.15 we will need two further statements, the first bounding
certain Gaussian integrals, and the other a standard tail bound on the supremum of a Brownian
bridge. These are the next two lemmas. We will make frequent use of Lemma 6.11 in the next
section as well.

Lemma 6.11. For a > 0,∫ ∞

0
exp

(
−ax2 + bx

)
dx .

{
a−

1
2 b ≤ 0

a−
1
2 exp

(
b2

4a

)
b ∈ R.

Proof. Completing the square, we find∫ ∞

0
exp

(
−ax2 + bx

)
dx =

∫ ∞

0
exp

(
−a

(
x2 − bx

a
+

b2

4a2

)
+

b2

4a

)
dx

=

√
π

a
exp

(
b2

4a

)
P
(
N

(
b

2a
,
1
2a

)
> 0
)

=

√
π

a
exp

(
b2

4a

)
P
(
N(0, 1) > − 1√

2a
b

)
.

For all b ∈ R this probability factor is bounded by a constant, which yields Case 2 of the state‐
ment. If b < 0 we may use the Chernoff bound for normal random variables to obtain Case
1: √

π

a
exp

(
b2

4a

)
P
(
N(0, 1) > − 1√

2a
b

)
≤
√

π

a
exp

(
b2

4a
− 1
2
· b

2

2a

)
=

√
π

a
.

Lemma 6.12. Let B be a Brownian bridge of length T from (0, 0) to (T, 0). Then we have

P

(
sup
[0,T ]

B(x) ≥ r

)
= P

(
inf
[0,T ]

B(x) ≤ −r

)
= e−2r

2/T .

Proof. The equality of the two quantities follows from Brownian symmetry. By Brownian scaling
the statement reduces to when T = 1, which is given by equation (3.40) in [KS98, Chapter 4].

Proof of Lemma 5.15. By Lemma 5.12(iii) we have that J is stochastically dominated by the re‐
striction to [l, r] of a Brownian bridge from (−2T, 2T 2) to (2T, 2T 2) conditioned to jump over
all the poles as well as Cornerl,Fk and Cornerr,Fk . This event being conditioned on has a constant
probability since, on Fav, the value of Tent at the poles, Cornerl,Fk , and Cornerr,Fk are all below
T 2 and T ≥ 1. We also have on Fav that−T 2 ≤ Tent ≤ T 2. Thus, for both the pole and no‐pole
cases of the definition of (Y, Z) from (5.13) and (5.18), on Fav,

PF
(
max

{
Y, Z

}
> RT 2

)
. B[−2T,2T ]

2T 2,2T 2

(
sup

t∈[−2T,2T ]

B(t) > (R− 1)T 2

)
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= exp
(
−1
2
(R− 3)2T 3

)
= ε(R−3)2D3

k/2,

using Lemma 6.12 in the second inequality. Similarly for the lower side, we have by Lemma 5.12(i)
that, on Fav, J stochastically dominates a Brownian bridge from (l,−T 2) to (r,−T 2). Thus again
using Lemma 6.12 and that −T 2 ≤ Tent ≤ T 2, and for both cases of the definition of (Y, Z),

PF
(
min

{
Y, Z

}
< −RT 2

)
· 1Fav ≤ B[l,r]

−T 2,−T 2

(
inf
t∈[l,r]

B(t) < −(R− 1)T 2

)
= exp

(
− 2
(r− l)

(R− 2)2T 4

)
≤ ε(R−2)2D3

k ,

since |r|, |l| ≤ T . We note that for our range of R, ε(R−2)2D3
k ≤ ε(R−3)2D3

k/2.

We are left with bounding

PF
(
|Y − Z| > 2RT 3/2,−RT 2 < Y,Z < RT 2

)
on Fav. Since the definition of Y and Z depends on whether P ∩ [−2d, 2d] = Ø or not (see
(5.13) and (5.18)), the bound we can obtain on the above probability depends on the same as
well. However, the bound in the case where a pole is present (which is the one claimed in the
statement of Lemma 5.15) actually holds for both cases; this is because the distance between
the points where Y and Z measure the deviation of J from Tent is 8d when a pole is present,
larger than the 2d it is when the pole is absent in [−2d, 2d]. So we will present the case where
P ∩ [−2d, 2d] 6= Ø, but exactly the same argument works in the other case as well, where it yields
a slightly stronger bound corresponding to 2d in place of 8d. Let us define

G =
{
(y, z) : −RT 2 < y, z < RT 2, |y − z| > 2RT 3/2

}
,

so that

PF
(
|Y − Z| > 2RT 3/2,−RT 2 < Y,Z < RT 2

)
=

∫∫
G
fJ(y, z) dy dz · 1Fav.

To bound this integral, we will use Proposition 6.4 to bound the density and make the change of
variables (u, v) = (y − z, y). Note that the range of y and z satisfies the hypotheses of Proposi‐
tion 6.4 with x1 = p − 4d, x2 = p + 4d, so that σ2 = 8d. These parameter choices satisfy the
hypotheses of Proposition 6.4 since dip = 5d; in particular, |y − z| ≥ 48RTd for all (y, z) ∈ G as
2RT 3/2 ≥ 48RTd since d ≤

√
T/24. Note that 36σ2 = 36× 8d = 288d. So, on Fav,∫∫

G
fJ(y, z) dy dz

. d−1T 2
∫∫

G
exp

(
− 1
16d

(|y − z| − 48RTd)2 +
R2T 2

2d
+ 288R2d

)
dy dz
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≤ 2d−1T 2
∫ RT 2

−RT 2

∫ ∞

2RT 3/2
exp

(
− 1
16d

(u− 48RTd)2 +
R2T 2

2d
+ 288R2d

)
du dv

= 2d−1T 2
∫ RT 2

−RT 2

∫ ∞

0
exp

(
− 1
16d

(u+ 2RT 3/2 − 48RTd)2 +
R2T 2

2d
+ 288R2d

)
du dv

. RT 4d−1 exp
(
R2T 2

2d
+ 288R2d

)
×
∫ ∞

0
exp

{
− 1
16d

(
u2 + 2u(2RT 3/2 − 48RTd) + 4R2T 3 − 192R2T 5/2d+ 482R2T 2d2

)}
du

. RT 4d−
1
2 exp

(
− 1
4d

R2T 3 + 12R2T 5/2 − 48× 3R2T 2d+
R2T 2

2d
+ 288R2d

)
≤ RT 4d−

1
2 exp

(
12R2T 5/2

)
εR

2D3
k/4d.

We have used Case 1 of Lemma 6.11 with a = 1/(16d) and b = −2(2RT 3/2 − 48RTd) for the
integral in the second‐to‐last line, since d ≤

√
T/24 implies that 2RT 3/2 − 48RTd ≥ 0, and

thus that b ≤ 0. In the last line, since 1 ≤ d ≤
√
T/24, we see that 288R2d ≤ 12R2T 1/2, and

thus the sum of the last three terms in the exponent of the penultimate line is negative and may
be dropped. Finally, since x ≤ exp(x5/8) for x ≥ 1, and since 1 ≤ d ≤

√
T/24 and R ≥ 1 from

(5.19), we have that RT 4d−
1
2 ≤ exp(R2T 5/2). This completes the proof of Lemma 5.15.

Proof of Lemma 5.14. Using Lemma5.15, it is enough to show that, onFav andwhenP∩[−2d, 2d] 6=
Ø, P

(
Y < −T 3/2

)
+ PF

(
Z < −T 3/2

)
is bounded by the right‐hand side in the Lemma 5.14’s

statement.

Since we are considering the situation where Y and Z are negative, we may use Proposition 6.1.
So from Proposition 6.1(2) and Lemma 6.2 we have that, on Fav ∩ {P ∩ [−2d, 2d] 6= Ø},

PF
(
Y < −RT 3/2

)
. d−

1
2

∫ ∞

RT 3/2
exp

(
− y2

8d

)
dy . exp

(
− 1
8d

R2T 3

)
= εR

2D3
k/8d,

wherewe have performed the change of variables y 7→ y+RT 3/2 and appliedCase 1 of Lemma6.11
with a = 1/(8d) and b = −RT 3/2/(4d) in the second inequality. Similarly, we have

PF
(
J(p+ 4d)− Tent(p+ 4d) < −RT 3/2

)
. εR

2D3
k/8d.

We conclude the section by providing the proof of the technical tool Lemma 6.7.

Proof of Lemma 6.7. Let ν be the law of X. For x < x0 and 0 < δ < 1, let x̃ = δ(x0 − x). Since
X and N are independent, we have

f(x) =
1√
2πσ1

∫ ∞

−∞
e−(x−y)2/2σ21 dν(y) =

1√
2πσ1

[∫
[x−x̃,x+x̃]

+

∫
[x−x̃,x+x̃]c

e−(x−y)2/2σ21 dν(y)
]
.
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From the first equality we see that the density is bounded by (
√
2πσ1)−1 for all x. For the stronger

bound for small enough x, note using the hypothesis on ν that the first integral in the right‐hand
side is bounded by∫

[x−x̃,x+x̃]

dν(y) ≤ ν
(
(−∞, x+ x̃)

)
≤ A · exp

(
−(x+ x̃− x0)

2

2σ22

)
= A · exp

(
−(1− δ)2(x− x0)

2

2σ22

)
,

where we have used that x+ x̃ is less than x0; this is due to δ < 1 and x < x0.

The second integral is bounded by exp
(
− x̃2

2σ21

)
= exp

(
− δ2(x−x0)

2

2σ21

)
. These inequalities hold for

all 0 < δ < 1, and so if we set δ = σ1/(σ1 + σ2), we obtain our result.

6.3 The difficult case: Above and below the pole on either side

At this stage we have proved the required bound on fJ(y, z) in the two cases where y, z < 0 or
y + z > 0. This leaves the case where y < 0, z > 0, and y + z < 0 (the case where y > 0
and z < 0 is clearly symmetric). Perhaps surprisingly, this turns out to be the most difficult case.
However, we now give a heuristic reason why we should expect the density fJ(y, z) to be largest
in this case, as a proxy for why this case is most difficult.

Recall that fJ(y, z) is the density of (Y, Z), which, from (5.13), are respectively the deviations of
J from Tent at p − 4d and p + 4d. So, the size of the density fJ(y, z) essentially represents a
comparison of the probability that J takes the values y + Tent(p − 4d) and z + Tent(p + 4d)
respectively at p − 4d and p + 4d to the probability of the same for Brownian motion. A larger
value of this density is obtained if J finds it easier to adopt the specified values than a Brownian
motion does. This is precisely what happens when y < 0, z > 0, and y + z < 0, as J has the
pole at p which pushes it up and helps it attain the value of z at p+ 4d; a Brownian motion has
no such assistance. Thus the density should be highest for this case. Considering the situation
in the two cases we have already analysed in Sections 6.1 and 6.2 should convince the reader that
in Section 6.1 the pole actually makes J ’s task more difficult than B’s, which has no pole, while
in Section 6.2, the pole has essentially no effect.

In this section, since y + z < 0, the vault cost V cannot be ignored. Thus we need a stronger
bound on fJ(y, z) than was required in Section 6.2; in fact, we need a bound of the same basic
form as that proved in Section 6.1. This is why the previous paragraph’s conclusion that the
density is highest in this case indicates that the required argument will be more delicate.

Let fJ(z | y) be the conditional density of Z at z given Y = y. Our aim will be the following
proposition.

Proposition 6.13. Let R be as in (5.19). If 40Td ≤ z ≤ 2RT 3/2 and y + z < 0,

fJ(z | y) · 1Fav,P∩[−2d,2d] ̸=Ø . d−
1
2 · exp

(
− z2

8d
+ 20RT 5/2

)
.
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Further, fJ(z | y) . d−
1
2 for all y, z ∈ R with y + z < 0.

First we show that Proposition 6.13 implies the sufficient bound (5.25) when y < 0, z > 0, and
y + z < 0 (and symmetrically when y > 0 and z < 0).

Lemma 6.14. When yz < 0, y + z < 0, and (y, z) ∈ G(1)
R , we have (5.25) with G′

2 = 41RD
5/2
k

and G′
1 = G′, where G′ is a constant independent of ε, k, and d.

Proof. We give the proof for when y < 0 and z > 0. From (5.21) and (5.23), we see that in this
case

V · S . d · exp
(
y2

8d
+

z2

8d
+ 21RT 5/2

)
. (6.8)

So it suffices to prove, for some G < ∞,

fJ(y, z) . d−1 · exp
(
− y2

8d
− z2

8d
+GT 5/2

)
.

There are two cases to consider. If z ≤ 40Td, then, from (6.8), V · S is bounded by

d · exp
(
y2

8d
+
402T 2d2

8d
+ 21RT 5/2

)
≤ d · exp

(
y2

8d
+ 30RT 5/2

)
since d ≤

√
T/24 and 402/(8× 24) ≤ 9. Noting that 30 < 41, it suffices to prove

fJ(y, z) . d−1 · exp
(
− y2

8d

)
.

This is provided by Proposition 6.1 and Lemma 6.2 since y < 0, and by Proposition 6.13’s latter
statement that fJ(z | y) . d−

1
2 .

Now suppose z > 40Td. Note that we also have z ≤ 2RT 3/2, since y < 0 and (y, z) ∈ G(1)
R

implies that |y − z| ≤ 2RT 3/2. So from Proposition 6.1, Lemma 6.2, and Proposition 6.13, we
obtain

fJ(y, z) . d−1 · exp
(
− y2

8d
− z2

8d

)
· exp

(
20RT 5/2

)
.

This completes the proof, after taking into account the extra factor of exp
(
21RT 5/2

)
which arises

from the expressions for V and S as in (6.8).

We next turn to discussing the proof ideas of Proposition 6.13. The claim of the proposition may
be a surprising one at first glance, for, in a slight abuse of the language of pseudo‐variance used
in Section 6.2, Proposition 6.13 says that J(p+ 4d)−Tent(p+ 4d), conditionally on J(p− 4d)−
Tent(p − 4d) being negative, has pseudo‐variance at most 4d; in contrast, a Brownian motion,
conditionally on its value at p − 4d, would have a much higher variance of 8d at the position
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p + 4d. So we must crucially use both that J(p− 4d)− Tent(p− 4d) < 0 (i.e., y < 0) and that
J must satisfy J(p) ≥ Tent(p).

Heuristically, because J is jumping over Tent(p) from a negative value at p − 4d, it will make
the jump with a very low margin. Thus the variance at p is not 4d as it would be for a Brownian
motion, but essentially 0. This explains how we can get a pseudo‐variance of at most 4d at
p+4d for J . This intuition is captured in Lemma 6.16, which says that we may safely restrict our
analysis to the case where J jumps over the pole at p by at most 1. To prove Lemma 6.16, we need
a technical lemma about the monotonicity of conditional probabilities of Gaussians. The result
is identical to [Ham19a, Lemma 2.21], but we include its short proof here for completeness.

Lemma 6.15. Fix r > 0, m ∈ R, and σ2 > 0, and let X be distributed as N(m,σ2). Then the
quantity P(X ≥ r + s | X ≥ s) is a strictly decreasing function of s ∈ R.

Proof. Note that

logP(X ≥ s+ r | X ≥ s) = log
∫ ∞

s+r

exp
{
−(x−m)2

2σ2

}
dx− log

∫ ∞

s

exp
{
−(x−m)2

2σ2

}
dx

has derivative in s given by

exp
{
− (s−m)2

2σ2

}∫∞
s+r

exp
{
− (x−m)2

2σ2

}
dx− exp

{
− (s+r−m)2

2σ2

}∫∞
s
exp

{
− (x−m)2

2σ2

}
dx∫∞

s+r
exp

{
− (x−m)2

2σ2

}
dx ·

∫∞
s
exp

{
− (x−m)2

2σ2

}
dx

.

The denominator is clearly positive. Performing the change of variable x 7→ x + r in the first
integral of the numerator and manipulating the exponents show that the numerator equals∫ ∞

s

exp
{
− (x−m)2+(s−m)2+r2

2σ2

}(
exp

{
− (x−m)r

σ2

}
− exp

{
− (s−m)r

σ2

})
dx .

The proof is complete by noting that this integrand is strictly negative for all x > s.

In order to state Lemma 6.16, we define the random variable U to be the deviation of the jump
ensemble from the Tent map at the pole p. For later use, we also take this opportunity to define
Wη to be the same at p+ 4d+ η for η < d. So, we define

U := J(p)− Tent(p)

Wη := J(p+ 4d+ η)− Tent(p+ 4d+ η).
(6.9)

The parameter η, as in the previous section, will be set to a specific small value in a local ran‐
domization argument later. Recall also from (5.13) that Y and Z are respectively the deviation of
J from Tent at p− 4d and p+ 4d. See Figure 6.2. We now turn to our assertion that J typically
makes a narrow jump over p.
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J(·)

p p+ 4d+ ηp− 4d p+ 4d

−Y

Wη

ZU

Figure 6.2: Illustrating the definitions of U ,W , Y and Z in the subcase being addressed in this
section; Y is negative, and so the length being shown is−Y . The blue curve is J , while the red
dashed function is Tent. The red vertical line emphasises the height of the pole at p.

Lemma 6.16 (Narrow jump over p). Let fJ(z, u | y) be the joint conditional density of Z and U
given Y . For y, z ∈ R such that y + z < 0,

fJ(z | y) . d
1
2

∫ 1

0
fJ(z, u | y) du.

Proof. We have ∫ 1

0
fJ(z, u | y) du = fJ(z | y)

∫ 1

0
fJ(u | y, z) du. (6.10)

LetX be distributed as N(0, 2d), which is the distribution of a Brownian bridge of duration 8d
from 0 to 0 at its midpoint, and let ∆ = 1

2(Tent(p− 4d) + Tent(p+ 4d))− Tent(p). Note that
∆ ≤ 0 by the concavity of the Tent map. Then the second factor on the right hand side is

PF
(
U ∈ [0, 1]

∣∣ Y = y, Z = z
)
= P

(
X +

y + z

2
+∆ ∈ [0, 1]

∣∣∣ X +
y + z

2
+∆ ≥ 0

)
= 1− P

(
X +

y + z

2
+∆ ≥ 1

∣∣∣ X +
y + z

2
+∆ ≥ 0

)
.

Now by Lemma 6.15 with r = 1 and s = −(y + z)/2−∆, we have that

P
(
X ≥ 1− y + z

2
−∆

∣∣∣ X ≥ −y + z

2
−∆

)
is an increasing function of y + z, i.e., PF(U ∈ [0, 1] | Y = y, Z = z) is a decreasing function of
y + z. So for y + z < 0, we obtain that

PF
(
U ∈ [0, 1] | Y = y, Z = z

)
≥ P

(
X ∈ [0, 1] | X ≥ 0

)
= P

(
|X| ≤ 1

)
;
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the second quantity is the value of the first at y + z = −2∆ ≥ 0. An easy bound using the
standard normal density gives that P(|X| ≤ 1)−1 . d

1
2 for d ≥ 1; tracing back the relations and

using this last bound in (6.10) yields

fJ(z | y) . d
1
2

∫ 1

0
fJ(z, u | y) du,

completing the proof of Lemma 6.16.

In the previous case in Section 6.1 we made use of the tool Lemma 6.7 to convert a tail bound to
a density bound, and we will make use of essentially the same tool in this section; it is simply
restated in a form involving the upper tail.

Lemma 6.17. Let X be a random variable such that P(X > x) ≤ A exp(− 1
2σ22

(x − x0)
2) for

x > x0, and letN be a normal random variable with mean 0 and variance σ21 which is independent
ofX . Then the density f ofX +N satisfies

f(x) ≤ A+ 1√
2πσ1

· exp
(
− (x− x0)

2

2(σ1 + σ2)2

)
for x > x0, and is bounded by 1/

√
2πσ1 for all x ∈ R.

Proof. This follows by applying Lemma 6.7 to X̃ := −X, since mean zero normal distributions
are symmetric, and whereX is as in Lemma 6.17.

The broad idea of the proof of Proposition 6.13 is to write the distribution of Z, conditionally
on U = J(p) − Tent(p) andWη = J(p + 4d + η) − Tent(p + 4d + η), in terms of a Brownian
bridge using the definition of J , and then use this Brownian structure to obtain a bound on the
conditional density of Z given Y via Lemma 6.17 and Lemma 6.16. This is the same strategy of
local randomization that was used in Section 6.2 to prove Proposition 6.4.

So, as before, we will need tail probabilities on the distribution of Wη given U and Y . By the
Markov property of Brownian bridges,Wη is conditionally independent of Y given U , and so in
fact we need a tail probability forWη given onlyU . Such a tail bound is the content of Lemma 6.18,
whose argument is essentially again stochastically dominating J by a Brownian bridge.

Lemma 6.18. We have for 0 < η ≤ d, u ≥ 0, w > u + 9T (4d + η) and on the event Fav ∩ {P ∩
[−2d, 2d] 6= Ø},

PF
(
Wη > w

∣∣ U = u
)
. exp

(
−(w − u− 9T (4d+ η))2

2(4d+ η)
+ 7T

)
.

Toprove Lemma 6.18wewill need a lower bound on the probability of a Brownian bridge jumping
over poles. This is recorded in the next lemma, whose straightforward proof is deferred to the
end of the section to permit the flow of the overall argument.
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Lemma 6.19. Let N ≥ 1, x0 ∈ [l, r], and xN = r. Let x1 < . . . < xN−1 be F‐measurable points
in (x0, xN), and B be a Brownian bridge with law B[x0,2T ]

0,0 . Then there exists a G < ∞ such that

PF
(
B(xi) > 0, i = 1, . . . , N − 1

)
> G−1N−1/2 exp(−3N).

Proof of Lemma 6.18. Define the coordinate ϕend by

ϕend := u+ Tent(p) + 5T (2T − p),

which is the y‐coordinate at x = 2T of a line with slope 5T started at (p, u+Tent(p)). Since on
Fav we have |slope(Tent)| ≤ 4T , it follows that ϕend > L(2T ). Lemma 5.12(iv) tells us that the
Brownian bridgeB from (p, u+Tent(p)) to (2T, ϕend) conditioned to jumpover all poles in [p, 2T ]
and to be above Cornerr,Fk stochastically dominates J on [p, 2T ]. LetA be the conditioning event
just mentioned. Then we have, on Fav ∩ {P ∩ [−2d, 2d] 6= Ø},

PF
(
Wη > w

∣∣ U = u
)
≤ B[p,2T ]

u+Tent(p),ϕend

(
B(p+ 4d+ η) > w + Tent(p+ 4d+ η)

∣∣ A
)
.

We need to lower bound PF(A) on Fav. Note that on Fav we have Cornerr,Fk ≤ T 2, while B(r)
has mean bounded below by

J(p) + 5T · (r− p) ≥ −T 2 + 5T · (T/2− d) =
3
2
T 2 − 5Td;

here we used J(p) ≥ Tent(p) = Ln(k + 1, p) ≥ −T 2 on Fav. These bounds, along with the
concavity of Tent and Lemma 6.19 (with N = |P | ≤ 2T , as dip ≥ 1 implies this bound), implies
that PF(A) · 1Fav is bounded below, up to an absolute constant, by T− 1

2 exp(−6T ) ≥ exp(−7T )
as T ≥ 1. So, on Fav ∩ {P ∩ [−2d, 2d] 6= Ø},

PF
(
Wη > w

∣∣ U = u
)
. exp(7T ) · B[p,2T ]

u+Tent(p),ϕend

(
B(p+ 4d+ η) > w + Tent(p+ 4d+ η)

)
.

Let ρ = 4d+η
2T−p

. Then EF [B(p+4d+ η)] = u+Tent(p)+5T (4d+ η) and VarF(B(p+4d+ η)) =

(1− ρ)(4d+ η). So, for w > u+ 9T (4d+ η) and on Fav,

B[p,2T ]
u+Tent(p),ϕend

(
B(p+ 4d+ η) > w + Tent(p+ 4d+ η)

)
= PF

(
N(u+ Tent(p) + 5T (4d+ η), (1− ρ)(4d+ η)) > w + Tent(p+ 4d+ η)

)
≤ PF

(
N(0, (1− ρ)(4d+ η)) > w − u− 9T (4d+ η)

)
≤ exp

(
−(w − u− 9T (4d+ η))2

2(4d+ η)

)
The third line uses that Tent(p+4d+η)−Tent(p) ≥ −4T (4d+η) from (5.4); the final inequality
uses the upper bound of Lemma 6.9 with σ2 = (1−ρ)(4d+ η) and t = w−u−9T (4d+ η).
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With this tail bound we may turn to the proof of Proposition 6.13.

Proof of Proposition 6.13. Let λ be defined as

λ =
η

4d+ η

so that, conditionally on Y , U , andWη, the distribution of Z is

Z = λU + (1− λ)Wη +N(0, 4λd). (6.11)

This relation holds because, by the definition of J , the distribution of J on [p, p + 4d + η],
conditionally on J(p) and J(p + 4d + η), is a Brownian bridge with the prescribed endpoint
values, and because Tent is affine on [p, p+ 4d+ η] for η < d as dip = 5d. Note that the variance
of this Brownian bridge at p+ 4d is 4dη

4d+η
= 4λd.

Let νp( · | y) be the conditional law of U given that Y = y. From the narrow jump Lemma 6.16
we see

fJ(z | y) . d
1
2 ·
∫ 1

0
fJ(z, u | y) du = d

1
2 ·
∫ 1

0
fJ(z | u, y) dνp(u | y), (6.12)

where fJ(z | u, y) is the conditional density of Z given U and Y . So our task is to bound
fJ(z | u, y) when u ∈ [0, 1]. By the Markov property, this object does not depend on y. We
will obtain this bound by converting the conditional tail bound of Lemma 6.18 to a conditional
density bound using Lemma 6.17.

We have from Lemma 6.18, by taking w = t−λu
1−λ

and simplifying the resulting expression, that,
for t > u+ 36Td,

PF
(
λU+(1−λ)Wη > t | U = u, Y = y

)
. exp

(
− 1
8d(1− λ)

(t− u− 36Td)2 + 7T
)
. (6.13)

While simplifying we used that (4d + η)(1 − λ) = 4d. Now using (6.11) and (6.13), we apply
Lemma 6.17. The parameters of this application are σ21 = 4λd, σ22 = 4(1− λ)d, x0 = u+ 36Td,
and A equal to the constant specified by . in (6.13) multiplied by exp(7T ). Thus we obtain, for
every η < d and z > u+ 36Td,

fJ(z | u, y) . η−
1
2 · exp

(
− 1
2σ2

(z − u− 36Td)2 + 7T
)
,

where σ2 = 4d(λ1/2 + (1− λ)1/2)2 ≤ 4d(1+ 2λ1/2) ≤ 4d(1+ η1/2) since 0 ≤ λ ≤ η/4. Setting
η1/2 = 8T−2d (which satisfies η < d as d ≤

√
T/24 and T ≥ 1) and using that (1+x)−1 ≥ 1−x

for x = η1/2 yields

fJ(z | u, y) . d−1T 2 · exp
(
− 1
8d

(z − u− 36Td)2 + T−2 (z − u− 36Td)2 + 7T
)
.
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Using this in (6.12) and bounding the integral by a trivial bound on the integrand then shows

fJ(z | y) . d−
1
2T 2 · exp

(
− 1
8d

(z − 1− 36Td)2 + T−2z2 + 7T
)

for z > 36Td+ 1. Since 4Td > 1, and since T 2 ≤ eT as T ≥ 1, it also holds that

fJ(z | y) . d−
1
2 · exp

(
− 1
8d

(z − 40Td)2 + T−2z2 + 8T
)

for z > 40Td. Expanding the expression in the exponent gives the expression

− z2

8d
+

z(40Td)
4d

− 402T 2d2

8d
+ z2T−2 + 8T ≤ − z2

8d
+ 20RT 5/2 − 200T 2d+ 4R2T + 8T,

using that z ≤ 2RT 3/2. Since R = 6
√
d from (5.19) and since T, d ≥ 1, the last three terms in

the previous display are collectively negative and may be dropped. This proves the first part of
Proposition 6.13.

Now we turn to the latter claim of Proposition 6.13. The tail bound (6.13), combined with the
latter part of Lemma 6.17, says that fJ(z | y, u) . d−

1
2 . Then (6.12) gives the latter claim of

Proposition 6.13. This completes the proof of Proposition 6.13.

Finally, we provide the last piece of the proof of Proposition 6.13 by proving Lemma 6.19.

Proof of Lemma 6.19. Let A denote the event that a Brownian motion B′ with law B[x0,2T ]
0,∗ is neg‐

ative at 2T ; write B̃ for the process B′ conditioned on A. Since Brownian motion on [x0, 2T ]
conditioned on its value at 2T is a Brownian bridge on [x0, 2T ] with appropriate endpoints,
Lemma 5.4 implies that the Brownian bridge B in the statement of Lemma 6.19 stochastically
dominates B̃. Thus,

PF
(N−1⋂

i=1

{B(xi) > 0}
)

≥ P
(N−1⋂

i=1

{
B̃(xi) > 0

} ∣∣ A) =
P
(⋂N

i=1

{
B̃(xi) > 0

}
, B̃(2T ) < 0

)
P
(
B̃(2T ) < 0

) .

The denominator is equal to 1
2 . We may lower bound the numerator by

P

(
N⋂
i=1

{
B̃(xi)− B̃(xi−1) ∈ [0,

√
xi − xi−1]

}
, B̃(2T )− B̃(xN) < −

N∑
i=1

√
xi − xi−1

)

= pN · P

(
N(0, 2T − xN) < −

N∑
i=1

√
xi − xi−1

)
, (6.14)
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using the independence of Brownian motion increments, where p = P
(
N(0, 1) ∈ [0, 1]

)
>

(2π)−1/2e−1/2 > e−2; the first inequality is by lower bounding the standard normal density on
[0, 1] by (2π)−1/2e−1/2, and the last inequality is by numerical calculation. Now,

P

(
N(0, 2T − xN) < −

N∑
i=1

√
xi − xi−1

)
≥ P

(
N(0, 1) >

√
N
√
xN√

2T − xN

)

≥ P
(
N(0, 1) >

√
N
)
& e−N/2

√
N

.

We have used the Cauchy‐Schwarz inequality in the first inequality; that xN = r ≤ T in the
second; and Lemma 6.9 in the last. Combiningwith (6.14) and thatP

(
B̃(2T ) < 0

)
= 1

2 completes
the proof.

6.4 When no pole is present

The aim of this section is to perform the final task in the proof of Theorem 5.11, namely to
provide the proof of Proposition 5.18. The analysis follows similar lines to the case where a pole
was present, but here we are aided by the fact that there is no vault cost V . Because there is no
pole, we cannot make the choice of stepping back to p−4d and p+4d in decomposing the jump
curve probability. Since we know only that there is no pole in [−2d, 2d], and we need to give
ourselves some distance from the nearest pole, we make the choice to not step back and instead
decompose at −d and d. More precisely we recall, as mentioned before Lemma 5.15, that Y and
Z are defined on the event P ∩ [−2d, 2d] = Ø as

Y := J(−d)− Tent(−d)

Z := J(d)− Tent(d).

Correspondingly, on P ∩ [−2d, 2d] = Ø, fJ(y, z) is the joint density of (Y, Z) under this defini‐
tion.

As there is no vault cost, we only need to consider the slope cost S. In this context, since the
interval [−d, d] has length 2d, S is

S = d
1
2 · exp

(
− 1
4d

(ỹ − z̃)2
)
;

here, ỹ = y + Tent(−d) and z̃ = z + Tent(d), so that Y = y implies J(−d) = ỹ and similarly
for Z = z and J(d) = z̃; thus the tilde plays the same role as it did in Section 5.2 of going from
the value of Y or Z to the value of J at the corresponding points.

The bound we will obtain from Proposition 6.4 is in terms of y and z, and here we see the exact
form of the leeway factor needed to write S in terms of y and z, as was done in (5.21) in the
pole case; this bound will hold for (y, z) ∈ G(2)

R , where we recall the definition of G(2)
R from
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(5.17). Using from (5.4) that the slope of the Tent map is bounded in absolute value by 4T , so
that |Tent(d)− Tent(−d)| ≤ 8Td, we see that, for (y, z) ∈ G(2)

R ,

S = d
1
2 · exp

(
1
4d

(ỹ − z̃)2
)

≤ d
1
2 · exp

(
1
4d

(y − z)2 + 16T 2d+
1
2d

(y − z)(Tent(d)− Tent(−d))

)
≤ d

1
2 · exp

(
− 1
4d

(y − z)2 + T 5/2 + 8RT 5/2

)
≤ d

1
2 · exp

(
− 1
4d

(y − z)2 + 9RT 5/2

)
;

(6.15)

the first inequality using thementioned bound on |Tent(d)−Tent(−d)|; the second since (y, z) ∈
G(2)
R implies |y − z| ≤ 2RT 3/2, and since d ≤

√
T/24 and 16/24 ≤ 1; and third since R ≥ 1

from (5.19).

Apart from this, we will also need to make a suitable choice for the distribution µ, discussed in
Section 5.2, which is here the distribution of the Brownian motion we start at −d to which we
compare J . We select µ to be uniform on [−RT 2, RT 2] as this interval contains all values y may
take when (y, z) ∈ G(2)

R . As before, the cost for this choice of µ is only polynomial in T , and so
does not affect the bound we need to prove on fJ(y, z).

So overall our aim is to get a bound on the joint density of the form

fJ(y, z) ≤ exp
(
− 1
4d

(y − z)2
)
· exp

(
GT 5/2

)
for some G < ∞. This of course is essentially immediate from Proposition 6.4 when |y − z| is
sufficiently large; recall that Proposition 6.4 was stated carefully to not assume the presence of a
pole in the interval of consideration.

Proof of Proposition 5.18. On Fav ∩ {P ∩ [−2d, 2d] = Ø},

PF
(
J( · )− J(−d) ∈ A, (Y, Z) ∈ G(2)

R

)
= EF

[
PF
(
J( · )− J(−d) ∈ A

∣∣ J(d), J(−d)
)
1
(Y,Z)∈G(2)

R

]
= EF

[
B[−d,d]
J(−d),J(d)

(
Ã
)
1
(Y,Z)∈G(2)

R

]
,

where Ã is the set of functions f in C∗,∗([−d, d],R) such that f( · ) − f(−d) ∈ A. Recall the
notation ỹ = y + Tent(−d) and z̃ = z + Tent(d). We may write the last displayed expression as
an integral on the event Fav ∩ {P ∩ [−2d, 2d] = Ø}:

EF

[
B[−d,d]
J(−d),J(d)

(
Ã
)
1
(Y,Z)∈G(2)

R

]
=

∫∫
G(2)
R

B[−d,d]
ỹ,z̃

(
Ã
)
fJ(y, z) dy dz
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= d−
1
2

∫∫
G(2)
R

B[−d,d]
ỹ,z̃

(
Ã
)
e−

1
4d (ỹ−z̃)2 ·

(
fJ(y, z) · S

)
dy dz. (6.16)

From Proposition 6.4 with parameters x1 = −d and x2 = d, we know that on Fav and when
|y − z| > 12RTd and (y, z) ∈ G(2)

R ,

fJ(y, z) . d−1T 2 · exp
(
− 1
4d

(|y − z| − 12RTd)2 +
4R2T 2

2d
+ 72R2d

)
= d−1T 2 · exp

(
− 1
4d

(
(y − z)2 − 24RTd|y − z|+ 144R2T 2d2

)
+
4R2T 2

2d
+ 72R2d

)
≤ d−1 · exp

(
− 1
4d

(y − z)2 + 6RT |y − z| − 36R2T 2d+
4R2T 2

2d
+ 72R2d+ T 2

)
≤ d−1 · exp

(
− 1
4d

(y − z)2 + 12R2T 5/2

)
,

the penultimate inequality since T 2 ≤ exp(T 2) as T ≥ 1; and the last inequality since on G(2)
R

we have |y− z| < 2RT 3/2 and since 1 ≤ d ≤
√
T/24, which implies that the sum of the last four

terms in the exponent in the penultimate line is negative and may be dropped.

For when |y− z| < 12RTd, we also use Proposition 6.4 to say that fJ(y, z) . d−1; and so we see
that

fJ(y, z) . d−1 · exp
(
−(y − z)2

4d
+

(y − z)2

4d

)
≤ d−1 · exp

(
− 1
4d

(y − z)2 +
144R2T 2d2

4d

)
≤ d−1 · exp

(
− 1
4d

(y − z)2 + 2R2T 5/2

)
,

the last inequality since d ≤
√
T/24 and 144/(4× 24) ≤ 2.

So we see from (6.15) and the above two bounds on fJ(y, z) depending on the size of |y−z|, that

fJ(y, z) · S ≤ exp
(
21R2T 5/2

)
,

using that R ≤ R2 and d ≥ 1.

Thus, we obtain that (6.16) is bounded up to an absolute multiplicative constant by

exp
(
21R2T 5/2

)
· 1√

4πd

∫∫
R2
B[−d,d]
ỹ,z̃

(
Ã
)
e−

1
4d (ỹ−z̃)2 dµ(y) dz. (6.17)

Let B be a Brownian motion started with distribution µ at −d. Focusing on the integral,

1√
4πd

∫∫
R2
B[−d,d]
ỹ,z̃

(
Ã
)
e−

1
4d (ỹ−z̃)2 dµ(y) dz = P

(
B( · )− B(−d) ∈ A

)
= B[−d,d]

0,∗
(
A
)
= ε,

using the Markov property of Brownian motion for the penultimate equality.
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Combining this with the ignored factor in (6.17) and using that R2 = 36d from (5.19) gives that
(6.16) is bounded above, up to an absolute multiplicative constant, by

ε · exp
(
756 ·D5/2

k · d · (log ε−1)5/6
)
,

since 21× 36 = 756.
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Part III

Bootstrapping
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Chapter 7

The basic idea of bootstrapping

This part of the thesis, namely Chapters 7–10, forms the second pillar, concerning the geometric
perspective on LPP. Chapters 7–9 consist of material from [GH20c] in work done with Shir‐
shendu Ganguly, while Chapter 10 contains material from [BGHH20] done with Riddhipratim
Basu, Alan Hammond, and Shirshendu Ganguly.

7.1 Introduction, the model, and assumptions

We need to state the precise version of Theorem 2.6.

Recall that in LPP on Z2 one assigns i.i.d. non‐negative weights {ξv : v ∈ Z2} to the vertices of
Z2 and studies the weight and geometry of weight‐maximising directed paths. The weight of a
given up‐right nearest neighbor path γ is ℓ(γ) :=

∑
v∈γ ξv. For given vertices u = (u1, u2), v =

(v1, v2) ∈ Z2 with ui ≤ vi for i = 1 and 2 (i.e., the natural partial order), the last passage value
Xu,v is defined by Xu,v = maxγ:u→v ℓ(γ), where the maximization is over the set of up‐right
paths from u to v; maximizing paths are called geodesics. For r ∈ N, we adopt the shorthand
Xr := X(1,1),(r,r).

A few special distributions of the vertex weights {ξv : v ∈ Z2} render the model integrable, i.e.,
admitting exact connections to algebraic objects such as random matrices and Young diagrams,
as we saw in Chapters 1 and 2. This allows exact computations which lead to the appearance
of the Airy2 process and hence the GUE Tracy‐Widom distribution. For concreteness, we recall
next the special case of exponentially distributed (with rate one) vertex weights, previously stated
as Theorem 2.4. In this case, Johansson proved the following [Joh00] via the development of the
aforementioned connections to representation theory.

Theorem 7.1 (Theorem 1.6 of [Joh00]). Let {ξv : v ∈ Z2} be i.i.d. exponential rate one random
variables. As r → ∞ it holds that

Xr − 4r
24/3r1/3

d→ FTW,

where FTW is the GUE Tracy‐Widom distribution, and d→ denotes convergence in distribution.
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This one‐point convergence was later upgraded to convergence to the Airy2 process in the sense
of finite dimensional distributions by considering a suitable observable (see for example [BF08]).

We recall the important feature of the GUE Tracy‐Widom distribution mentioned in Chapter 2,
the “non‐Gaussian” behavior of its upper and lower tails. In particular, it is known, for example
from [Sep98b, page 224] or [RRV11, Theorem 1.3], that as θ → ∞,

FTW

(
[θ,∞)

)
= exp

(
−4
3
θ3/2 (1+ o(1))

)
and

FTW

(
(−∞,−θ]

)
= exp

(
− 1
12

θ3 (1+ o(1))
)
.

(7.1)

Given the distributional convergence asserted by Theorem 7.1, it is natural to ask whether tail
bounds similar to (7.1) are satisfied byXr at the finite r level. Indeed, again in the case of exponen‐
tial weights, estimates along these lines have been attained which achieve the correct upper and
lower tail exponents of 3/2 and 3. The first result in this direction was proved by Seppäläinen,
who obtained an upper bound for the upper tail (with the correct leading exponent coefficient
4/3) in [Sep98a, page 622] via a coupling with the totally asymmetric simple exclusion process
and an evaluation and expansion of the large deviation rate function. The large deviation bound
yields a finite r estimate using superadditivity properties of the upper tail probabilities (see (7.6)
ahead for a discussion). But this strategy does not give a lower bound or bounds for the lower
tail, and these bounds were proven using connections to random matrix theory. In more detail,
Johansson proved in [Joh00, Remark 1.5] via representation theoretic techniques thatXr is equal
in distribution to the top eigenvalue of the Laguerre Unitary Ensemble, and upper bounds on
the upper and lower tails on this eigenvalue were proved in [LR10, Theorem 2]. [LR10] remarks,
but does not prove, that a lower bound on the upper tail should be achievable by methods in the
paper, but not a lower bound on the lower tail; the latter was proved very recently in [BGHK19,
Theorem 2]. This discussion may be summarized as the following theorem, which was previ‐
ously stated as Theorem 2.5.

Theorem 7.2 ([Sep98a, Joh00, LR10, BGHK19]). Let {ξv : v ∈ Z2} be i.i.d. exponential random
variables. There exist positive finite constants c1, c2, c3, θ0, and r0 such that, for r > r0 and θ0 <
θ < r2/3,

P
(
Xr > 4r + θr1/3

)
≤ exp

(
−c1θ

3/2
)

and

exp
(
−c2θ

3
)
≤ P

(
Xr < 4r − θr1/3

)
≤ exp

(
−c3θ

3
)
.

Remark 7.3. In fact, the missing lower bound on the upper tail is a straightforward consequence
of one of our results (Theorem 7.5) along with the distributional convergence in Theorem 7.1 and
an application of the Portmanteau theorem.

That the above bounds hold only for θ ≤ r2/3 is an important fact because one should not
expect universality beyond this threshold. The lower tail is trivially zero for θ > 4r2/3 since the
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vertex weights are non‐negative; for the upper tail, beyond this level, we enter the large deviation
regime, where the tail behavior is dictated by the individual vertex distribution. Thus in the case
of exponential LPP, the upper tail decays exponentially in θr1/3 for θ > r2/3.

Similar bounds as Theorem 7.2 are available in only a handful of other LPP models; these are
when the vertex weights are geometric [Joh00, BDM+01], and the related models of Poissonian
LPP [Sep98b, LM01, LMR02] and Brownian LPP [OY02, LR10]. While [Sep98b] relies on cou‐
pling Poissonian LPP to Hammersley’s process (a continuous version of the exclusion process),
the remaining arguments use powerful identities with randommatrix theory and connections to
representation theory, combined with precise analysis of the resulting formulas.

However, the conjectured universality of KPZ behavior suggests that similar bounds should hold
under rather minimal assumptions on the vertex weight distribution, i.e., even when special con‐
nections to random matrix theory and representation theory are unavailable. Thus it is an im‐
portant goal to develop more robust methods of investigation that may apply to a wider class of
models, an objective that has driven a significant amount of work in this field, with the eventual
aim to go beyond integrability.

Nonetheless, despite various attempts, so far only a few results are known to be true in a uni‐
versal sense. These include the existence of a limiting geodesic weight profile (i.e., the expected
geodesic weight as the endpoint varies) and its concavity under mild moment assumptions on
the vertex weights [Mar06]. This is a relatively straightforward consequence of super‐additivity
properties exhibited by the geodesic weights, as we elaborate on later. This and certain general
concentration estimates based on martingale methods were first developed in Kesten’s seminal
work on first passage percolation (FPP) [Kes86]; FPP is a notoriously difficult to analyze and
canonical non‐integrable model in the KPZ class where the setting is the same as that of LPP,
but one instead minimizes the weight among all paths between two points, without any orien‐
tation constraint. Similar arguments extend to the case of general LPP models. Note that while
the precise limiting profile is expected to depend on the model, properties such as concavity as
well as local fluctuation behavior are predicted to be universal.

Following Kesten’s work, there has been significant progress in FPP in providing rigorous proofs
assuming certain natural conditions, such as strong curvature properties of limit shapes and the
existence of critical exponents dictating fluctuations. Thus an important broad goal is to extract
the minimal set of key properties of such models that govern other more refined behavior. The
recent work of the myself with Shirshendu Ganguly, Riddhipratim Basu, and Alan Hammond in
[BGHH20], as well as the content of this part of this thesis, are guided by the same philosophy.
We will revisit this discussion in more detail after the statements of our main results.

To initiate the geometric perspective of this part of the thesis, we point out the disparity in the
upper and lower tail exponents in Theorem 7.2. This is not surprising since, while the upper
tail event enforces the existence of a single path of high weight, the lower tail event is global and
forces all paths to have low weight.

However, the precise exponents of 3/2 and 3 might appear mysterious, and it is natural to seek
a geometric explanation for them. This is the goal of this work. More precisely, we establish
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bounds with optimal exponents in the nature of Theorem 7.2, starting from certain much weaker
tail bounds as well as local strong concavity assumptions on the limit shape (Theorems 7.4–7.7).
In particular, we do not make use of any algebraic techniques in our arguments; indeed, the
nature of our assumptions do not allow such techniques to be applicable. Instead, our meth‐
ods are strongly informed by an understanding of the geometry of geodesics and other weight
maximising path ensembles in last passage percolation.

We also mention that, while our main result is known in integrable models such as exponential
LPP in view of Theorem 7.2, our techniques also obtain sharp tail exponents for a related LPP
problem, namely the lower tail of the maximum weight over all paths constrained to lie inside a
strip of givenwidth (Theorem 7.13 ahead); the precise exponent depends on this width. Estimates
of these probabilities have played important roles in previous geometric investigations [BSS14,
BGHH20], but sharp forms had not been proven even in integrable models, and do not seem
amenable to exactly solvable analysis. The form of the exponent we prove in Theorem 7.13 is
also suggestive of the anticipated answer to the question of typical transverse fluctuations of the
geodesic when conditioned on having lowweight in themoderate deviation regime; we elaborate
on this slightly following Theorem 7.13. The large deviation version of the same question was
investigated in [BGS19], and the related upper tail large deviation version in FPP in [BGS17].

We next set up precisely the framework of last passage percolation on Z2, describe our assump‐
tions, and state our main results.

Model, notation, and assumptions

Wedenote the set {1, 2, . . .} byN, and, for i, j ∈ Z, we denote the integer interval {i, i+1, . . . , j}
by Ji, jK.
We start with a random field

{
ξv : v ∈ Z2

}
of i.i.d. random variables following a distribution

ν supported on [0,∞). We consider up‐right nearest neighbor paths, which we will refer to as
directed paths. For a directed path γ, the associated weight is denoted ℓ(γ) and is defined by

ℓ(γ) :=
∑
u∈γ

ξu.

For u, v ∈ Z2
+, with u � v in the natural partial order mentioned earlier, we denote by Xu,v the

last passage value or weight from u to v, i.e.,

Xu,v := max
γ:u→v

ℓ(γ),

where the maximization is over all directed paths from u to v; for definiteness, when u and v are
not ordered in this way and there is no directed path from u to v, we define Xu,v = −∞. Now
for ease of notation, for sets A,B ⊆ Z2, we also adopt the intuitive shorthand

XA,B := sup
u∈A,v∈B

Xu,v.
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For v ∈ Z2
+, Xv will denote X(1,1),v, and for r, z ∈ Z, we will denote X(1,1),(r−z,r+z) by Xz

r . We
will also denote the case of z = 0 by Xr, as above. Notational confusion between Xv and Xr is
avoided in practice in this usage as v will always be represented by a pair of coordinates, while r
is a scalar. Recall that a path (which may not be unique) which achieves the last passage value is
called a geodesic.

For an up‐right path γ from (1, 1) to (r − z, r + z), we define the transversal fluctuation of γ by

TF(γ) := min {w : γ ⊆ Ur,w,z} ,

where Ur,w,z is the strip of width w around the interpolating line, i.e., the set of vertices v ∈ Z2

such that v + t · (−1, 1) lies on the line y = r+z
r−z

· x for some t ∈ R with |t| ≤ w/2.

Assumptions

The general form of our assumptions is quite similar to the ones in the recent work [BGHH20]
devoted to the study of geodesic watermelons, a path ensemble generalizing the geodesic, and
also bears resemblence to ones adopted in recent studies [Ale20, Gan20] in FPP. We start by
recalling that ν is the distribution of the vertex weights and has support contained in [0,∞).
The limit shape is the map [−r, r] → R : z 7→ limr→∞ r−1E[Xz

r ]. It follows from standard
super‐additivity arguments that this limit exists (though possibly infinite if the upper tail of ν is
too heavy) for each z ∈ [−r, r] and that this map is concave [Mar06, Proposition 2.1]. Let

µ = lim
r→∞

r−1E[Xr]

be this map evaluated at zero. Also note from Theorems 7.1 and 7.2 that the fluctuations of Xr

around µ can be expected to be on scale r1/3. Finally, we point out that the normalized limit
shape map in the exactly solvable models of Exponential, Geometric, Brownian, and Poissonian
LPP is, up to translation and scaling by constants,√

r2 − z2 = r − z2

2r
−O

(
z4

r3

)
; (7.2)

this will be relevant in motivating the form of our second assumption. Note that the first term
of the right hand side of (7.2) denotes the expected linear growth of the model, while the second
encodes a form of strong concavity of the limit shape. Also, the non‐random fluctuation, i.e.,
how much the mean of Xz

r falls below (7.2), is expected to be Θ(r1/3), which is known in the
aforementioned exactly solvable models.

Given the setting, we state our assumptions; not all the assumptions are required for each of the
main results, and we will specify which ones are in force in each case. We will elaborate more on
the content of each assumption following their statements.

1. Limit shape existence: The vertex weight distribution ν is such that µ < ∞.
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2. Strong concavity of limit shape and non‐random fluctuations: There exist positive fi‐
nite constants ρ, G,H, g1, and g2 such that, for large enough r and z ∈ [−ρr, ρr],

E[Xz
r ] ∈ µr −G

z2

r
+

[
−H

z4

r3
, 0
]
+
[
−g1r

1/3,−g2r
1/3
]
.

The first three terms on the right hand side encode the limit shape and its strong concavity
as in (7.2), while the final interval captures the non‐random fluctuation.
3. Upper bound on moderate deviation probabilities, uniform in direction: There exists
α > 0 such that the following hold. Fix any ε > 0, and let |z| ∈ [0, (1− ε)r]. Then, there
exist positive finite constants c, θ0, and r0 (all depending on only ε) such that, for r > r0
and θ > θ0,

a) P
(
Xz

r − E[Xz
r ] > θr1/3

)
≤ exp(−cθα),

b) P
(
Xz

r − E[Xz
r ] < −θr1/3

)
≤ exp(−cθα).

4. Lower bound on diagonal moderate deviation probabilities: There exist constants δ >
0, C > 0, r0 such that, for r > r0,

a) P
(
Xr − µr > Cr1/3

)
≥ δ,

b) P
(
Xr − µr < −Cr1/3

)
≥ δ.

These will be respectively referred to as Assumptions 1–4 in this part of the thesis. Assumption 1,
which is known to be true undermildmoment conditions on ν, is stated to avoid any pathologies
and will be in force henceforth without us explicitly mentioning it further. Assumption 3 is the
a priori tail assumption that our work seeks to improve on. We will refer to the tail bounds as
stretched exponential though this term usually refers to 0 < α ≤ 1, (which is the case of primary
interest for us).

Assumption 1 in fact follows fromAssumption 3a, for the latter implies that ν([θ,∞)) ≤ exp(−cθα),
for a possibly smaller c and sufficiently large θ (see Remark 7.10).

Observe that Assumption 2 is a mild relaxation of the form of the weight profile in all known
integrable models, as we do not impose a lower order term of order −z4/r3 in the upper bound.
Our arguments would also work if we replaced the third term [−Hz4/r3, 0] of Assumption 2
with [−Hz4/r3, Hz4/r3], but we have not included this relaxation so as to not introduce further
complexity.

The additional translation by−Θ(r1/3) in Assumption 2 for the non‐random fluctuation will be
a crucial ingredient (note that E[Xr] ≤ µr by super‐additivity). As the reader might already be
aware, non‐random fluctuations are an important object of study and this will be further evident
from their role in the arguments here (in particular that they are the same scale as the random
fluctuations) as well as in past work: see, for example, [BGHH20, BHS18]. For applications
in FPP, see [Cha13] and [AD14]. A powerful general theory to control such objects for general
sub‐additive sequences, particularly in the context of FPP, was developed in [Ale97].

We end this discussion by pointing out that Assumption 4b follows from Assumptions 2 and 3b;
see Lemma 9.7. This is essentially because by assumption µr > E[Xr] + Θ(r1/3) and we have



CHAPTER 7. THE BASIC IDEA OF BOOTSTRAPPING 121

assumed deviation bounds from the expectation. However, this style of argument does not work
to derive Assumption 4a from Assumptions 2 and 3, and this task seems more difficult.

7.2 Main results

Our main contribution is to obtain the optimal upper and lower tail exponents for Xr in terms
of upper and lower bounds, starting from a selection of the assumptions just stated. Notice that
all the assumptions except the first involve the weight fluctuations occurring on scale r1/3, and
our results essentially connect this fluctuation exponent of 1/3 to the two tail exponents. Here
are the precise statements, which expand on the informal version stated earlier as Theorem 2.6.

Theorem 7.4 (Upper‐tail upper bound). Under Assumptions 2 and 3a, there exist constants c,
ζ ∈ (0, 2

25 ], r0, and θ0 (all depending on α) such that, for θ0 ≤ θ ≤ rζ and r > r0,

P
(
Xr − E[Xr] ≥ θr1/3

)
≤ exp

(
−cθ3/2(log θ)−1/2

)
.

Further, ζ(α) → 0 as α → 0, and ζ(α) = 2
25 if α ≥ 1.

Theorem 7.5 (Upper‐tail lower bound). Under Assumptions 2 and 4a (the former only at z = 0),
there exist constants c > 0, η > 0 and r0 such that, for r > r0 and θ0 < θ < ηr2/3,

P
(
Xr − E[Xr] ≥ θr1/3

)
≥ exp

(
− cθ3/2

)
.

Theorem 7.6 (Lower‐tail upper bound). Under Assumptions 2 and 3, there exist constants c > 0,
r0, and θ0 (all depending on α) such that, for θ > θ0 and r > r0,

P
(
Xr − E[Xr] ≤ −θr1/3

)
≤ exp

(
−cθ3

)
.

Theorem 7.7 (Lower‐tail lower bound). Under Assumptions 2, 3, and 4b, there exist constants
c > 0, η > 0, θ0, and r0 (all depending on α) such that, for r > r0 and θ0 < θ < ηr2/3,

P
(
Xr − E[Xr] ≤ −θr1/3

)
≥ exp

(
−cθ3

)
.

The constants θ0 and r0 in the theorems should not be confused with the ones appearing in the
assumptions.

The aforementioned Theorem 7.13 on upper and lower bounds for last passage values when paths
are constrained to lie inside a strip of given width will be stated ahead after Section 7.3, which
elucidates the main arguments of Theorems 7.4–7.7.

As the reader might anticipate, one might be able to relax some of the assumptions, e.g., the
precise formofAssumption 2 should not be essential, andwe expect our arguments to go through
under reasonable relaxations. For example, a polynomial lower order term in (7.2), say of the form
|z|2+δ/r1+δ for some δ > 0, or the related assumption of local uniform strong concavity of the
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limit shape may be sufficient. However we have not pursued this as we have sought to achieve
the cleanest presentation to highlight the key geometric insights underlying the arguments.

Next we make some remarks and observations on the results, focusing mainly on aspects of
Theorem 7.4.

Remark 7.8 (Relation of tail exponents to fluctuation exponents). We have assumed that weight
fluctuations occur on the scale n1/3, and this is because this is thought to be the scale of fluc‐
tuations for LPP in two dimensions for all vertex weight distributions. The basis for this is the
following heuristic. Let χ be the scale of weight fluctuations, and ξ the scale of transversal fluc‐
tuations (i.e., the scale of the width of the smallest rectangle containing the geodesic), also called
the wandering exponent. In any dimension, these exponents are expected to satisfy the KPZ re‐
lations χ = 2ξ − 1; this has been proven in FPP in [Cha13] for a particular precise definition of
the exponents. (These results and statements is contingent on the existence of these exponents,
which is non‐trivial and an important open problem.) In two dimensions, the weight profile is
additionally expected to exhibit Brownian fluctuations, which suggests χ = ξ/2. These combine
to imply χ = 1/3 and ξ = 2/3.

For LPP in higher dimensions, the KPZ relation is still expected to hold, but not the Brownian
nature of the weight profile (as it is no longer a one‐dimensional function). Thus it is natural to
ask what the tail exponents would be in this case. The algebra of our arguments suggests that
for general dimension the upper and lower tail exponents should respectively be 1/(1 − χ) and
2/(1− χ) = 1/(1− ξ) (by the KPZ relation); see [GH20c, Section 1.7] for some more details.

Even in two dimensions, the exponent χ need not be 1/3 if the noise field is not i.i.d. [BH19]. As
seen in [BH19], the KPZ relation need not hold in this setting, and there is no reason to expect
Brownian fluctuations for the weight profile. But it is interesting to ask what relation may exist
between the fluctuation exponents and the tail exponents. In fact, the argument for Theorem 7.5
(lower bound on the upper tail), which we discuss in Section 7.3, should apply quite generally,
i.e., as long as correlation inequalities hold, and suggests that at least in models enjoying positive
association the upper tail exponent may be 1/(1− χ).

In a more classical setting, it is a nice exercise to use that the fluctuations of random walk of size
n are of order n1/2 to conclude that the tail exponents in that case should be 1/(1− 1

2) = 2, again
via the arguments for the upper tail ahead. For the lower bound, the argument does not make
use of concentration of measure estimates, and thus provides a simple geometric indication of
the source of the Gaussian distribution’s tail exponent that we were not previously aware of. (The
above prediction of a higher exponent for the lower tail does not apply since this is not a model
of last passage percolation.)

Remark 7.9 (Suboptimal log factor in Theorem 7.4). The reader would have noticed that the tail
in Theorem 7.4 is not optimal, due to the appearance of (log θ)−1/2. This arises due to the lack
of sub‐additivity of the sequence {Xr}r∈N (which is super‐additive instead), which necessitates
considering a certain union bound; coping with the entropy from the union bound leads to the
introduction of the factor of (log θ)−1/2 in the exponent. We discuss this further in Section 7.3.
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Remark7.10 (ζ(α) → 0 as α → 0). The tail exponent claimed in Theorem 7.4 holds only for θ ≤
rζ for a positive ζ = ζ(α) with limα→0 ζ(α) = 0, and as we will see now, this is indeed necessary.
First note that Assumption 3 implies that the vertex weight distribution’s upper tail decays with
exponent at least α; to see this, observe that P(X(r−1,r) − E[X(r−1,r)] > −0.5tr1/3) > 1/2 for all
large enough t by Assumption 3b, and so

1
2
· P
(
ξ(r,r) ≥ tr1/3

)
≤ P

(
X(r−1,r) − E[X(r−1,r)] > −0.5tr1/3, ξ(r,r) ≥ tr1/3

)
≤ P

(
Xr − E[Xr] ≥ 0.25tr1/3

)
≤ exp(−ctα),

using Assumption 3a in the last inequality, and bounding E[Xr]− E[X(r−1,r)] by 0.25tr1/3. This
holds for all r and t large enough; taking r = r0 large enough for the bound to hold and letting
ξ be any random variable distributed according to ν shows that, for all large enough t,

P
(
ξ ≥ tr

1/3
0

)
≤ exp(−ctα) =⇒ P

(
ξ ≥ t

)
≤ exp(−c̃tα).

Conversely, assuming that P
(
ξ ≥ t

)
≥ exp(−c̃tα), it follows that Assumption 3a cannot hold

with any power β > α for the entire tail. Now recall, as mentioned after Theorem 7.2, that after
a certain point the behavior of individual vertex weights is expected to govern the tail of point‐
to‐point weights. So under the aforementioned assumption on ξ, an upper bound for ζ(α) could
be obtained by considering the value of ζ which solves

exp(−cθ3/2) = exp(−c(θr1/3)α)

for θ = rζ , which is ζ = 2α/(9− 6α). This goes to zero as α → 0, as in Theorem 7.4.

Remark 7.11 (Intermediate regimes for upper tail). While Theorem 7.4 asserts the 3/2 tail expo‐
nent up till rζ , its proof will also show the existence of a number of ranges of θ in the interval
[rζ ,∞) in which the tail exponent transitions from 3/2 to α. More precisely, there exists a finite
n and numbers α = β1 < β2 < . . . < βn = 3/2 and∞ = ζ1 > ζ2 > . . . > ζn = ζ such that, for
j ∈ J1, n− 1K and θ ∈ [rζj+1 , rζj ],

P
(
Xr − E[Xr] ≥ θr1/3

)
≤ exp

(
−cθβj

)
.

Recursive expressions are also derived for the βj and ζj quantities; see Remark 9.2.

However, we believe that these intermediate regimes are an artifact of our proof, and that the true
behavior is that the tail exp(−cθ3/2) holds for θ till r2α/(9−6α), and exp(−c(θr1/3)α) after (as in
Remark 7.10). Note also that for α = 1, r2α/(9−6α) = r2/3, matching Theorem 7.2.

Remark 7.12 (Extending to other values of z). We have stated our results for the last passage
value to (r, r), but some also extend to (r − z, r + z) for certain ranges of z. For the upper
tail the argument of Theorem 7.4 also applies for |z| = O(r2/3), while Theorem 7.5 extends to
all |z| = O(r5/6); as mentioned after the assumptions, the source of the 5/6 is that for z of
this order, the upper and lower bounds of Assumption 2 differ by the weight fluctuation order,
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i.e., r1/3. Regarding the upper bound on the lower tail, the argument for Theorem 7.6 does not
conceptually rely on z = 0, but formally uses a result from [BGHH20] which is not proven for
z 6= 0. The latter result can be extended to larger z without much difficulty, but we have not
pursued this here. Finally, the argument for Theorem 7.7 applies for |z| ≤ r5/6.

The set of assumptions we adopt bears similarities to the ones that have appeared in the past liter‐
ature on FPP, some of which we discussed in Remark 7.8. The most prominent of these include
the work of Newman and coauthors (see e.g. [NP95, ADH17]) which investigated the effect of
limit shape curvature assumptions on the geometry of geodesics and the fluctuation exponents.
More recently, the previously mentioned work [Cha13] of Chatterjee assumed a strong form of
existence of the exponents governing geometric and weight fluctuations of the geodesics and
verified the KPZ relation between them; see also [AD14]. Subsequently [DH14, Ale20, Gan20]
studied geodesics and bi‐geodesics under related assumptions.

Inspired by this, recently, results in the exactly solvable cases of LPP have been obtained, relying
merely on inputs analogous to the ones stated in the assumptions. See, for example, the very
recent work [BGHH20] which develops the theory of geodesic watermelons under a similar set
of assumptions to deduce properties of all known integrable lattice models. Other examples
include [BHS18, BSS14, FO18], which work in the specific case of LPP with exponential weights;
and [Ham19b, Ham19c, Ham19d], in which geometric questions in the semi‐discrete model of
Brownian LPP are studied.

An intriguing and novel aspect of our arguments is the use of the concentration of measure phe‐
nomena for sums of independent stretched exponential random variables, which is in fact at the
heart of our arguments. General concentration results have, of course, been widely investigated
in recent times [BLM13], but they have not previously played a central role in studies of LPP. On
the other hand, concentration of measure has played a more significant role in FPP. We mention
here [DHS14] which proves exponential concentration of the passage time on a subdiffusive scale
and the related line of work bounding the variance [Kes86, BKS03, BR08, DHS15]. Also related
is [CD13] which proves a central limit theorem for certain constrained first passage times. We
point the reader to [ADH17, Section 3] for a more in depth survey.

A common theme in concentration of measure is that sums of independent random variables
have behavior which transitions, as we extend further into the tail, from being sub‐Gaussian to
being governed by the tail decay of the individual variables. When the variables have stretched
exponential tails, a precise form of this is a bound that is a generalization of Bernstein’s inequality
for subexponential random variables. Though such results are not unexpected, the recent article
[KC18] explicitly records many extensions of concentration results for sums of sub‐Gaussian
or subexponential random variables to the stretched exponential case with a high dimensional
statistics motivation, in a form particularly convenient for our application.

We next move on to an outline of the key ideas driving our proofs.
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7.3 The key ideas

Before turning to the ideas underlying our arguments, we deal with some matters of convention.
Wewill use thewords “width” and “height” to refer tomeasurementsmade along the antidiagonal
and diagonal respectively. So, for example, the set of (x, y) ∈ Z2 such that 2 ≤ x + y ≤ 2r
and |x − y| ≤ ℓr2/3 is a parallelogram of height r and width ℓr2/3. This usage will continue
throughout this part of the thesis.

In the overview we will at certain moments make use of a few refined tools, which have appeared
previously in [BGHH20], and whose content is explained informally in this section; their precise
statements are gathered in Section 7.6 ahead.

Now we turn to the mathematical discussion. The flavors of our arguments are different for the
upper and lower bounds on the two tails. Super‐additivity, in various guises, plays a recurring
role in all except the upper bound on the lower tail. In all the arguments a parameter k appears
which plays different roles, but is essentially always finally set to be a multiple of θ3/2, where θ
measures the depth into the tail we are considering. The reader should keep in mind this value
of k in the discussion. Also, we assume without loss of generality that α ≤ 1 in this section.

We briefly give a version of a common theme which underlies the different arguments, namely of
looking at smaller scales, which further explains why we take k = Θ(θ3/2). Consider a geodesic
path from (1, 1) to (r, r)which attains a weight of µr+θr1/3 for large θ (the following also makes
sense for −θ). If we look at a given 1/k‐fraction of the geodesic, that fraction’s weight should
be close to µr/k + θr1/3/k if the geodesic gains weight roughly uniformly across its journey;
but on the other hand, KPZ fluctuation dictates that the fraction’s weight should typically be
µr/k + C(r/k)1/3. So we look for a scale at which the typical behavior is not in tension with
the notion of the geodesic’s weight being spread close to uniformly over much of its journey.
This means finding k such that θr1/3/k and C(r/k)1/3 are of the same order, which occurs if
k = Θ(θ3/2).

Now we come to the detailed descriptions.

Upper bound on upper tail.

We start by discussing a simplified argument for the upper tail of the upper bound to illustrate
the idea of bootstrapping. The starting point is a concentration of measure phenomenon for
stretched exponential random variables alluded to before. More precisely, sums of independent
stretched exponential random variables have the same qualitative tail decay deep in the tail as
that of a single one (see Proposition 8.1 ahead). Not so deep in the tail lies a regime of Gaussian
decay, but we will never be in this regime in our arguments.

Let X(i)
r/k be the last passage value from i(r/k, r/k) + (1, 0) to (i + 1)(r/k, r/k). Suppose, for

purposes of illustration, that we actually had thatXr are sub‐additive rather than super‐additive,
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i.e., we had thatXr ≤
∑k

i=1X
(i)
r/k. EachX

(i)
r/k fluctuates at scale (r/k)

1/3, and

∣∣∣ k∑
i=1

E[X(i)
r/k]− E[Xr]

∣∣∣ ≤ k · C(r/k)1/3 = Ck2/3r1/3, (7.3)

using Assumption 2. So under this illustrative sub‐additive assumption we would have

P
(
Xr − E[Xr] > θr1/3

)
≤ P

(
k∑

i=1

(X
(i)
r/k − E[X(i)

r/k]) > θr1/3 − Ck2/3r1/3

)

≤ P

(
k∑

i=1

(X
(i)
r/k − E[X(i)

r/k]) >
1
2
θk1/3(r/k)1/3

)
, (7.4)

the last inequality for k ≤ (2C)−3/2θ3/2, which dictates our choice of k. Now by Assumption 3a
we know that

P
(
Xr/k,i − E[Xr/k,i] > θ(r/k)1/3

)
≤ exp(−cθα)

=⇒ P
(
Xr/k,i − E[Xr/k,i] > θk1/3(r/k)1/3

)
≤ exp(−cθαkα/3).

Because sums of stretched exponentials have the same deep tail decay as a single one, (7.4) shows
that the probability thatXr−E[Xr] is greater than θr1/3 is essentially like that ofXr/k−E[Xr/k]
being greater than θk1/3(r/k)1/3, which is at most exp(−cθαkα/3). This gives an improved tail
exponent of 3α/2 for the point‐to‐point’s upper tail, compared to the input of α, since k can be
at most O(θ3/2).

We can now repeat this argument, with the improved exponent as the input, and obtain an output
exponent which is greater by a factor of 3/2, and we can continue doing so as long as the input
exponent is at most 1. If we perform the argument one last time with the input exponent as 1,
we obtain the optimal exponent of 3/2.

The reason we require the input exponent to be at most 1 is that, beyond this point, the concen‐
tration behavior changes: for α ≤ 1 the deep tail behavior of a sum of independent stretched
exponentials is governed by the event that a single variable is large, while for α > 1 the behavior
is governed by the event that the deviation is roughly equidistributed among all the variables.
This is a result of the change of the function xα from being concave to convex as α increases
beyond 1. More precisely, suppose α ∈ (1, 3/2] is the point‐to‐point tail exponent and let us
accept the equidistributed characterization of the deep tail (as is proved in [KC18]). Then the
probability (7.4) would be at most the probability that each of the k variables X(i)

r/k − E[X(i)
r/k] is

at least (θk1/3/k)(r/k)1/3 = θk−2/3(r/k)1/3, which is in turn bounded by

exp
(
−ck · (θk−2/3)α

)
= exp

(
−cθαk1−2α/3

)
.

By taking k = ηθ3/2, which, as mentioned earlier, is the largest possible value we can take, we see
that this final expression is exp(−cθ3/2). In other words, the exponent of 3/2 is a natural fixed
point for the bootstrapping procedure.
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r/k

(r/k) 2/3

(r, r)

(1, 1)

Figure 7.1: In green is depicted the heaviest path which passes through the selection of intervals
in blue. The cyan curve between the second and third (similarly the third and fourth) blue
intervals is the heaviest path with endpoints on those intervals. Because these consecutive cyan
paths do not need to share endpoints, the weight of the green path is at most the sum of the
interval‐to‐interval weights defined by the blue intervals, which provides the substitute sub‐
additive relation.

Nowwe turn to addressing the simplifications we made in the above discussion. Handling them
correctly makes the argument significantly more complicated and technical, and reduces the tail
from θ3/2 to θ3/2(log θ)−1/2.

One simplification we skipped over is that the improvement in the tail bound after one iteration
only holds for θ ≤ r2/3 and not the entire tail (since k, the number of parts that the geodesic
to (r, r) is divided into, can be at most r, and k = Θ(θ3/2)), which is a slight issue for the next
round of the iteration. This is handled by a simple truncation.

But the main difficulty is that the Xr are super‐additive, not sub‐additive. To handle this, we
consider a grid of height r and width poly(θ) · r2/3. This width is set such that, with probability
at most exp(−cθ3/2), the geodesic exits the grid, using the bound recorded in Proposition 7.15
ahead on the transversal fluctuation; this allows us to restrict to the event that the geodesic stays
within the grid. Intervals in the grid have width (r/k)2/3 and are separated by a height of r/k.

The utility of the grid is thatXr can be bounded by a sum of interval‐to‐interval weights in terms
of the intervals of the grid that the geodesic passes through; this bound can play the role of a sub‐
additive relation. See Figure 7.1. Then, just as we had a tail bound above for X(i)

r/k to bootstrap,
a requisite step is to obtain an upper bound on the upper tail of the interval‐to‐interval weight,
using only the point‐to‐point estimate available. We do this in Lemma 9.5 with the basic idea
that the interval‐to‐interval weight being high will cause a point‐to‐point weight, from “backed
up” points, to also be high; see Figure 9.2 for a more detailed illustration of the argument (such
an argument of backing up has previously been implemented in [BSS14, BGHH20]).
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With the interval‐to‐interval tail bound, we discretize the geodesic by considering which se‐
quence of intervals it passes through, and bound the highest weight through a given sequence by
the sum of interval‐to‐interval weights. This uses the bootstrapping idea and yields an improved
tail estimate for the highest weight through a given sequence. Later we will take a union bound
over all possible sequences of intervals; this union bound is what leads to the appearance of the
suboptimal (log θ)−1/2 in the bound as mentioned in Remark 7.9.

This strategy requires handling paths which are extremely “zig‐zaggy”; to show that these paths
are not competitive, we need upper bounds on upper tails of point‐to‐point weights, i.e. Xz

r , in
a large number of directions indexed by z, though we are only ultimately proving a bound for
paths ending at (r, r). (Recall thatXz

r is the weight to (r−z, r+z) from (1, 1).) Further, in order
to repeat the iterations of the bootstrap, the bounds in other directions must also be improving
with each iteration. To achieve this, we in fact bound the deviations not from E[Xz

r ] (which to
second order is µr−Gz2/r) in the jth round of iteration, but from the bigger µr− λjGz2/r, for
a λj ≤ 1 which decreases with the iteration number j. By adopting this relaxation we are able to
obtain the improvement in the tail for all the required z with each iteration, which appears to be
difficult if one insists that λj = 1 for all j.

A similar grid construction has been used previously, for example to obtain certain tail bounds
in [BGHH20], to bound the number of disjoint geodesics in a parallelogram in [BHS18], and to
study coalescence of geodesics in [BSS19].

Lower bound on upper tail

This is the easiest of the four arguments. Recall that we have C and δ from Assumption 4a such
that P(Xr/k > µr/k + C(r/k)1/3) ≥ δ, and let X(i)

r/k be as in (7.3). By the super‐additivity that
theXr genuinely enjoy, for any k it holds thatXr ≥

∑k
i=1X

(i)
r/k. Choosing k to be an appropriate

multiple of θ3/2, we obtain

P
(
Xr > µr + θr1/3

)
≥

k∏
i=1

P
(
X

(i)
r/k > µr/k + C(r/k)1/3

)
≥ δk = exp(−cθ3/2).

Here we used the independence ofX(i)
r/k, but note that it would have sufficed for our purposes to

have that they are positively associated, by the FKG inequality. Replacing µr by E[Xr] is a simple
application of Assumption 2.

Upper bound on lower tail

The illustrative argument using sub‐additivity given above for the upper bound on the upper
tail is actually correct for the upper bound on the lower tail, as the super‐additivity of Xr is
in the favorable direction in this case. But, as we saw there, the approach can only bring the
tail exponent up to 3/2, and not 3. This is essentially because that argument focuses on the
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Figure 7.2: A simulation of the k‐geodesic watermelon in the related model of Poissonian last
passage percolation for k = 10.

weight of a single path, while the exponent of 3 for the lower tail is a result of all paths having
low weight. Thus our strategy to prove the stronger bound is to construct θ3/2 disjoint paths
moving through independent parts of the space, each suffering a weight loss of θr1/3. By the
discussion above and independence, the probability of each of them being small can be bounded
by exp(−cθ3/2 · θ3/2) = exp(−cθ3).

To do this formally, we rely on an important ingredient originally proved in [BGHH20], which
studies the weight and geometry of maximal weight collections of k disjoint paths in J1, rK2,
called k‐geodesic watermelons. See Figure 7.2. It is shown in [BGHH20] that these k paths typi‐
cally are each of weight µr−Ck2/3r1/3, and that they have a collective transversal fluctuation of
order k1/3r2/3. In this thesis, we will prove the following quantitative bound on the weight Xk

r

of the k‐geodesic watermelon via a direct multi‐scale construction of disjoint paths with correct
order collective weight, which we formally state ahead as Theorem 7.16:

P
(
Xk

r ≤ µkr − Ck5/3r1/3
)
≤ exp(−ck2), (7.5)

for all k ≤ ηr for a small constant η > 0. We give the construction in Chapter 10.

For our purposes we observe that, for any k ∈ N,

P
(
Xr < µr − θr1/3

)
≤ P

(
Xk

r < µkr − θkr1/3
)
.

Taking k = ηθ3/2 and noting that then kθ is of order k5/3 and that θ < r2/3 =⇒ k < ηr shows
that

P
(
Xr < µr − θr1/3

)
≤ exp(−ck2) = exp(−cθ3),

and it is a simple matter to replace µr by E[Xr] by possibly reducing the constant c.

Deferring a discussion of the details of the construction that the proof of (7.5) consists of, the
construction requires three inputs. The first is the following:
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1. Limit shape bounds, which we have by Assumption 2.

The next two inputs concern the maximum weight over all midpoint‐to‐midpoint paths con‐
strained to lie in a given parallelogram U = Ur,ℓ,z of height r, width ℓr2/3, and opposite side
midpoints (1, 1) and (r − z, r + z). We will call such weights “constrained weights”.

2. An exponential upper bound on the constrained weight’s lower tail, which we will arrive
at by bootstrapping. To elaborate, by using Assumption 3b and the previously mentioned
Proposition 7.15 on the transversal fluctuation of the unconstrained geodesic, we can ob‐
tain an initial stretched exponential upper bound ((7.7) of Proposition 7.17 ahead) on the
constrained weight’s lower tail. Then, via a bootstrapping argument as above, we can up‐
grade this to a tail with exponent 3/2 (see Proposition 8.3).
3. A lower bound on themean of constrained weights using the above tail, provided by (7.8)
of Proposition 7.17.

A more detailed overview of the construction is provided in Chapter 10.

Lower bound on lower tail

Adetail about the construction described, which is captured in its formal statement Theorem7.16,
is that it fits inside a strip of width 4k1/3r2/3 around the diagonal. To lower bound the lower tail
probability, this suggests that we need to focus on paths which remain in the strip of this width
(again we will be setting k to be a constant times θ3/2). Essentially this is because a consequence
of the parabolic weight loss of Assumption 2 is that any path (not just the geodesic) which exits
the strip of width k1/3r2/3 suffers a loss of (k1/3r2/3)2/r = k2/3r1/3, which is of order θr1/3, with
high probability. This is captured more precisely in Theorem 7.14 ahead.

Similar to the argument for the upper bound on the upper tail, we consider a grid where each
cell has height r/k and width (r/k)2/3, but with overall width k1/3r2/3. This gives k cells in each
column and in each row, for a total of k2 cells. See Figure 7.3.

Now consider the event that, for each interval in the grid, themaximumweight from that interval
to the next row of intervals is less than µr/k − C(r/k)1/3, and that the maximum weight of a
path which exits the grid is at most µr − Ck2/3r1/3. This is an intersection of decreasing events,
and on this event Xr is at most µr − Ck2/3r1/3: if it exits the grid it suffers a loss of Ck2/3r1/3

and if it stays in the grid it undergoes a loss of at least C(r/k)1/3 for each of the k rows. Now if
we know that there is a constant probability (say δ > 0) lower bound on the event that a single
interval‐to‐line weight is low, the FKG inequality (along with Theorem 7.14 to lower bound the
probability of parabolic weight loss when exiting the grid) provides a lower bound of order δk

2

on the described event’s probability; setting k to be a multiple of θ3/2 will complete the proof.

To implement this we need a lower bound on the probability that the interval‐to‐line weight is
small using the point‐to‐point lower bound of Assumption 4b. This is Lemma 9.9. The proof
proceeds in two steps. First, a stepping back strategy as earlier gives a constant lower bound
on the interval‐to‐interval weight’s lower tail for intervals of size εr2/3, for some small ε > 0
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k 1/3
r 2/3

r/k

(r/k) 2/3

(r, r)

(1, 1)

Figure 7.3: The grid of k2 intervals for the lower bound of the lower tail. An interval and the
following row of intervals are blue: consider the event that the heaviest path from the former to
the latter is at most µr/k−C(r/k)1/3. To prove that this has positive probability, we make use
of parabolic curvature of the weight profile (shown in green) to argue that if the endpoint on
the row is too extreme, it will typically suffer the loss we want; a separate backing up argument
is employed for when the endpoint is near the center where the parabolic weight loss is not
significant.

(as will be clear from the precise argument, the smallness of ε is crucial for this). By the FKG
inequality, this is upgraded to a bound for intervals of length r2/3; essentially, if each of the
intervals are divided into ε−1 intervals of size εr2/3, and all ε−2 pairs of intervals have small
weight (which is an intersection of decreasing events), then so must the original intervals. To get
from this to an interval‐to‐line bound we again argue based on FKG.We divide the line into r1/3

many intervals of size r2/3 each. We can ensure that the weight is low whenever the destination
interval is one of a constant number near (r, r) using the previous bound, and for the rest the
parabolic curvature ensures that it is so likely to be low that the FKG inequality gives a positive
lower bound independent of r, in spite of considering an intersection of r1/3 many events; see
Figure 7.3.

7.4 Tails for constrained weight

The ideas described in the previous section can be applied slightly more generally to yield the
following theorem on the lower tail of the constrained weightXU

r of the best path from (1, 1) to
(r, r) constrained to stay inside a parallelogram U .

Recall that U = Ur,ℓ,z denotes a parallelogram of height r, width ℓr2/3, and opposite side mid‐
points (1, 1) and (r − z, r + z), defined to be the set of vertices v = (vx, vy) ∈ Z2 such that
v+ t(−1, 1) lies on the line y = r+z

r−z
· x for some t ∈ R with |t| ≤ ℓr2/3/2, and 2 ≤ vx + vy ≤ 2r.
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LetXU
r be the maximum weight among all paths from (1, 1) to (r − z, r + z) constrained to be

inside U . The notation Ur,ℓ,z will be used for parallelograms throughout Part III of the thesis.
Here we take z = 0.

Estimates on constrained weights have been crucial in several recent advances, see [BSS14]. The
following theorem proves a sharp estimate on the tail as a function of the aspect ratio of the
parallelogram, measured on the characteristic KPZ scale.

Theorem 7.13. Under Assumptions 2, 3, and 4b, there exist finite positive constants c1, c2, η, C,
θ0, and r0 (all independent of ℓ) such that, for z = 0, ranges of θ to be specified, r > r0, and
Cθ−1 ≤ ℓ ≤ 2r1/3,

exp
(
−c1min(ℓθ5/2, θ3)

)
≤ P

(
XU

r − µr ≤ −θr1/3
)
≤ exp

(
−c2min(ℓθ5/2, θ3)

)
;

the second inequality holds for θ > θ0 while the first holds for θ0 < θ < ηr2/3. If ℓ is bounded
below by a constant ε > 0 independent of θ, we can replace µr by E[XU

r ] for r > r̃0(ε) and with c1
depending on ε.

We note that Theorem 7.6 and Theorem 7.7 are implied by Theorem 7.13 by taking ℓ = 2r1/3.

We also remark that the transition from ℓθ5/2 to θ3 occurs when ℓ becomes of order θ1/2; this
matches the belief (which comes from the parabolic curvature) that the geodesic, conditioned on
its weight being less than µr − θr1/3, will have typical transversal fluctuations of order θ1/2r2/3.

The proof idea of Theorem 7.13 is a refinement of those of Theorems 7.6 and 7.7 described above,
by picking the number of paths of average separation k−2/3 = θ−1 to be packed inside U , which
turns out to bemin(ℓk2/3, k) (rather than k as before). We omit further outline to avoid repetition.

7.5 Related work

The main tools we use in our arguments are the super‐additivity of the Xr (i.e., Xr+j ≥ Xr +
X(r+1,r),(r+j,r+j)), geodesic watermelons, and concentration of measure results for sums of inde‐
pendent stretched exponential random variables. We have discussed aspects of the latter two
that have appeared in various works, and here we briefly overview the first, i.e., super‐additivity.

Not surprisingly, super‐additivity of theweight has been an important tool in other investigations
of non‐integrable models; for example, the proof of the almost sure existence of a deterministic
limit for Xr/r as r → ∞ under a wide class of vertex distributions goes via Kingman’s sub‐
additive theorem. Super‐additivity was also crucial in [Led18], where a law of iterated logarithm
forXr was proved. More precisely, for exponential weights, lim supr→∞(Xr−4r)/r1/3was shown
to almost surely exist and be a finite, positive, deterministic constant. Super‐additivity only aids
in proving a result for the lim sup, and so the result on the lim inf in [Led18] is weaker. This was
addressed in [BGHK19], where the lack of sub‐additivity was handled by shifting perspective to
also consider point‐to‐line passage times, which, as we have outlined, wewill do in the arguments
presented here as well. A usage of super‐additivity was also made by Seppäläinen in [Sep98a]
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and shortly after by Johansson in [Joh00], where, from a limiting large deviation theorem for
the upper tail, it was pointed out that the same gives an explicit bound for finite r by a super‐
additivity argument. Briefly, and again in the context of Exponential LPP, the observation is that
for every r and every N ≥ 1,

P
(
Xr > θ

)N ≤ P
(
XNr > Nθ

)
=⇒ P

(
Xr > θ

)
≤ lim

N→∞

[
P
(
XNr > Nθ

)]1/N
, (7.6)

and the latter limit was shown to exist and explicitly identified in [Sep98a]. In a sense our argu‐
ments are dual to that of (7.6); while (7.6) uses super‐additivity to go to larger r in order to obtain
a bound, our arguments use super‐additivity to reason about smaller r to obtain a bound.

Finally, we mention the recent work [EJS20] which proves a sharp upper bound (i.e., with the
correct coefficient of 4/3 as in (7.1)) on the right tail of Xr (centred by µr = 4r and appropri‐
ately scaled) in exponential LPP via more probabilistic arguments, rather than precise analysis
of integrable formulas. The technique utilizes calculations in an increment‐stationary version of
exponential LPP (where the vertex weight on the boundaries of Z2

≥0 differ in distribution from
the rest) and a moment generating function identity specific to this model—features absent in
the general setting under consideration here.

7.6 A few important tools

In this section we collect some refined tools for last passage percolation which we will use for our
arguments as outlined in Section 7.3. There are four statements: the first asserts that it is typical
for a path to suffer a weight loss which is quadratic in its transversal fluctuation, measured in the
characteristic scalings of r1/3 and r2/3; the second is a related transversal fluctuation bound, but
for paths with endpoint (r−z, r+z) for |z| ≤ r5/6; the third is a high probability construction of
a given number of disjoint paths which achieve a good collective weight; and the fourth provides
bounds on the lower tail and mean of constrained weights.

We will import the proof ideas from [BGHH20] where similar statements have appeared. Our
proofs are essentially the same but adapted suitably to work under the weaker tail exponent α
assumed here; for this reason, we only explain themodifications that need to bemade for the first,
second and fourth tools in Appendix A. The proof of the third tool is provided in Chapter 10.

Parabolic weight loss for paths with large transversal fluctuation

The following is the precise statement of the first tool.

Theorem 7.14 (Refined transversal fluctuation loss). Let Xs,t
r be the maximum weight over all

paths Γ from the line segment joining (−tr2/3, tr2/3) and (tr2/3,−tr2/3) to the line segment joining
(r − tr2/3, r + tr2/3) and (r + tr2/3, r − tr2/3) such that TF(Γ) > (s + t)r2/3, with t ≤ s. Under
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Assumptions 2 and 3a, there exist absolute constants r0, s0, c > 0 and c2 > 0 such that, for s > s0
and r > r0,

P
(
Xs,t

r > µr − c2s
2r1/3

)
< exp

(
−cs2α

)
.

The proof of this follows that of [BGHH20, Theorem 3.6]. We explain the necessary modifica‐
tions in the appendix.

An important feature of Theorem 7.14 is that it bounds the probability of a decreasing event,
which is useful as it allows the application of the FKG inequality.

Transversal fluctuation bound for |z| ≤ r5/6

The second tool is a result on the transversal fluctuation of geodesics to (r− z, r+ z) (note that
Theorem 7.14 is related but only for z = 0), which is the following. We note in passing that the
event of the geodesic having large transversal fluctuation is neither increasing nor decreasing.

Proposition 7.15 (Transversal fluctuations). For given z, let Γz
r be the geodesic from (1, 1) to (r−

z, r + z) with maximum transversal fluctuation. Under Assumptions 2 and 3, there exist constants
c > 0, s0, and r0 such that, for r > r0, s > s0, and |z| ≤ r5/6,

P
(
TF(Γz

r) > sr2/3
)
≤ exp

(
−cs2α

)
.

The proof of this is similar to that of [BSS14, Theorem 11.1] and appears in the appendix.

A high probability construction of disjoint paths with good collective weight

Here is the statement of our third tool, originally proved as [BGHH20, Theorem 3.1].

Theorem 7.16. Under Assumptions 2 and 3, there exist c, C1 > 0, k0 ∈ N and η > 0 such that for
all k0 ≤ k ≤ ηr andm ∈ J1, kK, with probability 1− e−ckm, there existm disjoint paths γ1, . . . , γm
in the square J1, rK2, with γi from (1,m− i+ 1) to (r, r− i+ 1) andmaxi TF(γi) ≤ 2mk−2/3r2/3,
such that

m∑
i=1

ℓ(γi) ≥ µrm− C1mk2/3r1/3.

The proof of Theorem 7.16 will be given in Chapter 10 and will require as input our fourth tool
on bounds for the lower tail and mean of constrained weights.

Bounds for constrained weights

To state our fourth and final tool, recall from Section 7.4 the notation for parallelograms Ur,ℓ,z of
height r, width ℓr2/3 and opposite midpoints (1, 1) and (r−z, r+z) as well as that for maximum
weight of paths constrained inside U ,XU

r .
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Proposition7.17 (Lower tail&mean of constrained point‐to‐point, Proposition 3.7 of [BGHH20]).
Let positive constants L1, L2, and K > 0 be fixed. Let z and ℓ be such that |z| ≤ Kr2/3

and L1 ≤ ℓ ≤ L2, and let U = Ur,ℓ,z. There exist positive constants r0 = r0(K,L1, L2) and
θ0 = θ0(K,L1, L2), and an absolute positive constant c, such that, for r > r0 and θ > θ0,

P
(
XU

r ≤ µr − θr1/3
)
≤ exp

(
−cℓ2α/3θ2α/3

)
. (7.7)

As a consequence, there exists C = C(K,L1, L2) such that, for r > r0,

E[XU
r ] ≥ µr −Gz2/r − Cr1/3. (7.8)

To be consistent with previous expressions we have included the parabolic term −Gz2/r in the
previous, but note that for the ranges of z mentioned we can absorb it into the Cr1/3 term.

7.7 Organization of Part III

In Chapter 8 we collect the concentration statements for stretched exponential random variables
and prove an abstracted version of the bootstrap. In Chapter 9 we prove the main theorems.
Finally, in Chapter 10, we construct a collection of disjoint high‐weight paths and so prove The‐
orem 7.16.
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Chapter 8

Concentration tools and the bootstrap

In this section we collect the concentration inequality for stretched exponential random variables
from [KC18] and prove a slightlymore flexible versionwhich ismore suitable for our applications.
We then move to stating a general version of one iteration of the bootstrap, which will both
illustrate the basic mechanism and be used later in Section 9.3.

To set the stage, letα ∈ (0, 1] and suppose Yi are independentmean zero random variables which
satisfy, for some L,M < ∞,

inf
{
η > 0 : E

[
gα,L

(
|Yi|
η

)]
≤ 1
}

≤ M, (8.1)

where gα,L(x) = exp
(
min{x2, (x/L)α}

)
−1. The above condition is equivalent to the finiteness

of a certain Orlicz norm introduced in [KC18]; see Definition 2.3 and Proposition A.1 therein.
The use ofOrlicz norms to prove concentration inequalities is well known; see for example [Ver18,
Wai19]. The reader not familiar with this notion can keep in mind mean zero random variables
Yi with the property that, for some c > 0 and C, and all t ≥ 0,

P(|Yi| ≥ t) ≤ C exp(−ctα), (8.2)

which are known to satisfy (8.1).

Proposition 8.1. Given the above setting, there exists c = c(M,L) > 0 such that for all t ≥ 0 and
all k ∈ N,

P

(∣∣∣∣∣
k∑

i=1

Yi

∣∣∣∣∣ ≥ t

)
≤

2 exp
(
−ct2

k

)
0 ≤ t ≤ k1/(2−α)

2 exp (−ctα) t ≥ k1/(2−α).

These two regimes capture the transition from the Gaussian behavior in the immediate tail to
stretched exponential behavior deep into the tail.
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Proof of Proposition 8.1. [KC18, Theorem 3.1] and the discussion after Remark 2.1 therein imply
that, for some constants C and c > 0 (depending onM and L), for all t ≥ 0,

P

(∣∣∣∣∣
k∑

i=1

Yi

∣∣∣∣∣ ≥ C(
√
kt+ t1/α)

)
≤ 2 exp(−ct).

Evaluating the transition point where
√
kt = t1/α yields the statement of Proposition 8.1 by

modifying the value of c in the previous display.

In our applications, we will only have an upper tail bound and hence not a direct verification of
the hypothesis (8.1) which needs two sided bounds as in (8.2). It will also at times be convenient
to center the variables not by their expectation but by some other constant for which a tail bound
is available. These two aspects are handled in the next lemma.

Lemma 8.2. Suppose k ∈ N, {Yi : i ∈ J1, kK} are independent, and there exist constants νi,
α ∈ (0, 1], and c > 0 such that, for t > t0, and i ∈ J1, kK,

P (Yi − νi ≥ t) ≤ exp(−ctα). (8.3)

Then there exist constants c1 = c1(c, α, t0) and c′ = c′(c, α) > 0 such that, for t ≥ 0 and all k ∈ N,

P

(
k∑

i=1

(Yi − νi) > t+ kc1

)
≤

2 exp
(
−c′t2

k

)
0 ≤ t ≤ k1/(2−α)

2 exp (−c′tα) t ≥ k1/(2−α).

Proof. LetWi be independent positive randomvariableswhose distribution is defined byP(Wi >
t) = exp(−ctα) for t ≥ 0. Then the hypothesis on Yi implies that Yi − νi is stochastically domi‐
nated byWi + t0, and hence there is a coupling of the Yi andWi over all i simultaneously such
that

Yi − νi ≤ Wi + t0,

by standard coupling arguments. It is a calculation that E[Wi] = αc−1/αΓ(α), where Γ(z) =∫∞
0 xz−1e−x dx is the gamma function. Thus we get

P

(
k∑

i=1

(Yi − νi) > t+ kc1

)
≤ P

(
k∑

i=1

(Wi − E[Wi]) > t+ k(c1 − t0 − αc−1/αΓ(α))

)
.

Setting c1 = t0 + αc−1/αΓ(α) and applying Proposition 8.1 completes the proof of Lemma 8.2,
under the condition thatWi − E[Wi] satisfies (8.1) for some L andM depending only on α and
c. We verify this next. [KC18, Proposition A.3] asserts that for any random variable Y satisfying,
for all t ≥ 0,

P(|Y | ≥ t) ≤ 2 exp(−c̃tα), (8.4)
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there existM and L, depending on α and c̃, such that (8.1) holds with Y in place of Yi. Therefore
it is sufficient to verify (8.4) for Y = Wi − E[Wi] for some c̃ depending on α and c. SinceWi is
positive for each i, we have the bound

P
(
|Wi − E[Wi]| ≥ t

)
≤

{
1 0 ≤ t ≤ E[Wi]

exp(−ctα) t > E[Wi]
,

which implies that (8.4) holds with c̃ = min(c, log 2) · (E[Wi])
−α, since 2 exp(−c̃tα) ≥ 1 for 0 ≤

t ≤ E[Wi]. Note that c̃ depends on only α and c. This completes the proof of Lemma 8.2.

With the concentration tool Lemma 8.2 in hand, we next present the driving step of the boot‐
strapping argument. It is the formal statement and proof of one step of the iteration under a
sub‐additive assumption. As indicated in the outline of proof section, sinceXr are super‐additive,
this will not be of use for the upper bound on the upper tail; but it will find application in the
upper bound on the lower tail, where super‐additivity is the favourable direction.

Proposition 8.3. Suppose that for each r, k ∈ N with k ≤ r, {Y (k)
r,i : i ∈ J1, kK} is a collection of

independent random variables. Suppose also that there exist α ∈ (0, 1], c > 0, r0, and θ0 such that,
for r ∈ N, k ∈ N, i ∈ J1, kK, and θ ∈ R such that r/k > r0 and θ > θ0,

P
(
Y

(k)
r,i > θ(r/k)1/3

)
≤ exp (−cθα) . (8.5)

Finally, let Yr be a random variable such that Yr ≤
∑k

i=1 Y
(k)
r,i for any k ∈ N satisfying r/k > r0.

Then there exist θ̃0 = θ̃0(c, α, θ0, r0) and c′ = c′(c, α, θ0, r0) such that, for θ̃0 < θ < r2/3 and
r > r0,

P
(
Yr > θr1/3

)
≤ exp

(
−c′θ3α/2

)
.

Proposition 8.3 is written in a slightly more general way, without explicit reference to the LPP
context it will be applied, to highlight the features of LPP that are relevant. In its application Yr

will be the weight of the heaviest path constrained to be in a certain parallelogram of height r,
centred by µr, and Y

(k)
r,i will be weights when constrained to be in disjoint subparallelograms of

height r/k, centred by µr/k.

Finally, we mention a rounding convention we now adopt for the rest of this part of the thesis:
the quantities k and r/k should always be integers and, when expressed as real numbers, will be
rounded down without comment. The discrepancies of±1 which so arise will be absorbed into
universal constants.

Proof of Proposition 8.3. By the bound Yr ≤
∑k

i=1 Y
(k)
r,i , for every r, k ∈ N with k ≤ r,

P
(
Yr > θr1/3

)
≤ P

(
k∑

i=1

Y
(k)
r,i > θr1/3

)
. (8.6)
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We will choose k = ηθ3/2 for some η ∈ (0, 1), a form which is guided by our desire to apply the
concentration bound Lemma 8.2 with its input bound (8.3) provided by the hypothesis (8.5) of
Proposition 8.3; we also need k ≥ 1. The first consideration will determine an acceptable value
for η via its development as the following two constraints:

1. Lemma 8.2 introduces a linear term kc1, which, when multiplied by the scale (r/k)1/3 of
the Y (k)

r,i indicated by (8.5), is c1k2/3r1/3; we want this to be smaller than a constant, say 1
2 ,

times θr1/3. Note that c1 depends on α, c, and θ0.
2. We require r/k > r0 to apply the hypothesis of Proposition 8.3.

These two constraints, and that θ < r2/3 by hypothesis, force η to be smaller than r−10 and
2−3/2c−3/21 . We pick an η which satisfies these inequalities; thus η depends on c1 and r0. Set
θ̃0 = η−2/3; then θ ≥ θ̃0 implies k ≥ 1. We will apply Lemma 8.2 with Yi = Y

(k)
r,i (r/k)

−1/3,
νi = µ(r/k)2/3, and t = 1

2θk
1/3. For θ ≥ θ̃0 and for a c̃ depending on only c and α,

P
(
Yr > θr2/3

)
≤ P

(
k∑

i=1

Y
(k)
r,i >

1
2
θk1/3

( r
k

)1/3
+ kc1

( r
k

)1/3)

≤

{
2 exp

(
−c̃θ2k−1/3) θ̃0k

1/3 ≤ θk1/3 ≤ k1/(2−α)

2 exp
(
−c̃θαkα/3

)
θk1/3 ≥ max(θ̃0, k1/(2−α))

(applying Lemma 8.2)

≤ 2 exp
(
−c̃ηα/3θ3α/2

)
;

in the final line we have taken the second case of the preceding line. This is because α ≤ 1
implies k1/(2−α) ≤ k, and the choice of k (and that η < 1) ensures that θk1/3 ≥ k; so the second
case holds, since we have already assumed θ > θ̃0.

The proof of Proposition 8.3 is complete by absorbing the factor of 2 in the final display into the
exponential, which we do by setting c′ to c̃ηα/3/2 and increasing θ̃ (if needed), depending on c′,
so that exp(−c′(θ̃0)

3α/2) ≤ 1/2.
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Chapter 9

The tail bound proofs

9.1 Upper tail bounds

In this section we prove Theorems 7.4 and 7.5, respectively the upper and lower bounds on the
upper tail.

Upper bound on upper tail

As mentioned in Section 7.3, for the argument for the upper bound on the upper tail, we need a
sub‐additive relation, instead of the natural super‐additive properties that point‐to‐point weights
exhibit. To bypass this issue, we discretize the geodesic and bound the weights of the discretiza‐
tions by interval‐to‐interval weights, which do have a sub‐additive relation with the point‐to‐
point weight; this allows us to appeal to a form of the basic bootstrapping argument outlined
around (7.3); Then performing a union bound over all possible discretizations will complete the
proof.

We next state a version of one iteration of the bootstrap for the upper bound on the upper tail.
There are a number of parameters which we will provide more context for after the statement.

Proposition 9.1. Let λj =
1
2 +

1
2j . Suppose there exist α ∈ (0, 1], β ∈ [α, 1], ζ ∈ (0,∞], j ∈ N

and constants c > 0, θ0, and r0 such that, for θ > θ0, r > r0, and |z| ≤ r5/6,

P
(
Xz

r ≥ µr − λj
Gz2

r
+ θr1/3

)
≤

{
exp

(
−cθβ

)
θ0 < θ < rζ

exp (−cθα) θ ≥ rζ .
(9.1)

Let ζ ′ = min
(

αζ
1+αζ

·3−β
3β , 2α

9+16α

)
, with αζ

1+αζ
interpreted as 1 if ζ = ∞. There exist c′ = c′(c, α, β, j) >

0, θ′0 = θ′0(θ0, c, α, β, j), and r
′
0 = r′0(α, j, r0) such that, for θ > θ′0, r > r′0, and |z| ≤ r5/6,

P
(
Xz

r ≥ µr − λj+1
Gz2

r
+ θr1/3

)
≤

{
exp

(
−c′θ

3β
3−β (log θ)−

β
3−β

)
θ0 < θ < rζ

′

exp(−c′θα) θ ≥ rζ
′
.
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In particular, the input (9.1) with parameters (α, β, ζ, j) gives as output the same inequality with
parameters (α, β′, ζ ′, j + 1), where β′ > β may be taken to be 3−β/2

3−β
· β in order to absorb the

logarithmic factor.

We first explain in words the content of the above result and describe the role of the various
quantifiers appearing in the statement.

The range of z Though Theorem 7.4 is stated only for z = 0, the discretization of the geodesic
we adopt demands that we have the bootstrap improve the tail bound in a number of directions,
defined by |z| ≤ r5/6, in order to handle the potential “zig‐zaggy” nature of the geodesic. Here
we choose to consider |z| till r5/6 as till this level the lowest order termHz4/r3 in Assumption 2
is at most of the order of fluctuations, namely r1/3.

The role of λj One may expect to be able to obtain an improved tail for deviation from the
expectation, which is µr−Gz2/r up to smaller order terms. However, for technical reasons, this
proves to be difficult; we say a little more about this in the caption of Figure 9.2. Instead, Propo‐
sition 9.1 proves a bound for the deviation only from a point away from the expectation, reflected
by the factor λj in front of the parabolic term, which decreases as j increases. Nonetheless, this
weaker bound suffices for our application: the relaxation has no effect for the z = 0 direction
asserted by Theorem 7.4 since the parabolic term is always zero in that case.

The role of ζ Notice that in the hypothesis (9.1) we allow two tail behaviors (with tail expo‐
nents α and β) for Xz

r in different regimes, with boundary at r
ζ . This is to allow the use of the

conclusion of Proposition 9.1, which only improves the tail exponent for θ up to rζ
′
, as input

for subsequent applications of the same proposition. Theorem 7.4 will be obtained by applying
Proposition 9.1 a finite number of times, with the output bound (with an increased exponent)
of one application being the input for the next, till the exponent is raised from the initial value
of β = α to a value greater than one for θ in the appropriate range of the tail. Then the same
proposition will be applied one final time with β = 1; at this value of β,

θ3β/(3−β)(log θ)−β/(3−β) = θ3/2(log θ)−1/2,

which will yield Theorem 7.4. The quantity

ζ ′ = min
(

αζ

1+ αζ
· 3− β

3β
,

2α
9+ 16α

)
measures how far into the tail each improved exponent holds via our arguments. The above
explicit expression we obtain is perhaps hard to parse and is not of great importance for our
conclusions. Nonetheless, we point out two basic properties of ζ ′: (i) it is smaller than ζ, as
may be seen by algebraic manipulations of the first of the two expressions being minimized in
its definition (along with β ≥ α); and (ii) it decays to zero as α → 0 linearly.

We next prove Theorem 7.4 given Proposition 9.1, before turning to the proof of Proposition 9.1.
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Proof of Theorem 7.4. First, if α ≥ 1, we apply Proposition 9.1 with α = β = 1, ζ = ∞, j = 1,
and the hypothesis (9.1) provided by Assumption 3a. This yields Theorem 7.4 by taking z = 0.

If α ∈ (0, 1), we will apply Proposition 9.1 iteratively finitely many times. Let αj, βj, and ζj be
values which we will specify shortly. We will select these values such that the hypothesis (9.1)
of Proposition 9.1 holds with parameters (α1, β1, ζ1, 1) for all |z| ≤ r5/6, and, knowing that (9.1)
holds with parameters (αj, βj, ζj, j) for all |z| ≤ r5/6 and applying Proposition 9.1 will imply that
(9.1) holds with parameters (αj+1, βj+1, ζj+1, j + 1) for all |z| ≤ r5/6.

We set αj = α for all j, and adopt the initial settings β1 = α and ζ1 = ∞; so again (9.1) is
provided by Assumption 3a when j = 1. The subsequent values are read off of Proposition 9.1
as follows for j ≥ 2:

βj = min

(
3− 1

2βj−1

3− βj−1
· βj−1, 1

)
and ζj = min

(
αζj−1

1+ αζj−1
· 3− βj−1

3βj−1
,

2α
9+ 16α

)
, (9.2)

where αζj−1/(1+αζj−1) in the definition of ζj is interpreted as 1 when ζj−1 = ∞. We adopt the
previous expression for βj instead of the one given by Proposition 9.1 in order to absorb the log
factor in the denominator of the exponent furnished by that proposition. Observe that βj > βj−1
whenever βj−1 < 1.

We define n ∈ N by

n := min
{
j : βj = 1

}
; (9.3)

it can be checked that n is finite since, if βj < 1,

βj

βj−1
=
3− 1

2βj−1

3− βj−1
= 1+

βj−1

2(3− βj−1)
≥ 1+

α

2(3− α)
,

as βj−1 > βj−2 > . . . > β1 = α.

By the previous discussion, we know that (9.1) holds with parameters (αn, βn = 1, ζn, n). Apply‐
ing Proposition 9.1 with these parameters and taking z = 0 gives the statement of Theorem 7.4
with ζ = ζn+1 = min(23 ·

αζn
1+αζn

, 2α
9+16α). It is clear from this expression that ζ → 0 as α → 0, and,

since 2α/(9+ 16α) achieves a maximum value of 2/25 for all α ∈ (0, 1], that ζ ∈ (0, 2/25].

Remark 9.2. We can now specify more precisely the regimes of θ provided by the proof of The‐
orem 7.4 where the tail exponent transitions from 3/2 to α, as mentioned in Remark 7.11. That
is, for j = J1, nK with n as in (9.3) and βj and ζj as in (9.2), it holds for θ ∈ [rζj+1 , ζj] that

P
(
Xr − E[Xr] ≥ θr1/3

)
≤ exp

(
−cθβj

)
for θ ∈ [rζj+1 , rζj).

It remains to prove Proposition 9.1. A roadmap for the proof is as follows.

1. As indicated immediately before the statement of the proposition, to achieve a stochastic
domination of the geodesic weight by a sum, we specify a grid‐based discretization of the
geodesic, and Lemma 9.3 bounds the cardinality of the number of possible discretizations.
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2. Lemma 9.4 provides an improved tail bound (compared to the hypothesis (9.1)) for the
weight of a given discretization, using the bootstrapping idea of looking at smaller scales.
This makes use of Lemma 9.5, which takes the point‐to‐point tail available from (9.1) and
gives an interval‐to‐interval bound with the same tail.
3. When Lemmas 9.3 and 9.4 are in hand, the proof of Proposition 9.1 will be completed by
taking a union bound.

We address each of the above three steps in turn in the next three subsections.

Step 1: The discretization scheme

Wewill define a gridGz of intervals through which any geodesic from (1, 1) to (r− z, r+ z), on
the event that it is typical, must necessarily pass through; see Figure 9.1.

We recall fromSection 7.3 that “width” refers tomeasurement along the anti‐diagonal and “height”
to measurement along the diagonal. For k ∈ N to be set, the width of a cell in the grid will be
(r/k)2/3, and the height r/k. The number of cells in a column of the grid is k, and the number
of cells in a row isM = 2θ3/4αk2/3 as we want the width ofGz to be 2θ3/4αr2/3. The width ofGz

is set to this value because, by Proposition 7.15 on the probability of any geodesic having large
transversal fluctuations, P(TF(Γz

r) > θ3/4αr2/3) ≤ exp(−cθ3/2); note that this is smaller than the
bound we are aiming to prove in Proposition 9.1 and so we may essentially ignore the event that
any geodesic exits the grid.

We now move to the formal definition. We assume k is small enough that (r/k)2/3 ≥ 1, i.e.,
k ≤ r (as the minimum separation of points in Z2 is 1). The grid Gz consists of intervals Lz

ij as
follows:

Gz =
{
Lz

ij : i ∈ J0, kK, j ∈ J0,MK},
whereM is defined as

M = 2 · dθ
3
4αk2/3e. (9.4)

Let vi = bir/kc and hz
i,j = biz/k + (θ

3
4α − jk−2/3)r2/3c. For i ∈ J0, kK and j ∈ J0,MK, the line

segment Lz
ij will connect the points(

vi − hz
i,j, vi + hz

i,j

)
and

(
vi − hz

i,j+1, vi + hz
i,j+1

)
.

In words, the grid Gz is contained in the rectangle {|y − r+z
r−z

· x| ≤ θ
3
4α r2/3, 0 ≤ x + y ≤ 2r}.

Grid lines along the anti‐diagonal will be called Gz
i , i.e., for i ∈ J0, kK,

Gz
i =

{
Lz

ij : j ∈ J0,MK}.
We call Lz = (L0, . . . , Lk) a discretization, where Li ∈ Gz

i is an interval on the i
th grid line. We

impose that L0 and Lk are the intervals whose midpoints are (1, 1) and (r− z, r+ z) respectively.

Lemma 9.3. The set of discretizations has size at most exp
{
k
(
log k + 3

4α log θ + log 2
)}
.
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Figure 9.1: The grid utilized for the discretization in Step 1 of the proof of Proposition 9.1. Note
thatmeasurements aremade along the antidiagonal and diagonal only, with the diagonal chosen
over the line with the slope of the left or right boundary of the grid. The lower boundary of
the grid Gz is centered at (1, 1) and the upper boundary at (r − z, r + z). From each grid line
Gz

i , one interval Li is picked to form a discretization Lz = (L0, . . . , Lk) with the constraint
that L0 is fixed to be the interval on Gz

0 whose midpoint is (1, 1) and Lk to be the interval on
Gz

k whose midpoint is (r − z, r + z). On the high probability event that all geodesics passes
through the grid, its weight is upper bounded by the maximum, over all discretizations Lz, of
the sum of interval‐to‐interval weights of the intervals in Lz. These weights are independent
and have fluctuations of scale (r/k)1/3, which allows us to use the idea of bootstrapping.

Proof. This follows from the observation that there areM = 2θ
3
4αk2/3 ≤ 2θ

3
4αk intervals on each

grid line Gz
i , and there are k − 1 grid lines in total where there is a choice of interval (as the

intervals from Gz
0 and Gz

k are fixed), giving (2θ
3
4αk2/3)k−1 discretizations.

For a given discretization Lz = (L0, . . . , Lk), letXLz be the maximum weight of all paths which
pass through all intervals of Lz. The discretization described above implies that, on the event
that TF(Γz

r) ≤ θ
3
4α r2/3,

Xz
r ≤ max

Lz
XLz ,

where the maximization is over all discretizations Lz. So to prove Proposition 9.1, we need a
tail bound onXLz for a fixed discretization Lz; this is Step 2 and is done in the next subsection,
where the hypothesis (9.1) and bootstrapping are used to provide an improved tail bound onXLz .
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Step 2: An improved tail bound onXLz

Because θ is a global parameter which affects the set of discretizations, we will use the symbol
t as in (9.5) ahead to denote the scaled deviation when considering the weight associated to a
fixed discretization, though we will eventually set t = θ. The following lemma uses the idea of
moving to lower scales to obtain an improved tail bound forXLz for a fixed discretization Lz.

Lemma 9.4. Under the hypotheses of Proposition 9.1 there exist c′ = c′(c, α, β, j) > 0, δ =
δ(c, β, j, θ0) > 0, and t0 = t0(c, β, j) such that the following holds. Let t > t0, r > r0, 26 ≤
k ≤ min(δt3/2, r−10 r), θ ≥ θ0, and z ∈ [−r, r] be such that |z| ≤ r5/6 and (r/k)5/6 > 4θ3/4αr2/3.
Let Lz = (L0, . . . , Lk) be a fixed discretization. Then

P

(
XLz > µr − λj+1

Gz2

r
+ tr1/3

)
≤ exp

(
−c′tβkβ/3

)
+ k · exp

(
−c′(r/k)αζ

)
, (9.5)

with the second term interpreted as zero if ζ = ∞.

The basic tool in the proof of Lemma 9.4 is to bound XLz by the sum of the interval‐to‐interval
weights defined by the intervals in Lz. So given a point‐to‐point upper tail bound, as in the
hypothesis of Proposition 9.1, we will first need to obtain an upper tail bound for interval‐to‐
interval weights.

We define the relevant intervals to state the interval‐to‐interval bound next. For r fixed, and
|w| ≤ r5/6, let Llow be the line segment joining (−r2/3, r2/3) and (r2/3,−r2/3) and let Lup be the
line segment joining (r−w− r2/3, r+w+ r2/3) and (r−w+ r2/3, r+w− r2/3). Thus w is the
midpoint displacement of the intervals, and note that their height difference is r. Define Z by

Z = XLlow,Lup .

The content of the next lemma is a tail bound on Z.

Lemma 9.5. Suppose (9.1) holds as in Proposition 9.1. Then there exist c̃ = c̃(c, j), t̃0 = t̃0(θ0, j),
and r̃0 = r̃0(r0, j) such that, for r > r̃0, |w| ≤ r5/6, and t > t̃0

P
(
Z > µr − λj+1

Gw2

r
+ tr1/3

)
≤

{
exp

(
−c̃tβ

)
t̃0 < t < rζ

exp (−c̃tα) t ≥ rζ .
(9.6)

We note that the hypothesis (9.1) of Proposition 9.1 is a point‐to‐point tail bound from µr −
λjGz2/r, whereas the conclusion of Lemma 9.5 has the weaker λj+1 in place of λj (recall λj =
1/2 + 2−j). This reduction in the coefficient of the parabolic term is the previously mentioned
relaxation which allows the bootstrap to proceed to the next iteration.

The proof of Lemma 9.5 relies on the geometric idea of stepping back from the two intervals and
considering a proxy point‐to‐point weight. Similar arguments have appeared in the literature
previously (see e.g., [BSS14]), but for completeness we give a self‐contained proof of Lemma 9.5
in Appendix A. However, we highlight the main idea in Figure 9.2, where we also say a few words
on why it is difficult to avoid the relaxation in the parabolic loss.
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r

z

r 2/3

δ j
r

δ j
r

Figure 9.2: The argument for Lemma 9.5. The two black intervals havemidpoint separation of z
in the antidiagonal direction. The orange path is the heaviest path between the two intervals (so
has weight Z), and the brown paths are geodesics connecting the black points to the endpoints
of the red path. The green path is a geodesic between the two black points. With positive
probability the two brown paths each have weight greater than µδjr − 1

3θr
1/3, and so, on the

intersection of those events with {Z > µr − λj+1Gz2/r + θr1/3}, it holds that the green path
has weight at least µ(1+ 2δj)r − λj+1Gz2/r + 1

3θr
1/3. We choose δj such that the parabolic

term in this expression is λjGz2/(1 + 2δj)r and apply the point‐to‐point bound we have. It
is because the antidiagonal separation between each pair of black and green points is zero that
we have a decrease in the parabolic term. If we make this separation proportional to z, then
there is no decrease in the parabolic term, but for large z the gradient of the limit shape from
Assumption 2 causes issues. This can be more carefully handled if we instead consider the
supremum of fluctuations of point‐to‐point weights from their expectation, and we will have
need to do this on one occasion in the appendix.



CHAPTER 9. THE TAIL BOUND PROOFS 147

Proof of Lemma 9.4. Observe the following stochastic domination

XLz �
k∑

i=1

Zi,

where Zi are independent random variables distributed as the weight of the best path from Li−1
to Li. Apart from possible rounding, because Zi and Zi−1 are independent versions of weights
which overlap on the interval Li−1, it is possible that the linear term in Zi is µr/k +O(1) rather
than µr/k. We handle this discrepancy by absorbing it into the term tr1/3 of Lemma 9.5, which
is the only situation where it arises, without further comment.

We note that the diagonal separation between the sides of Zi is r/k, instead of r as in the def‐
inition of Z. We denote the anti‐diagonal displacement of the midpoints of the corresponding
intervals of Zi by zi. We want to eventually apply Lemma 8.2 to

∑
Zi, appropriately centred,

with its input tail bound (8.3) provided by Lemma 9.5. To reach a form of the probability where
Lemma 8.2 is applicable, we observe that

P
(
XLz > µr − λj+1

Gz2

r
+ tr1/3

)
≤ P

(
k∑

i=1

Zi ≥ µr − λj+1
Gz2

r
+ tr1/3

)

= P

(
k∑

i=1

(Zi − νi) ≥ µr − λj+1
Gz2

r
−

k∑
i=1

νi + tr1/3

)

≤ P

(
k∑

i=1

(Zi − νi) ≥ tr1/3

)
, (9.7)

where νi = µr/k − λj+1Gz2i k/r. The choice of νi is dictated by the desire to apply (9.6) with
r replaced by r/k. All the steps before the last inequality are straightforward consequences of
definitions. To see the last inequality, note that since

∑
zi = z, the Cauchy‐Schwarz inequality

implies that
∑

νi is smaller than µr − λj+1Gz2/r.

We will soon apply Lemma 9.5, which will yield a tail bound for Zi − νi; the tail bound is (9.6)
with r replaced by r/k. However, this tail bound has two regimes with different exponents, α
and β, while the basic concentration result we seek to apply, i.e., Theorem 8.2, assumes the same
tail exponent throughout.

Thus to have variables that have the larger exponent β in the entire tail, we will apply a simple
truncation on Zi: define

Zi =

{
Zi if Zi − νi ≤

(
r
k

)ζ+1/3
νi if Zi − νi >

(
r
k

)ζ+1/3
.
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Now following (9.7), we get

P
(
XLz > µr − λj+1

Gz2

r
+ tr1/3

)
≤ P

(
k∑

i=1

(Zi − νi) ≥ tr1/3

)

+ P
( k⋃

i=1

{
Zi − νi > (r/k)ζ+1/3

})
.

(9.8)

Wewill apply the concentration bound Lemma 8.2 to bound the first term. We first want to apply
Lemma 9.5, with r/k in place of r, in order to get the tail bound on each individualZi−νi, which
will act as input for Lemma 8.2. Two hypotheses of Lemma 9.5, namely (9.1) and that r/k > r0,
are available here by the hypotheses of Lemma 9.4.

But Lemma 9.5 has the additional hypothesis that the anti‐diagonal displacement |w| is at most
(r/k)5/6, which must also be checked. The verification of this follows from the hypothesis in
Lemma 9.4 that (r/k)5/6 > 4θ3/4αr2/3, as the maximum anti‐diagonal displacement possible
in a single row of the grid is at most 2θ3/4αr2/3 + |z|/k, where the first term is the grid width
2θ3/4αr2/3, and the second term is the shift caused by the overall slope of the grid. Now since
|z| ≤ r5/6 and k ≥ 26, we see that |z|/k is at most 1

2(r/k)
5/6, and some simple algebra completes

the verification.

Thus, applying Lemma 9.5 with r/k in place of r, we use the first case of (9.6) (since Zi has
been appropriately truncated to give Zi) as the input tail bound with exponent β on Zi − νi
required for Lemma 8.2. Finally, with c1 = c1(c, β, θ0, j) as in the statement of the latter, let
δ = min(1, (2c1)−3/2) where recall we have the hypothesis that k ≤ min(δt3/2, r−10 r); δ depends
on c, β, j and θ0. With this preparation, we see

P

(
k∑

i=1

(Zi − νi) ≥ tr1/3

)
= P

(
k∑

i=1

(Zi − νi)(r/k)
−1/3 ≥ (tk1/3 − kc1) + kc1

)

≤ P

(
k∑

i=1

(Zi − νi)(r/k)
−1/3 ≥ 1

2
tk1/3 + kc1

)
[since by hypothesis k ≤ (2c1)−3/2t3/2]

≤

{
2 exp

(
−c̃t2k−1/3) 0 ≤ tk1/3 < k1/(2−β)

2 exp
(
−c̃tβkβ/3

)
tk1/3 ≥ k1/(2−β);

[by Lemma 8.2]

we have applied Lemma 8.2with tk1/3 in place of t andα = β. Here c̃ is a function of c (as given in
the hypothesis (9.1)), β, and j. We now claim that the second case of the last display dictates the
fluctuation behavior under our hypotheses. To see this, note that since β ≤ 1, k1/(2−β) ≤ k. Thus
the first case in the last display holds only if k > t3/2 while by hypothesis k ≤ t3/2 since δ ≤ 1.
Further, since k ≥ 1, we may set the lower bound t0 on t high enough that exp(−1

2 c̃t
β) ≤ 1/2

so as to absorb the pre‐factor of 2 in the last display; t0 depends on c̃ and β. We have hence
bounded the first term of (9.8).
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To bound the second term when ζ < ∞, we take a union bound and apply Lemma 9.5, where
the latter’s hypotheses are satisfied by the same reasoning as used above in the application for the
first term. This yields that the second term of (9.8) is bounded by k · exp

(
−c̃(r/k)αζ

)
, using the

second case of (9.6) with r/k in place of r. Here c̃ is a function of c, α, and j. When ζ = ∞, the
second term of (9.8) is clearly zero.

Returning to (9.8) with these two bounds completes the proof of Lemma 9.4, taking c′ = c̃.

Step 3: Handling all the discretizations

With the improved tail bound for a fixed discretization provided by Lemma9.4, we can implement
Step 3 and complete the proof of Proposition 9.1, essentially via a union bound.

Proof of Proposition 9.1. Recall that θ′0 is the lower bound on θ under which the conclusions of
Proposition 9.1 must be shown to hold, and that we have the freedom to set it. We will increase
its value as needed as the proof proceeds. We will be explicit about the dependencies θ′0 takes on
at each such time. We start with θ′0 = e so that log θ ≥ 1. Also, in this proof, c is reserved for the
constant in the point‐to‐point tail hypothesis (9.1).

Lemma9.3 says that the entropy from the union boundwewill soon performwill be exp{Θ(k log k+
k log θ)}, which needs to be counteracted by the bound from Lemma 9.4. Anticipating this we
take, in Lemma 9.4,

t = θ and k = ε · θ
3β
3−β (log θ)−

3
3−β , (9.9)

for ε = ε(c, α, β, j) ∈ (0, 1) a sufficiently small constant, to be set shortly. At this point we will
ensure that the hypotheses of Lemma 9.4 hold. We set θ′0 larger if needed so that it is at least t0
as in Lemma 9.4, so that the value of t above satisfies t > t0. Additionally we have to verify that,
with δ as provided by Lemma 9.4,

• 4θ3/4αr2/3 < (r/k)5/6.
• k ∈ J26,min(δt3/2, r−10 r)K

For the first condition, the fact that k ≤ θ3/2 (since ε, β ≤ 1 and log θ ≥ 1), and some algebraic
manipulation, implies that it is sufficient if θ ≤ 1

4r
(2α)/(9+15α); to avoid carrying forward the

factor of 4, we instead reduce the exponent of r to absorb it and impose that

θ ≤ r
2α

9+16α ; (9.10)

this implies θ ≤ 1
4r

(2α)/(9+15α) (and hence the first condition above) when r′0, which is the lower
bound on r that we are free to set, is large enough. The value of r′0 depends only on α.

For the second condition, note that 2α/(9+ 16α) < 2/3, and that β ≤ 1 implies 3β/(3− β) ≤
3/2. Combining this latter inequality with the value (9.9) of k, and that θ ≤ r2/3 from (9.10),
ensures that k ∈ J26,min(δθ3/2, r−10 r)K by setting θ′0 large enough, depending on β, δ, and ε; so
the second condition holds.
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Thus applying Lemma 9.4with values of t and k as in (9.9) we obtain that, for θ′0 < θ < r2α/(9+16α),

P
(
XLz > µr − λj+1

Gz2

r
+ θr1/3

)
≤ exp

(
−c′ · εβ/3θ

3β
3−β (log θ)−

β
3−β

)
+ θ

3β
3−β exp

(
−c′rαζθ−

3αβζ
3−β

)
,

(9.11)

with the second term equal to zero if ζ = ∞, and with c′ as in Lemma 9.4; thus c′ depends on
c, α, β, and j. In substituting k in the second term of (9.5) we have used that k ≤ θ3β/(3−β) since
ε < 1 and log θ ≥ 1. When ζ < ∞, we would like the exponential factor of the second term to
be smaller than the first term; i.e., it is sufficient if

rαζθ−
3αβζ
3−β ≥ θ

3β
3−β .

We will soon absorb the polynomial‐in‐θ factor in the second term by reducing the constant c.
Simple algebraic manipulations show that the inequality of the last display is implied by the
condition

θ ≤ rζ̄ with ζ̄ =
αζ

1+ αζ
· 3− β

3β
.

For simplicity, we impose this last condition on θ even when ζ = ∞, even though in this case the
second term of (9.11) is zero (and so smaller than the first term) for all θ up to r2α/(9+16α) (when
ζ = ∞, we interpret the first factor of ζ̄ to be one, i.e., ζ̄ = (3− β)/3β).

To handle both the condition in the last display and (9.10), we impose θ′0 < θ < rζ
′
, with

ζ ′ = min
(
ζ̄ ,

2α
9+ 16α

)
.

So far we have shown that, for r > r′0 and θ′0 < θ < rζ
′
,

P
(
XLz > µr − λj+1

Gz2

r
+ θr1/3

)
≤ 2 exp

(
−1

2c
′ · εβ/3θ

3β
3−β (log θ)−

β
3−β

)
; (9.12)

where, for all θ > θ′0, the θ
3β
3−β polynomial factor coming from the second term of (9.11) has been

absorbed by the reduction of c′ to c′/2. To do this wemay also need to increase the value of θ′0; this
choice of θ′0 can be made depending only on c′ since we only need θ3β/(3−β) exp(−c′θ3β/(3−β)) ≤
exp(−0.5c′θ3β/(3−β)) and the same function of θ is in the exponent and as the polynomial‐factor.

Now we observe that on the event that any geodesic stays within the grid Gz, Xz
r is dominated

by maxLz XLz . This yields

P
(
Xz

r > µr − λj+1
Gz2

r
+ θr1/3

)
≤ P

(
max
Lz

XLz > µr − λj+1
Gz2

r
+ θr1/3

)
+ P

(
TF(Γz

r) > θ
3
4α r2/3

)
.

(9.13)
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The second term is bounded by exp(−c′θ3/2) by Proposition 7.15 for all θ such that θ3/4α > s0,
with s0 an absolute constant as given in the statement of the corollary. We increase θ′ if needed
to meet this condition; this increase can be done in a way that depends only on s0 as since α ≤ 1,
it is sufficient if θ0 ≥ s

4/3
0 .

We want to bound the first term of(9.13) by a union bound over all discretizations Lz. First we
bound the cardinality of the set of discretizations using Lemma 9.3. Note that the definition of k
in (9.9) implies that log k ≤ 3β

3−β
log θ as ε < 1. Lemma 9.3 asserts that the set of discretizations

has cardinality at most exp{k(log k+ 3
4α log θ+ log 2)}. The just mentioned bound on log k and

the value of k from (9.9) shows that this cardinality is at most

exp
(
c̃εθ

3β
3−β (log θ)−

3
3−β

+1
)
= exp

(
c̃εθ

3β
3−β (log θ)−

β
3−β

)
,

with c̃ a constant which depends on only α and β. Given this and the bound in (9.12), we apply
a union bound. This yields that, for θ′0 < θ < rζ

′
, the first term of (9.13) is at most

2 exp
(
−1

2c
′ · εβ/3θ

3β
3−β (log θ)−

β
3−β + c̃ · εθ

3β
3−β (log θ)−

β
3−β

)
.

Now since β ≤ 1, for sufficiently small ε it holds that c̃ε ≤ 1
4c

′ ·εβ/3, and we fix ε to such a value;
note that ε does not depend on θ and only on c, α, β, and j. This can be seen since ε depends
on c̃ and c′, which respectively depend on α and β only, and c, α, β, and j.

For this value of ε and for θ′0 < θ < rζ
′
, the previous display is bounded above by

exp
(
−1

4c
′ · εβ/3θ

3β
3−β (log θ)−

β
3−β

)
.

Putting this bound into (9.13) completes the proof of Proposition 9.1 for θ′0 < θ < rζ
′
after

relabeling c′ in its statement by 1
4c

′ · εβ/3. For when θ > rζ
′
, the hypothesis (9.1) provides the

bound when r > r0, which we ensure by raising r′0 (if necessary) to be at least r0. This completes
the proof of Proposition 9.1 by relabeling c′ in its statement to be less than c if needed.

9.2 Lower bound on upper tail

We prove the lower bound on the upper tail, i.e., Theorem 7.5.

Proof of Theorem 7.5. Assumption 2 implies thatP(Xr ≥ µr+θr1/3) ≤ P
(
Xr ≥ E[Xr] + θr1/3

)
,

and we prove the stronger bound that P(Xr ≥ µr + θr1/3) ≥ exp(−cθ3/2) for appropriate θ.

Observe that Xr ≥
∑n

i=0X
(i)
r/k where X

(i)
r/k = Xi(r/k,r/k)+(1,0),(i+1)(r/k,r/k). Now by Assump‐

tion 4a we have that
P
(
X

(i)
r/k ≥ µr/k + C(r/k)1/3

)
≥ δ
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for each i ∈ J0, k − 1K, as long as r/k > r0. Since{
k∑

i=0

X
(i)
r/k ≥ µr + Ck2/3r1/3

}
⊇

k−1⋂
i=0

{
X

(i)
r/k ≥ µr/k + C(r/k)1/3

}
,

we have
P
(
Xr ≥ µr + Ck2/3r1/3

)
≥ δk,

using the independence of theX(i)
r/k across i. Now we set k = C−3/2θ3/2, giving

P
(
Xr ≥ µr + θr1/3

)
≥ exp(−cθ3/2)

for some c > 0 and for all θ satisfying 1 ≤ C−3/2θ3/2 ≤ r/r0, which is equivalent to C ≤ θ ≤
Cr

−2/3
0 ×r2/3. Thus the proof of Theorem7.5 is completed by setting θ0 = C and η = Cr

−2/3
0 .

9.3 Lower tail and constrained lower tail bounds

In this section we prove Theorems 7.6, 7.7, and 7.13. In fact Theorem 7.13 implies both of the other
two, but we prove Theorem 7.6 first separately to aid in exposition.

Upper bound on lower tail

Note that the abstracted bootstrap statement Proposition 8.3 is applicable with Yr = −(Xr−µr)
and Y

(k)
r,i = −(X

(i)
r/k − µr/k), whereX(i)

r/k is the last passage value from (i− 1)/k · (r, r) + (1, 0)
to i/k · (r, r) for i ∈ J1, kK. Iterating this would yield a lower tail exponent of 3/2 (a similar
argument for the upper tail under sub‐additivity was outlined in the beginning of Section 7.3)
but will not be able to reach the optimal exponent of 3.

Recall from Section 7.3 that our argument relies on a high‐probability construction of k disjoint
paths with good collective weight, Theorem 7.16. Thus the probability the construction fails is
an upper bound on the probability that many disjoint curves have small weight, which in turn
bounds the probability that the geodesic has small weight, as we seek.

As outlined before, the construction relies on three inputs: the first is the parabolic curvature
on the limit shape, provided by Assumption 2; the second is an exponential upper bound on
the lower tail of the maximum weight among all paths constrained to stay within a given paral‐
lelogram; and the third is a lower bound on the mean of such weights. Recall that we call such
weights “constrained weights”. Like the first input, the third input is available to us already,
and is the content of (7.8) of Proposition 7.17. So only the second input needs to be attained via
bootstrapping.

From here on the argument has two broad steps.
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1. Use our assumptions to obtain the exponential bound (in fact, we obtain an exponent of
3/2) on the constrained weight’s lower tail that can be used as an input for the construction
of Theorem 7.16. This tail bound is Proposition 9.6. The argument uses bootstrapping as
in Proposition 8.3, and applies that proposition iteratively.
2. Relate the lower tail event of Xr to the event of the existence of k disjoint paths con‐
structed in [BGHH20] (Theorem 7.16 here).

We will implement these two steps in turn next, and then, in Chpater 10, we prove Theorem 7.16.
We start by specifying some notation for constrained weights.

Recall the notation for parallelograms introduced in Section 7.6, where U = Ur,ℓ,z is a parallelo‐
gram of height r, width ℓr2/3, and opposite side midpoints (1, 1) and (r − z, r + z). Recall also
thatXU

r is the maximumweight over all paths from (1, 1) to (r−z, r+z)which are constrained
to stay in U .

Proposition 7.17 provides a stretched exponential lower tail for XU
r from our assumptions. The

following upgraded tail obtained via bootstrapping will suffice for our purpose; note that the
bound is still not the optimal one stated in Theorem 7.13, which we prove later.

Proposition 9.6. Let L1, L2, and K be such that L1 < ℓ < L2 and |z| ≤ Kr2/3. Under Assump‐
tions 2 and 3, there exist constants r0, θ0, and c > 0, all depending on only L1, L2,K, and α, such
that, for r > r0 and θ > θ0,

P
(
XU

r ≤ µr − θr1/3
)
≤ exp(−cθ3/2).

This is the first step outlined above. The proof is similar to that outlined at the beginning of this
section for Xr, and involves using bootstrapping for a number of iterations, with the exponent
increasing by the end of each iteration to 3/2 times its value at the start of it. Once the exponent
passes 1, a final iteration brings it to 3/2.

Proof of Proposition 9.6. Consider the k subparallelograms Ui, i ∈ J1, kK, where Ui is defined
as the parallelogram with height r/k, width min(ℓr2/3, (r/k)2/3), and opposite side midpoints
(r − z, r + z) · (i − 1)/k + (1, 0) and (r − z, r + z) · i/k. Let Yr = −(XU

r − µr) and Y
(k)
r,i =

−(XUi

r/k − µr/k).

We want to apply Proposition 8.3 to these variables. By the definition of XU
r and XUi

r/k, we have
that Yr ≤

∑k
i=1 Y

(k)
r,i for all k ≤ r. The variables {Y (k)

r,i : i ∈ J1, kK} are independent for
each k as they are defined by the randomness in disjoint parts of the environment, and (7.7)
of Proposition 7.17 provides a stretched exponential tail (of exponent α′ = 2α/3) for each Y

(k)
r,i .

Since the constants c, θ0, and r0 of Proposition 7.17 depend on only K,L1, L2, we obtain from
Proposition 8.3 that there exist c̃, r̃0, and θ̃0 (all depending on K, L1, L2, and α) such that, for
r > r̃0 and θ̃0 < θ < r2/3,

P
(
XU

r ≤ µr − θr1/3
)
≤ exp(−c̃θ3α

′/2).
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Note that if µ > 1, the constraint θ < r2/3 can be extended to θ < µr2/3 by reducing the constant
c if needed, in a way that depends on only α and µ. Beyond µr2/3, the probability on the left
side of the last display is zero since the vertex weights are non‐negative, and so the last displayed
inequality actually holds for all θ > θ̃0.

Wemay iterate the above argument, such that at the end of each iteration the tail exponent is 3/2
times its value at the beginning, till the tail exponent exceeds 1. Then we may apply the above
argument one last time with α′ = 1, and this completes the proof. Since the finite number of
iterations is only a function of α, the proposition follows.

As mentioned, we will use this proposition to prove Theorem 7.16 in Chpater 10. Here, we next
prove Theorem 7.6 using Theorem 7.16.

Proof of Theorem 7.6. Since E[Xr] ≤ µr by Assumption 2 (this is also implied directly by the
super‐additivity of {Xr}r∈N), it is sufficient to upper bound the probabilityP

(
Xr ≤ µr − θr1/3

)
.

Let η be as given in Theorem 7.16, and denote the event whose probability is lower bounded there
by Em,k,r, i.e., Em,k,r is the event that there exist m disjoint paths γ1, . . . , γm with prescribed
endpoints, maxi TF(γi) ≤ 2mk−2/3r1/3, and

∑m
i=1 ℓ(γi) ≥ µrm − C1mk2/3r1/3. Observe that

any of these paths γi can be extended to a path from (1, 1) to (r, r)without decreasing its weight.
Now for θ ≤ C1η

2/3r2/3, setm = k = C
−3/2
1 θ3/2, and observe that C1mk2/3 = mθ. Thus,

P
(
Xr ≤ µr − θr1/3

)
≤ P

(
Ec

m,k,r

)
≤ exp(−cmk) = exp(−cθ3),

the second inequality by Theorem 7.16 since the value of k satisfies k ≤ ηr; this latter inequality
is implied by the condition that θ ≤ C1η

2/3r2/3. The inequality for θ ∈ [C1η
2/3r2/3, µr2/3] can

be handled be reducing the value of c (if C1η
2/3 < µ), and for θ > µr2/3, the probability being

bounded is trivially zero. This completes the proof of Theorem 7.6.

We next present a brief outline of the construction from [BGHH20] before going into the proof
of Theorem 7.13, which then also implies Theorem 7.7.

Bounds on constrained lower tail

In this section we will prove Theorem 7.13; this will also imply Theorem 7.7. We start with the
short proof of the upper bound of Theorem 7.13, which is a straightforward consequence of
Theorem 7.16 and is a refinement of the argument for Theorem 7.6.

Proof of upper bound of Theorem 7.13. We prove a stronger bound with µr in place of E[XU
r ]

(since E[XU
r ] ≤ µr).

Recall that the width of U is ℓr2/3. On the event that XU
r ≤ µr − θr1/3, it follows that any m

disjoint paths which lie inside U must have total weight at most µmr −mθr1/3. But for any m
which satisfies 2mk−2/3r2/3 ≤ ℓr2/3, m disjoint paths which lie inside U with total weight at
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least µmr −mθr1/3 are provided by Theorem 7.16 by setting k = C
−3/2
1 θ3/2, with probability at

least 1− exp(−cmk) = 1− exp(−cmθ3/2).

Thus for anym and ℓ satisfyingm ≤ k andm ≤ 1
2ℓk

2/3 we have

P
(
XU

r ≤ µr − θr1/3
)
≤ exp(−cmθ3/2).

Taking m = min
(
1
2ℓk

2/3, k
)
with k as above completes the proof if we verify that m ≥ 1. This

follows by setting C = 2C1 in the assumed lower bound ℓ ≥ Cθ−1 and setting θ0 > C1: the
bound on ℓ and the value of k implies that 1

2ℓk
2/3 ≥ 1, and the bound on θ and the value of k

implies that k ≥ 1.

The rest of this section is devoted to assembling the tools to prove, and then proving, the lower
bound on the lower tail of Theorem 7.13. To start with, we need a constant lower bound on
the lower tail of the point‐to‐point weight for a range of directions. This is a straightforward
consequence of the assumed mean behavior in Assumption 2 and the lower tail bound in As‐
sumptions 3b, and its proof is deferred to the appendix. In fact, we only needXz

r < µr − Cr1/3

with positive probability in our application, but we prove a stronger statement with a parabolic
loss.

Lemma 9.7. Let ρ be as given in Assumption 2. Under Assumptions 2 and 3b, there exist C > 0
and δ > 0 such that, for r > r0 and |z| ≤ ρr,

P
(
Xz

r < µr − Gz2

r
− Cr1/3

)
≥ δ.

The argument for the lower bound of Theorem 7.13, however, will require moving from the above
lower bound on the point‐to‐point lower tail to a similar lower bound on the interval‐to‐line
lower tail. Note that although we had previously encountered interval‐to‐interval weights, this is
the first time in our arguments that we are seeking to bound interval‐to‐line weights. This is the
content of the next lemma. The proof will entail a few steps which we will describe soon. For
the precise statement recall that for two sets of vertices A and B in Z2, XA,B is the maximum
weight of all up‐right paths starting in A and ending in B.

Lemma 9.8. Let I ⊆ Z2 be the interval of lattice points connecting the coordinates (−r2/3, r2/3)
and (r2/3,−r2/3) on the line x+ y = 0, and let Lr ⊆ Z2 be the lattice points on the line x+ y = 2r.
Under Assumptions 3b and 4b, there exist C ′, δ′ > 0, and r′0 such that, for r > r′0,

P
(
XI,Lr ≤ µr − C ′r1/3

)
≥ δ′.

Before turning to the proof of Lemma 9.8, we finish the proof of the lower bound of Theorem 7.13
and hence also the proof of Theorem 7.7.
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Proof of Theorem 7.7 and lower bound of Theorem 7.13. Recall the lower bound statement of The‐
orem 7.13 that, for θ0 ≤ θ ≤ ηr2/3,

P
(
XU

r − µr ≤ −θr1/3)
)
≥ exp

(
−c1min(ℓθ5/2, θ3)

)
;

note that Theorem 7.7 is implied by the case that ℓ = r1/3, since by choosing δ < 1 in the
statement of the latter, we assume θ ≤ r2/3, and hence min(ℓθ5/2, θ3) = θ3.We now proceed to
proving the bound for general ℓ.

Let k and m be positive integers whose values will be specified shortly. We will define a grid
similar to the one in Section 9.1 that was depicted in Figure 9.1, but of width mk−2/3r2/3. For
i ∈ J1, kK and j ∈ J1,mK, let vi,j be the point(

i
r

k
− m

2

( r
k

)2/3
, i

r

k
+

m

2

( r
k

)2/3)
+ j

(( r
k

)2/3
, −

( r
k

)2/3)
,

and let Ii,j be the interval with endpoints vi,j and vi,j+1 (of width
(
r
k

)2/3
). As in Section 9.1, we

will collectively refer to these intervals as a grid, and so the rows of the grid are indexed by i and
the columns by j. Note that the grid lies inside U if m ≤ ℓk2/3 and covers the breadth of U if
m = ℓk2/3, since the total breadth of the grid ismk−2/3r2/3.

This is what dictates the choice ofm, although for technical reasons, we set

m = min(ℓk2/3, k), (9.14)

where our choice for k later (of order θ3/2) will ensure that indeed for all interesting values of ℓ
(i.e., ℓ = O(θ1/2)), we would havem = ℓk2/3.

The idea now is to construct an event on which XU
r ≤ µr − θr1/3. Let X i,j

I,L be the maximum
weight among all paths with starting point on Ii,j and ending point on the line x+y = 2(i+1) r

k
.

The event will be defined by forcing

1. all theX i,j
I,L to be small, i.e.,X

i,j
I,L ≤ µ(r/k)− C ′(r/k)1/3 for a constant C ′; and

2. any path which has transversal fluctuation greater than k1/3r2/3 to suffer a parabolic
weight loss of order k2/3r1/3.

Before proceeding, we let Y k
r be the maximumweight among all paths Γ from (1, 1) to (r, r)with

transversal fluctuation satisfying TF(Γ) ≥ k1/3r2/3. Thus the second condition above says Y k
r

falls below µr by at least order k2/3r1/3.

We claim that, on the event described, XU
r ≤ µr − Ω(k2/3r1/3). This is due to the following.

First, any path within the grid must pass through one of {Ii,j : j ∈ J1,mK} for every i ∈ J1, kK
and so has weight at most k ·maxi,j X i,j

I,L ≤ µr − C ′k2/3r1/3. Second, any path which exits the
grid, by our choice ofm, either exits U and may be ignored or has transversal fluctuation greater
than k1/3r2/3 and so suffers a weight loss of at least order k2/3r1/3.

Finally, wewill show that this event has probability at least exp(−cmk) (since there aremk values
of (i, j) for whichX i,j

I,L is made small) and set k to be a multiple of θ
3/2.
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A more precise form of the above discussion starts with the following inclusion, where c2 is as in
Theorem 7.14 and C ′ is as in Lemma 9.8:{

XU
r ≤ µr −min(c2, C ′)k2/3r1/3

}
⊇
{
Y k
r ≤ µr − c2k

2/3r1/3
}
∩
⋂

1≤i≤k
1≤j≤m

{
X i,j

I,L ≤ µr/k − C ′(r/k)1/3
}
.

Note that all the events on the right hand side are decreasing events. Hence, by the FKG inequal‐
ity,

P
(
XU

r ≤ µr −min(c2, C ′)k2/3r1/3
)
≥ P

(
Y k
r ≤ µr − c2k

2/3r1/3
)

×
∏

1≤i≤k
1≤j≤m

P
(
X i,j

I,L ≤ µr/k − C ′(r/k)1/3
)

≥ (1− exp(−c̃k2α/3)) · (δ′)mk. (9.15)

The final inequality was obtained by applying Theorem 7.14 with s = k1/3 and t = 0 to lower
bound the first term and Lemma 9.8 (with r/k in place of r) to lower bound the remaining terms.
Theorem 7.14 provides an absolute constant s0 and its application requires k1/3 > s0, a condition
that will translate into a lower bound on θ after we set the value of k next; Lemma 9.9 requires
that r/k > r0, which will translate to an upper bound on θ.

Take k = (min(c2, C ′))−3/2 θ3/2 and recall the value of m from (9.14). Note that the assumed
lower bound of ℓ ≥ Cθ−1 ensures that m ≥ 1; we additionally impose that k ≥ s30 to meet the
requirement of Theorem 7.14 mentioned above. We also assume without loss of generality that
s0 ≥ 1 to encode that k must be at least 1. Thus we obtain from (9.15), for some constant c1 > 0,

P
(
XU

r ≤ µr − θr1/3
)
≥ exp

(
−c1min(ℓθ5/2, θ3)

)
; (9.16)

this holds for every θ which is consistent with s30 ≤ k ≤ r−10 r, the latter inequality to ensure that
r/k is at least r0 as obtained from Lemma 9.8. Recalling the value of k, this condition on θ may
be written as

s20 ·min(c2, C ′) ≤ θ ≤ min(c2, C ′)r
−2/3
0 · r2/3.

Recall that Theorem 7.13 must be proven only for θ0 ≤ θ ≤ ηr2/3. Thus we may meet the
condition of the last display by modifying θ0 to be greater than s20min(c2, C

′) and η to be less
than min(c2, C ′)r

−2/3
0 , if required.

Now we turn to the final statement in Theorem 7.13 on replacing µr by E[XU
r ] in (9.16) when ℓ is

bounded below by a constant ε. For this, all we require is that E[XU
r ] ≥ µr−Cr1/3 for r > r0 for

a C and r0 which may depend on ε. This is because with that bound we may absorb the Cr1/3

into θr1/3 by increasing the constant c1 (which will then depend on ε). Now the required bound
on E[XU

r ] is provided by (7.8) of Proposition 7.17.

This completes the proof of Theorem 7.7 and the lower bound of Theorem 7.13
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The remaining task is to prove Lemma 9.8, which lower bounds the lower tail for interval‐to‐line
weights. Recall from Figure 9.2 our strategy of obtaining bounds on interval‐to‐interval weights
from similar bounds on point‐to‐point weights by backing up. Notice that we are presently
seeking to lower bound the probability that interval‐to‐line weights are low; in other words, ex‐
pressing the line as a union of disjoint intervals, we want to lower bound the probability of
the intersection of the decreasing events that all the corresponding interval‐to‐interval weights
are low. This will involve an application of the FKG inequality and the following two lemmas,
which lower bound the lower tail of interval‐to‐interval weights. The first one (Lemma 9.9) treats
the case when the anti‐diagonal displacement between the two intervals is small. The second
one (Lemma 9.10) handles intervals at greater anti‐diagonal separation, exploiting the natural
parabolic loss in the mean which makes the weights unlikely to be high in this case.

Lemma 9.9. Let I be the interval connecting the points (−r2/3, r2/3) and (r2/3,−r2/3), J be the
interval connecting the points (r − z − r2/3, r + z + r2/3) and (r − z + r2/3, r + z − r2/3), and ρ
be as in Assumption 2. Under Assumptions 2, 3b, and 4b, there exist C ′′, δ′′ > 0, and r′′0 such that,
for r > r′′0 and |z| ≤ ρr − 2r2/3 (this quantifies the closeness of the intervals in the anti‐diagonal
direction),

P
(
XI,J < µr − C ′′r1/3

)
≥ δ′′.

Proof. We first prove a similar statement for intervals of size εr2/3 for an ε > 0 to be fixed later.
This is a crucial first step as it is difficult to directly control the possible gain inweight afforded by
allowing the endpoints to vary over an interval of size 2r2/3; initially using the leeway of making
the interval sufficiently small (but on the scale r2/3) makes this control achievable. This will be
done using a backing up strategy similar to the one illustrated in Figure 9.2 for the interval‐to‐
interval upper tail bound Lemma 9.5.

Let |w| ≤ ρr, and let Iε be the interval joining the points (−εr2/3, εr2/3) and (εr2/3,−εr2/3) and
Jε be the interval joining the points (r−w−εr2/3, r+w+εr2/3) and (r−w+εr2/3, r+w−εr2/3).
We will prove that there exist positive C ′′, δ, and ε, independent of w, such that

P
(
XIε,Jε < µr − C ′′r1/3

)
≥ δ/2. (9.17)

Let u∗ ∈ Iε and v∗ ∈ Jε be such that XIε,Jε = Xu∗,v∗ . Also let ϕ1 = (−ε3/2r,−ε3/2r), ϕ2 =
(r − w + ε3/2r, r + w + ε3/2r) be the backed up points. Then we have the inequality

Xϕ1,ϕ2 ≥ Xϕ1,u∗−(1,0) +XIε,Jε +Xv∗+(1,0),ϕ2 .

ForM to be fixed and C as in Lemma 9.7, we will consider the constant probability events

Ep→p :=

{
Xϕ1,ϕ2 ≤ µ(1+ 2ε3/2)r −G

w2

(1+ 2ε3/2r)
− Cr1/3

}
,

Ep→int :=
{
Xϕ1,u∗−(0,1) > µε3/2r −Mε1/2r1/3

}
, and

Eint→p :=
{
Xv∗+(1,0),ϕ2 > µε3/2r −Mε1/2r1/3

}
.



CHAPTER 9. THE TAIL BOUND PROOFS 159

On the intersection Ep→p ∩ Ep→int ∩ Eint→p we have

XIε,Jε < µr − (C − 2Mε1/2)r1/3. (9.18)

We must lower bound the probability of this intersection. From Lemma 9.7 we see

P (Ep→p) ≥ δ,

since C < (1+ ε3/2)1/3C. Next, recall that u∗ is a vertex of Iε, which lies on the line x + y = 0,
which is the starting point of a heaviest path from Iε to Jε. Thus u∗ is independent of the random
field below the line x+ y = 0. Now we see that, for large enoughM (depending only on δ),

P
(
Ec

p→int

)
= P

(
Xϕ1,u∗−(0,1) ≤ µε3/2r −Mε1/2r1/3

)
≤ sup

u∈Iε
P
(
Xϕ1,u−(0,1) ≤ µε3/2r −Mε1/2r1/3

)
≤ δ

4
,

with the mentioned independence allowing the uniform bound of the second line. The same
bound with the sameM holds for P(Ec

int→p) as well; we fix thisM . Now we set ε > 0 such that
C − 2Mε1/2 = C/2. From (9.18) the above yields (9.17) with C ′′ = C/2.

To move from Iε, Jε to I, J , we let Iε,i for i ∈ J1, ε−1K be the intervals of length ε which make up
the length one interval I in the obvious way, and similarly for Jε,j and J . Next observe that{

XI,J < µr − 1
2Cr1/3

}
⊇
⋂
i,j

{
XIε,i,Jε,j < µr − 1

2Cr1/3
}
. (9.19)

Now, the bound (9.17) holds as long as the intervals are of length εr2/3 and their antidiagonal
displacement is at most ρr. The intervals Iε,i and Jε,i have this length, and their antidiagonal
displacement is at most |z| + 2r2/3, where recall z is the antidiagonal displacement between I
and J . This occurs, for example, when Iε,i is the left most subinterval of I and Jε,j is the right
most sub interval of J . But since we have assumed |z| + 2r2/3 ≤ ρr, the bound (9.17) applies to
XIε,i,Jε,j , and so the probability of each event in the intersection of (9.19) is at least δ/2.

The intersection of (9.19) is of decreasing events, and so we may invoke the FKG inequality and
the just noted probability lower bound to conclude that the probability of the right hand side
of (9.19) is at least (δ/2)ε

−2
. This completes the proof of Lemma 9.9 with C ′′ = C/2 and δ′′ =

(δ/2)ε
−2
.

While the previous lemma provided control when the destination interval is relatively close to
(r, r), i.e., have x‐ and y‐coordinates within ρr of r, the next lemma will be used to treat pairs of
intervals which have greater separation. Let I ⊆ Z2 be the interval connecting (−r2/3, r2/3) and
(r2/3, r2/3), and J ⊆ Z2 be the interval connecting (r − w − r2/3, r + w + r2/3) and (r − w +
r2/3, r + w − r2/3); thus w represents the intervals’ antidiagonal displacement, while z will be
used as a variable in the hypothesis.
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Lemma 9.10. Suppose there exist α ∈ (0, 1], λ > 0 and constants c > 0, t0, and r0 such that, for
t > t0, r > r0, and |z| ≤ r/2

P
(
Xz

r ≥ µr − λ
Gz2

r
+ tr1/3

)
≤ exp (−ctα) .

Then there exist c̃ > 0, t̃0 = t̃0(t0), and r̃0 = r̃0(r0) such that, for r > r̃0, |w| ≤ |r|, and t > t̃0,

P
(
XI,J > µr − λ

3
· Gw2

r
+ tr1/3

)
≤ exp (−c̃tα) .

We impose the condition that |z| ≤ r/2 because the tail bound hypothesis will be provided by
Assumption 3a in our application, and the latter requires |z| to be macroscopically away from
0 and r. But note that we allow |w| to be as large as r, as we do need to allow the destination
interval to be placed anywhere between the coordinate axes.

Lemma 9.10 will be proved along with Lemma 9.5, as they are both interval‐to‐interval upper tails,
in the appendix via a backing up argument. With the bounds of the previous two lemmas, we
can prove the interval‐to‐line bound in Lemma 9.8 and thus complete the proof of Theorem 7.13.

As earlier, we will construct an event as an intersection of decreasing events which forces XI,Lr

to be small, and use the FKG inequality to lower bound its probability. So, we need to make any
path starting in I and ending on the line Lr have low weight, which we will do by forcing such
paths which end on various intervals on Lr to separately have low weight. When the destination
interval is close to the point (r, r), the probability that all such paths have low weight will be
lower bounded by Lemma 9.9. When the destination interval is far from (r, r), Lemma 9.10 says
that it is highly likely that the paths will have low weight, and it is a matter of checking that
the probabilities approach 1 quickly enough that their product is lower bounded by a positive
constant.

Proof of Lemma 9.8. For j ∈ J−r1/3, r1/3K, let Jj be the interval connecting the points (r −
jr2/3, r+ jr2/3) and (r− (j+1)r2/3, r+(j+1)r2/3). We observe that, with C ′′ as in Lemma 9.9,{

XI,Lr < µr − C ′′r1/3
}
⊇

⋂
|j|≤r1/3

{
XI,Jj < µr − C ′′r1/3

}
. (9.20)

Assumption 2 says that, for |z| ≤ ρr, E[Xz
r ] ≤ µr − Gz2/r − g1r

1/3. But then observe that the
concavity of the limit shape implies the existence of a small constant λ ∈ (0, 1) such that

E[Xz
r ] ≤ µr − λ

Gz2

r
(9.21)

for |z| ≤ r. For this value of λ, Assumption 3a, with ε = 1/2, implies that there exists c > 0
such that, for all r > r0 and |z| ≤ r/2,

P
(
Xz

r > µr − λ
Gz2

r
+ tr1/3

)
≤ exp(−cθα).
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With this value ofλ and the above bound as input, wewill apply Lemma9.10with t = λGj2/3−C.
Lemma 9.10 requires t > t̃0, which implies that |j| must be larger than some j0. So for |j| > j0,
Lemma 9.10 implies that

P
(
XI,Jj < µr − C ′′r1/3

)
≥ 1− exp(−c̃|j|2α). (9.22)

Applying (9.22) and the bound from Lemma 9.9 to (9.20), along with the FKG inequality, gives

P
(
XI,Lr < µr − C ′′r1/3

)
≥
∏
|j|≤j0

P
(
XI,Jj < µr − C ′′r1/3

)
×

∏
j0<|j|≤r1/3

P
(
XI,Jj < µr − C ′′r1/3

)
≥ (δ′′)2j0+1 ×

∏
j0≤|j|≤r1/3

(1− exp(−c̃|j|α)) ;

we employed Lemma 9.9 for the factors in the first product and (9.22) for those in the second.
The proof of Lemma 9.8 is complete by taking C ′ = C ′′ and δ′ equal to the final line of the last
display; note that the second product in the last display is bounded below by a positive constant
independent of r since exp(−c̃|j|α) is summable over j for any α > 0, and so δ′ > 0.
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Chapter 10

Constructing disjoint high weight paths

In this chapter, we construct collections of disjoint paths in the square JnK2 that achieve a certain
weight with high probability and so prove Theorem 7.16.

Recall that to prove Theorem 7.16, for some c > 0, c1 > 0, k ≤ c1n, and m ≤ k, we must con‐
structmdisjoint paths γ1, . . . , γm such that

∑m
i=1 ℓ(γi) ≥ µnm−C1mk2/3n1/3 andmaxi TF(γi) ≤

2mk−2/3n1/3, with probability at least 1− exp(−cmk).

We start by giving a high level overview of the high‐probability construction.

We have to construct m disjoint paths, each with weight loss at most of order k2/3r1/3, in a
strip of width 4mk−2/3r2/3. In the bulk of the environment, this is straightforward: for each
curve, we set up order k many parallelograms of width (r/k)2/3 and height r/k sequentially and
consider the path obtained by concatenating together the heaviest midpoint‐to‐midpoint path
constrained to remain in the corresponding parallelogram; see Figure 10.1b. The weight loss in
each parallelogram is on scale, i.e., of order (r/k)1/3, and so the total loss across them curves is
m · k · (r/k)1/3 = mk2/3r1/3. The total transversal fluctuation is of orderm(r/k)2/3, as required,
and it is in this phase of the construction that the transversal fluctuation is maximum.

But the previous description is only possible in the bulk, and if the curves have already been
brought to a separation of (r/k)2/3. Since the curves start and end at a microscopic separation of
1 at the corners of J1, rK2, the difficult part of the construction is there, where the curves must be
coaxed apart while not sacrificing too much weight. Here the construction proceeds in a dyadic
fashion, doubling the separation between curves as the scale increases, while ensuring that the
antidiagonal displacement borne by the curves is not too high, so as to not incur a high weight
loss due to parabolic curvature. Again the idea is to construct a sequence of parallelograms for
each curve that it is constrained to remain within; see Figure 10.1a. It is to estimate the weight
loss in this phase of the construction, where antidiagonal displacement is increasing, that we
require a curvature assumption such as Assumption 2, and a calculation shows that the weight
loss is again of ordermk2/3r1/3.

The other two inputs, namely a lower bound on the means of constrained weights and expo‐
nential decay of the lower tails of the same, are needed to control the probability that the paths
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constructed by concatenating together these constrained paths have the requisite weight; in par‐
ticular, the mean bound is used to show that the expected weight is correct, while the lower tail
bound is used to control the deviation below the mean of the total construction weight after
expressing it as a sum of independent subexponential variables and invoking a concentration
inequality.

10.1 The construction in outline

The construction leading to Theorem 7.16 may be explained in light of the fact, mentioned in
Section 2.6, that the width of the k‐geodesic watermelon has order k1/3n2/3 (which is proven in
[BGHH20]). Indeed, that k watermelon curves coexist in a strip of width k1/3n2/3 suggests that,
at least around the mid‐height n/2, adjacent curves will separated on the order of k−2/3n2/3.
We will demand this separation for the m curves in our construction. The curves will begin
near (1, 1) and end near (n, n) at unit‐order distance, so we must guide them apart to become
separated during their mid‐lives.

Wewill index the life of paths in the square JnK2 according to distance along the diagonal interval,
indexed so that [a, b] refers to the region between the lines x + y = 2a and x + y = 2b. The
diagonal interval [1, n] that indexes the whole life of paths in the construction will be divided
into five consecutive intervals called phases that carry the names take‐off, climb, cruise, descent
and landing. By the start of the middle, cruise, phase, the sought separation has been obtained,
and it will be maintained there. This separation is gained during take‐off and climb, and it is
undone in a symmetric way during descent and landing.

Take‐off is a short but intense phase that takes the curves at unit‐order separation on the tarmac
to a consecutive separation of order k−1/3n1/3 in a duration (or height) of order k2/3n1/3. Climb is
a longer and gentler phase, of duration roughly n/3, in which separation expands geometrically
until it reaches the scale k−2/3n2/3. Cruise is a stable phase of rough duration n/3.

The shortfall in weight of them paths in Theorem 7.16 relative to the linear term µnm has order
mk2/3n1/3. The weight shortfall in each phase is the difference in total weight contributed by the
curve fragments in the phase and the linear term given by the product of µm and the duration of
the phase. The weight shortfall will be shown to have ordermk2/3n1/3 for each of the five phases.

Take‐off is a phase where gaining separation is the only aim. No attempt is made to ensure that
the constructed curves have weight, and the trivial lower bound of zero on weight is applied. The
weight shortfall is thus at most µm ·Θ(1)k2/3n1/3.

The climb phase is where a rapid increase in separation is obtained, via a geometrically increas‐
ing separation across scales (which depend on k). A calculation is needed to bound above the
shortfall by mk2/3n1/3 for the climb (and for the descent) phase. The calculation will estimate
the loss incurred across the scales using the parabolic loss in weight of Assumption 2, relying on
a precise choice of paths which do not incur too large a parabolic loss. The climb and descent
phases are at the heart of the construction.
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Cruise must maintain consecutive separation of order k−2/3n2/3 for a duration of roughly n/3.
We construct paths that travel through an order of k consecutive boxes of height k−1n and width
k−2/3n2/3. As the KPZ one‐third exponent for energy predicts, each passage of a path across a
box incurs weight shortfall of order k−1/3n1/3. Cruise weight shortfall is thus of order m · k ·
k−1/3n1/3 = mk2/3n1/3.

Nowwe turn to giving the details of each phase. We adopt a rounding convention for coordinates
which are not integers, but, in contrast, we will be ignoring the resulting terms of ±1. More
precisely, all expressions for coordinates of points should be rounded down, but extra terms of
±1 which thus arise in non‐coordinate quantities, such as expected values of weights, will be
absorbed into constants without explicit mention.

10.2 The construction in detail

Take‐off

In this phase, them curves will travel from (1, 1), . . . , (1,m) to the line x+ y = 2k2/3n1/3. Since
we will make no non‐trivial claim about the weight of take‐off curves, we may choose these m
curves to be any disjoint upright paths, with the ith starting at (1, i) and ending at(

k2/3n1/3 −
(m
2

− i
)
k−1/3n1/3, k2/3n1/3 +

(m
2

− i
)
k−1/3n1/3

)
. (10.1)

The next statement suffices to show that thesem disjoint paths exist; we omit the straightforward
proof.

Lemma 10.1. Suppose given m starting points {(1, i) : i ∈ JmK}; and m ending points {(xi, yi) :
i ∈ JmK} on the line x + y = r, for some r ≥ m + 1, with 1 ≤ x1 < x2 < ... < xm ≤ m. Then
there existm disjoint paths such that the ith connects (1, i) to (xm−i+1, ym−i+1).

The hypothesis of this lemma that 2k2/3n1/3 ≥ m+1 is satisfied when n ≥ 1 becausem ≤ k ≤ n.

Climb

This phase concerns the construction of curves as they pass through diagonal coordinates be‐
tween k2/3n1/3 and a value h that we will specify in (10.6). In Lemma 10.2, we will learn that
cn ≤ h ≤ n/2; the climb phase thus has duration Θ(n), since k is supposed to be at most a
small constant multiple of n.

During climb, the order of separation rises from k−1/3n1/3 to k−2/3n2/3. Separation will increase
by a factor 21/k during each of several segments intowhich the phasewill be divided. The number
N of segments is chosen to satisfy

2N/k ∈ k−1/3n1/3 · [1, 2) . (10.2)
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Figure 10.1: In Panel A is a depiction of climb, between levels j and j+1, with the construction
between adjoining levels (and thus on smaller and larger scales) in lower opacity. Here m =
k = 5 and the and each of the green parallelograms is a flight corridor. Observe that any flight
corridor between levels j and j+1 has width sep(j) = 2j/k(n/k)1/3, which satisfies the relation
of width ≈ (height)2/3 since the height is 3−123j/2k(n/k)1/2. In Panel B is depicted the simpler
cruise phase, and how the second phase connects to it on either side in lower opacity. Here h is
the distance along the diagonal occupied by the first and second phases on the lower side.

A depiction of one of the segments is shown in Figure 10.1a.

In order that the constructed curves remain disjoint and incur a modest weight shortfall, we
will insist that they pass through a system of disjoint parallelograms whose geometry respects
KPZ scaling: the width of each parallelogram, and the anti‐diagonal offset between its lower and
upper sides, will have the order of the two‐thirds power of the parallelogram’s height.

Segments [2ℓj−1, 2ℓj] will be indexed by j ∈ JNK, with
ℓj := ℓj−1 + 3−123(j−1)/2kk−1/2n1/2, (10.3)

and ℓ0 = k2/3n1/3. Climb begins where takeoff ends, at the diagonal coordinate 2ℓ0: see (10.1).

By level j, we mean
{
(x, y) ∈ Z2 : x + y = 2ℓj

}
. The ith curve will intersect level j at a unique

point (ℓj − p
(j)
i,k , ℓj + p

(j)
i,k), where p

(j)
i,k is inductively defined by

p
(j)
i,k := p

(j−1)
i,k +

(
i− m

2

)
2(j−1)/k

(
21/k − 1

)
k−1/3n1/3 (10.4)
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from initial data p(0)i,k := (i−m/2)k−1/3n1/3 that is chosen consistently with (10.1).

We indicated that separation would increase by a factor of 21/k during each segment in climb
from an initial value of k−1/3n1/3. This is what our definition ensures: the separation sep(j)

between positions on the jth level is given by

sep(j) := p
(j)
i,k − p

(j)
i−1,k = k−1/3n1/3 +

j−1∑
r=0

2r/k(21/k − 1)k−1/3n1/3 = 2j/kk−1/3n1/3, (10.5)

where the second equality is due to repeated applications of (10.4) and since sep(0) = p
(0)
i,k −

p
(0)
i−1,k = k−1/3n1/3.

The height h that marks the end of the climb phase may now be set:

h := ℓN . (10.6)

Flight corridors.

We have indicated that the curves under construction will be forced to pass through certain dis‐
joint parallelograms. The latter regions will be called flight corridors. We may consider a flight
corridor delimited by levels j and j + 1 of width sep(j).

Each curve will have a single flight corridor through which it passes between levels j and j +
1. The corridor corresponding to the ith curve will be denoted P (i,j,s), and we define it next.
Consider the planar line segment that runs from(

ℓj − p
(j)
i,k , ℓj + p

(j)
i,k

)
+
(
ℓj+1 − p

(j+1)
i,k , ℓj+1 + p

(j+1)
i,k

)
+ (1, 0)

to (10.7)(
ℓj − p

(j)
i,k , ℓj + p

(j)
i,k

)
+
(
ℓj+1 − p

(j+1)
i,k , ℓj+1 + p

(j+1)
i,k

)
.

The flight corridor P (i,j,s) consists of those (x, y) ∈ Z2 that are displaced from some element
in the just indicated line segment by a vector (t,−t) for some t with absolute value at most
2−1sep(j) − 1. Thus the flight corridors associated to the ith curve for different values of i are
disjoint. See Figure 10.1. The addition of (1, 0) in the first line of (10.7) is to ensure that the
consecutive flight corridors of the same curve are disjoint.

The subpath of the ith curve from level j to j + 1 is defined to be a path of maximum weight
between the two planar points just displayed that remains in the flight corridorP (i,j,s). Its weight
will be denoted byX(i,j,s)

n,k,2 . Note that the level j subpath’s ending point inP
(i,j,s) and the level j+1

subpath’s starting point in P (i,j+1,s) are adjacent to each other, which allows us to concatenate
them.

The height of P (i,j,s) is
(
ℓj+1 − ℓj

)
= 3−123j/2kk−1/2n1/2 and its width is sep(j) = 2j/kk−1/3n1/3;

so the flight corridor satisfies the relation height = 1
3 · width

3/2.
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Figure 10.2: In order that the weight loss of the heaviest path constrained to lie in a parallelo‐
gram be on‐scale, we need the anti‐diagonal displacement and width of the parallelogram to
both be of order (height)2/3. On the left is the parallelogram in the original coordinates, which
has been rotated on the right for clarity so that the diagonal x = y is visually vertical.

Next we will consider the anti‐diagonal displacement (see Figure 10.2) of the flight corridors.
Recall that Proposition 7.17 says that, if z(height)2/3 denotes the anti‐diagonal displacement, then
the weight loss of the heaviest path constrained to connect the midpoints of the opposite sides
of P (i,j,s) is of order z2(height)1/3. Thus to ensure a low enough weight loss, it will be important
that the anti‐diagonal displacement of P (i,j,s) is at most of order (height)2/3, i.e., that z is of
constant order. We check that this holds next; indeed, it is for this relation to hold that we
defined our separation to increase by a constant factor raised to the power of 1/k, instead of the
naively more natural choice of simply a constant factor.

The anti‐diagonal displacement of the flight corridor is highest for curves 1 and m. For these
paths, this displacement between levels j and j + 1 is∣∣p(j+1)i,k − p

(j)
i,k

∣∣ = 1
2
m2j/k(21/k − 1)k−1/3n1/3 ≤ Cm2j/kk−4/3n1/3

in view of (10.4), with the inequality following from the bound 21/k−1 ≤ Ck−1 for some absolute
constant C. As the height gain in P (i,j,s) is 3−123j/2kk−1/2n1/2, and m ≤ k, the anti‐diagonal
displacement for each corridors is indeed at most C · (height)2/3; the constant C is uniform over
i, j, k, andm.

Cruise

Curves enter cruise at separation k−2/3n2/3, andmust bemaintained there for a duration of order
n: see Figure 10.1b. More precisely, and recalling that h = ℓN , the ith curve enters cruise at(

h−
(m
2

− i
)
k−2/3n2/3, h+

(m
2

− i
)
k−2/3n2/3

)
.



CHAPTER 10. CONSTRUCTING DISJOINT HIGHWEIGHT PATHS 168

We set ℓ′0 = h, and ℓ′j = ℓ′j−1 +
n−2h

k
= h+ (n− 2h) · j

k
for j ∈ JkK. We will demand that the ith

curve visits each point(
ℓ′j −

(m
2

− i
)
k−2/3n2/3, ℓ′j +

(m
2

− i
)
k−2/3n2/3

)
. (10.8)

Between consecutive points, this curve will be be constrained to remain in a flight corridor that
comprises those vertices in Z2 that are displaced from the planar line segment that interpolates
the pair of points by a vector (t,−t) for some t with absolute value at most 2−1k−2/3n2/3, which
will be made to be disjoint by a unit displacement of the bottom side, as in (10.7). Let X(i,j)

n,k,3
be the weight of the ith curve in the jth corridor; namely, the maximum weight of paths that
interpolate the endpoint pair and remain in the corridor.

Momentarily, we will verify that h = Θ(n). The new flight corridor thus satisfies the relation

width ∈
[
C−1 · height2/3, C · height2/3

]
for a positive constant C. The corridor has no anti‐diagonal displacement.

Lemma10.2. There exist positive c1 and c such that if k < c1n, then h = ℓN satisfies cn ≤ h ≤ n/2
for large enough n.

Proof. This inference follows by noting from the defintion (10.3) of ℓN that

h = ℓ0 +
N−1∑
j=0

3−123j/2kk−1/2n1/2 = k2/3n1/3 +
1
3
× 23N/2k − 1

23/2k − 1
× k−1/2n1/2. (10.9)

Now, since 23/2k − 1 = Θ(k−1) and 2N/k ∈ [1, 2) · k−1/3n1/3 from (10.2), the claim follows after
simplification.

Descent and landing

These two phases are specified symmetrically with climb and take‐off.

10.3 Bounding below the expected weight of the construction

Wewill argue, in two steps, that the constructed curves attain the soughtweightµnm−Θ(mk2/3n1/3)
with high probability. In this section, we will show that, under Assumptions 2 and 3, the ex‐
pected total curve weight is at least µnm − Cmk2/3n1/3 for a constant C > 0. In the next, the
desired bound on curve weight will be obtained by showing that this weight concentrates around
its mean due to the independence of contributions from the various flight corridors.

We will control the contribution from a given flight corridor using the lower bound on the ex‐
pectation of the constrained point‐to‐point weight from Proposition 7.17. That proposition will
permit us to derive the next result, the conclusion of the present section.
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Proposition 10.3. LetX denote the sum of the weights of them curves in our construction. There
exist n0 ∈ N, C > 0 and c1 > 0 such that, for n > n0, k < c1n and m ≤ k, E[X] ≥ µnm −
Cmk2/3n1/3.

Proof. The values of C and c may change from line to line but they do not depend on n, m, or
k.

We start with the weight of a curve fragment between two levels during climb. That is, we find
a lower bound on E[X(i,j,s)

n,k,2 ], where recall thatX
(i,j,s)
n,k,2 the weight of the heaviest path that travels

between the points (10.7) without exiting the flight corridor P (i,j,s).

In specifying the climb phase, we noted that the condition in Proposition 7.17 that the anti‐
diagonal displacement of the flight corridor is of order r2/3 holds, where r is the height of the
flight corridor. Further, this holds uniformly over them flight corridors corresponding to them
values of i and the N levels indexed by j.

Note that this implies that the parabolic weight loss term ofE[X(i,j,s)
n,k,2 ] in (7.8) of Proposition 7.17 is

of order r1/3 and so, by absorbing it into the term−cr1/3, does not need to be explicitly calculated.
Thus, using Proposition 7.17 with the settings r = ℓj+1 − ℓj and zr2/3 = p

(j+1)
i,k − p

(j)
i,k , we obtain

E[X(i,j,s)
n,k,2 ] ≥ µ (ℓj+1 − ℓj)− C (ℓj+1 − ℓj)

1/3 . (10.10)

Here C also includes the weight loss from the parabolic term in (7.8) of Proposition 7.17, since, as
noted, z is uniformly bounded.

Recall from (10.3) that ℓj+1 − ℓj = 3−123j/2kk−1/2n1/2. Simplifying the second term of (10.10)
gives

C (ℓj+1 − ℓj)
1/3 = C · 2j/2kk−1/6n1/6.

where we have absorbed the constant factor of 3−1/3 into the value of C. Combining the pre‐
ceding two displays and summing over i gives a lower bound on the expected weight of all the
curves between levels j and j + 1:

m∑
i=1

E[X(i,j,s)
n,k,2 ] ≥

µ

3
· 23j/2kmk−1/2n1/2 − C2j/2kmk−1/6n1/6

Summing from j = 0 to N − 1 gives a lower bound for the total weight of the climb phase of

N−1∑
j=0

m∑
i=1

E[X(i,j,s)
n,k,2 ] ≥

µm

3
·
N−1∑
j=0

23j/2kk−1/2n1/2 − C ·
N−1∑
j=0

2j/2kmk−1/6n1/6

= µ(h− k2/3n1/3) ·m− C · 2
N/2k − 1
21/2k − 1

·mk−1/6n1/6 (10.11)

= µhm− Cmk2/3n1/3, (10.12)
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where we used that 2N/2k = k−1/6n1/6 from (10.2); that 21/2k − 1 ≥ ck−1 for some c > 0; the
expression of h from (10.9); and that ℓ0 = k2/3n1/3.

As for cruise, an easy computation from Proposition 7.17 yields that

E[X(i,j)
n,k,3] ≥

µ(n− 2h)
k

− ck−1/3(n− 2h)1/3 ≥ µ(n− 2h)
k

− ck−1/3n1/3. (10.13)

We writeX
(i,j,s)

n,k,2 for the descent counterpart of the climb flight corridor weight maximum. The
bound on mean valid for climb holds equally for descent. Combining climb, descent and cruise
weight bounds with the zero bound for take‐off and landing, the total weightX in our construc‐
tion is seen to satisfy

X ≥
∑
i,j

(
X

(i,j,s)
n,k,2 +X

(i,j)

n,k,2 +X
(i,j)
n,k,3

)
(10.14)

(where the indices that j is summed over differs for the terms corresponding to the climb phase
and the cruise phase). Taking expectation, and applying (10.12) and (10.13), we obtain

E

[∑
i,j

(
X

(i,j,s)
n,k,2 +X

(i,j)

n,k,2 +X
(i,j)
n,k,3

)]
≥ µnm− Cmk2/3n1/3 ,

the conclusion of Proposition 10.3.

10.4 One‐sided concentration of the construction weight

We now know that the expected weight of the construction is correct. To prove Theorem 7.16, we
argue that the weight is unlikely to fall much below its mean. Wewill stochastically dominate the
summands in the expression forX from (10.14) with independent exponential random variables
of varying parameters, and use the following concentration result from [Jan18] for sums of such
variables. We denote by Exp(λ) the exponential distribution with rate λ.

Proposition 10.4 (Theorem 5.1 (i) of [Jan18]). Let W =
∑n

i=1Wi where Wi ∼ Exp (ai) are
independent. Define

ν := EW =
n∑

i=1

EWi =
n∑

i=1

1
ai
, a∗ := min

i
ai.

Then for λ ≥ 1,
P (W ≥ λν) ≤ λ−1e−a∗ν(λ−1−logλ).

Proof of Theorem 7.16. Let K ≥ 0 and 0 < L1 ≤ L2. As before, let U = Ur,ℓr2/3,zr2/3 be a
parallelogram with width ℓr2/3, height r, and anti‐diagonal displacement zr2/3, where |z| ≤ K
and L1 ≤ ℓ ≤ L2. LetXU

r denote the weight of the heaviest midpoint‐to‐midpoint path that lies
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in U . By our upgraded‐by‐bootstrapping tail bound for constrained weighs Proposition 9.6, and
E[XU

r ] ≤ E[Xr] ≤ µr (which is due to Assumption 2), there exists c4 = c4(L1, L2, K) > 0 such
that, for r > r0 = r0(L1, L2, K) and θ > θ0 = θ0(L1, L2, K),

P
(
XU

r − E[XU
r ] < −θr1/3

)
≤ e−c4θ ;

or
P
(
XU

r − E[XU
r ] < −θ

)
≤ exp(−c4θ/r

1/3) , (10.15)

the latter for θ larger than θ0r
1/3 and r > r0. Equation (10.15) says that we have the stochastic

domination
−
(
XU

r − E[XU
r ]
)
≤sd Exp(c4/r1/3) + θ0r

1/3,

where, in an abuse of notation, Exp(λ) denotes a random variable with the exponential distri‐
bution of rate λ, andX ≤sd Y denotes that the distribution ofX is stochastically dominated by
that of Y . Thus, in our construction, we have a coupling

−
(
X

(i,j,s)
n,k,2 − E[X(i,j,s)

n,k,2 ]
)
≤ W

(i,j)
2 + θ02j/2kk−1/6n1/6,

−
(
X

(i,j)

n,k,2 − E[X(i,j)

n,k,2]
)
≤ W

(i,j)

2 + θ02j/2kk−1/6n1/6, and

−
(
X

(i,j)
n,k,3 − E[X(i,j)

n,k,3]
)
≤ W

(i,j)
3 + θ0k

−1/3n1/3.

(10.16)

Here the random variables on the right‐hand side are independent and distributed as

W
(i,j)
2 ∼ Exp

(
c42−j/2kk1/6n−1/6) ,

W
(i,j)

2 ∼ Exp
(
c42−j/2kk1/6n−1/6) , and

W
(i,j)
3 ∼ Exp

(
c4k

1/3n−1/3) . (10.17)

By our construction, K, L1, and L2 in Proposition 9.6 may be chosen independently of i and j.
Thus, whatever the dependence of c4 and θ0 on i and j, they are uniformly bounded away from
0 and∞ respectively, and so may be assumed to be constant. We set

W :=
∑
i,j

(
W

(i,j)
2 +W

(i,j)

2

)
+
∑
i,j

W
(i,j)
3 .

We wish to use Proposition 10.4 on the sum W of independent exponential random variables,
and so we must estimate Proposition 10.4’s parameters. We have

E
[
W

(i,j)

2

]
= E

[
W

(i,j)
2

]
= c−14 2j/2kk−1/6n1/6 and E

[
W

(i,j)
3

]
= c−14 k−1/3n1/3.

Summing the expressions of the last display over the indices and using that 2N/2k = k−1/6n1/6

from (10.2) and that 21/k − 1 = Θ(k−1) gives that the total mean ν satisfies

ν := E[W ] ≤ 8c−14 mk2/3n1/3. (10.18)
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Noting that the coefficients of θ0 in (10.16) are the same as the mean of the corresponding ex‐
ponential random variable up to a factor of c4, similarly summing these coefficients shows the
stochastic domination

−(X − E[X]) ≤ W + 8θ0mk2/3n1/3.

Using that 2N/k = k−1/3n1/3 from (10.2), we see that the minimum a∗ of the rates of the expo‐
nential random variables defined in (10.17) is given by

a∗ = min(c42−N/2kk1/6n−1/6, c4k
1/3n−1/3) = c4k

1/3n−1/3. (10.19)

Let S = max(c−14 , θ0). By Proposition 10.3, with this result contributing the value of C, and the
stochastic domination (10.16),

P
(
X < µnm− (C + 20S)mk2/3n1/3

)
= P

(
−(X − E[X]) > 20Smk2/3n1/3

)
≤ P

(
W ≥ 20Smk2/3n1/3 − 8θ0mk2/3n1/3

)
.

Since 20S − 8θ0 ≥ 12S ≥ 12c−14 , the latter quantity is bounded using Proposition 10.4, (10.18),
and (10.19):

P
(
W > 12c−14 mk2/3n1/3

)
≤ P

(
W >

12
8
ν

)
≤ 2
3
exp

(
−a∗ν

(
3
2
− 1− log

3
2

))
≤ exp (−cmk) .

Numerical evaluation of the exponent shows that we may take c = 3/4.

In view of the paragraphs after (10.7) and (10.8), flight corridors during climb, descent and cruise
lie within the strip around the diagonal of width 2mk−2/3n2/3; thus, the transversal fluctuations
of the constructed curves in these phases also satisfy this bound. By setting C1 = C + 20S, we
complete the proof of Theorem 7.16.

Remark 10.5. The argument just given shows that, for positive constants c and x0 and x ≥ x0,

P
(
X < µnm− (C + x)mk2/3n1/3

)
≤ exp (−cmkx) .



173

Part IV

Twin peaks for the KPZ fixed point
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Chapter 11

The lower bound on the twin peaks
probability

This chapter forms the third pillar of this thesis, which, as discussed in Chapter 2, combines the
probabilistic and geometric perspectives to prove a lower bound on the probability of “ε‐twin
peaks” for the KPZ fixed point. It consists of work done with Ivan Corwin, Alan Hammond, and
Konstantin Matetski in [CHHM21].

We have to state the precise version of Theorem 2.9, which was stated informally in Chapter 2.
To do so, we first define the assumptions on the initial data we work under.

Assumption 11.1 (Parabolic decay). The initial data h0 : R → [−∞,∞) of the KPZ fixed point
is a non‐random, upper semicontinuous function that is not identically equal to −∞, and for which
(a) there exist α ∈ R and γ > 0 such that the bound h0(y) ≤ α − γy2 holds for all y ∈ R and
(b) there exists λ ∈ R such that h0(y) = −∞ for y ≤ −λ.

Next we turn to the precise definition of the ε‐twin peaks set. For L > 0, we denote

JL := [−L,L]. (11.1)

We will estimate the probability that the KPZ fixed point has two near maximizers that differ by
at least some fixed A > 0. To this end, for a function f : R → R ∪ {−∞} that is bounded from
above, and for three values A,L, ε > 0, we specify the set

Sε
A,L(f) :=

{
(x1, x2) ∈ J2L : x2 − x1 ≥ A, Max(f)− f(xi) ≤ ε for i = 1, 2

}
. (11.2)

Then we define the set

TPε
A,L :=

{
f : R → R ∪ {−∞} : Max(f) ∈ JL1/2 , Sε

A,L(f) 6= Ø
}
. (11.3)

Now we may state the precise version of the previously stated Theorem 2.9.
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Theorem 11.2. Let the initial state h0 of the KPZ fixed point satisfy Assumption 11.1, and suppose
that A > 0 and t > 0. There exist L0 and η > 0 (both depending on A, t, and h0) such that, for all
L ≥ L0 and ε ∈ (0, 1),

Ph0

(
ht ∈ TPε

A,L

)
≥ ηε. (11.4)

Further, η and L0 can be taken to depend on t > 0 in a continuous manner.

Theorem 11.2 offers a lower bound on the probability of the twin peaks’ event. The general t
version of this result follows from the t = 1 case in light of the 1:2:3 invariance of the KPZ fixed
point recorded next, and taken from [MQR17, Section 4.3]:

Proposition 11.3 (1:2:3 scaling invariance). For any α > 0, one has αhα−3t(α
−2x; hα0 )

d
= ht(x; h0)

as a process in both x and t, where hα0 (x) := α−1h0(α
2x) and ht(·; h0) denotes the KPZ fixed point

started from initial condition h0.

Thus in this section we set t = 1 and, for notational convenience, we will denote h1 by h; the
claim in Theorem 11.2 that η and L0 can be taken to depend on t continuously will be handled
separately.

In fact, while Assumption 11.1 says that there exist α, γ, and λ such that h0(y) is −∞ for all y <
−λ and satisfies h0(y) ≤ α−γy2 for all y ∈ R, we will also assume without loss of generality that
α = λ = 0. We may do so because the occurrence of the twin peaks’ event TPε

A,L is unchanged,
provided that L is altered suitably, under arbitrary shifts of h0 in the horizontal and vertical
directions; i.e., under transformations of the form h0(·) 7→ h0(· + z1) + z2 for fixed z1, z2 ∈ R.
So we consider the function h̃0(y) := h0(y − λ)− (α+ γλ2), which satisfies h̃0(y) = −∞ for all
y < 0. For this function, we have that

h̃0(y) ≤ α− (α + γλ2)− γ(y − λ)2 ≤ −γ

2
y2, for all y ∈ R,

by noting that the arithmetic‐geometric mean inequality implies that 2yλ ≤ y2/2+2λ2. We will
relabel γ/2 by γ since this quantity differs from γ by a constant multiple that is independent of
α and λ. Thus, for h0 satisfying Assumption 11.1, we may indeed assume that α = λ = 0, i.e.,

h0(y) ≤ −γy2 for all y ∈ R and h0(y) = −∞ for y < 0; (11.5)

of course, as mentioned previously, making this simplification may need a modification in the
value of L for which we consider the event TPε

A,L. More precisely, we have that ht ∈ TPε
A,L ⇐⇒

h̃t ∈ TPε
A,L̃ where h̃t is obtained from ht by applying the same horizontal and vertical shift that

was applied above to h0 to give h̃0 (so h̃t has the distribution of the KPZ fixed point started from
initial condition h̃0 at time t) and L̃ is a function of L, α, γ and λ. This simplification will aid
us in some later technical arguments.

Many of the estimates made in this section will depend on h0, and it will be helpful to be precise
about which aspects of h0 are relevant. Thus, in this section the parameter θ will be such that

sup
|y|≤θ

h0(y) ≥ −θ.
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Estimates will depend on h0 only through γ and θ; this is because we assume as above that
α = λ = 0, but note that the transformation described to make this simplification modifies the
value of θ.

Instead of working with the KPZ fixed point directly, we work mainly with the prelimiting model
of Brownian last passage percolation. By doing so, we gain access to certain important tools:
these include the Brownian description given by the distributional identification of the “melon”
function of Brownian LPP (to be introduced shortly) with Dyson Brownian motion; and a re‐
markable deterministic identity (Proposition 11.4) relating last passage values in the Brownian
environment with those in the melon‐transformed environment. We work with the prelimiting
model since the key identity has not been proved at the level of the KPZ fixed point. Once we es‐
tablish a prelimiting version of Theorem 11.2 (Proposition 11.8 below), we use the convergence of
Brownian LPP to the KPZ fixed point (Lemma 11.7) to deduce the theorem. Below, in Figure 11.1,
is a diagrammatic representation of the structure of this section.

The lower bound on the twin
peaks probability (Theorem 11.2)

Lower bound in
BrLPP prelimit h(n)

(Propositions 11.8 & 11.11)

Uniform tail bounds for
BrLPP from [GH20a]
(Proposition 11.9)

Location of maximizer
(Lemma 11.10)

Positive prob. of
favourable data
(Lemma 11.18)

Conditional distribution
of h(n) at maximizer + A

(Lemma 11.17)

Properties of reconstruction
of h(n) given resampled value:
monotonicity & Lipschitz
(Lemmas 11.13 & 11.14)

Conditional distribution of
h(n) from maximizer to ∞

(Lemma 11.15)

BrLPP converges to ht

(Lemma 11.7)

Figure 11.1: Structure of this chapter.

11.1 Preliminaries

Themodel

We quickly recall the model of semi‐discrete LPP that was previously introduced in Chapter 2.
We denote the integer interval {1, . . . , n} by JnK. Consider a sequence of continuous functions
f = (f1, . . . , fn) : JnK × [0,∞) → R. We will depict these functions as in Figure 11.2. The
functions f1 through fn are each indexed by a spatial variable which lies respectively along one
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(y, n)

(x, 1)

Figure 11.2: Left: A depiction of the environment given by f . The functions fi corresponding
to each line are graphed in red on the corresponding black line for visual clarity; the function
values themselves need not be ordered. Right: An upright path γ from (y, n) to (x, 1) is depicted
in green; note that in a formal sense the depicted vertical portions are not part of the path. The
path’s weight is the sum of the increments of fi along the portion of the ith line γ spends on it.

of n horizontal lines, with the top line indexing f1 and the bottom line indexing fn. The function
values along these lines represent an environment.

Let 0 ≤ y ≤ x. An upright path γ from (y, n) (i.e., position y on line n) to (x, 1) is a path which
starts at (y, n) and moves rightwards, jumping up from one line to the next at certain times until
it reaches (x, 1): see Figure 11.2. An upright path is parametrized by its jump times {ti}n−1i=1 at
which it jumps from the (i + 1)st line to the ith line. Define Πn

y,x to be the set of upright paths
from (y, n) to (x, 1). The weight of γ ∈ Πn

y,x in f is denoted f [γ] and defined by

f [γ] =
n−1∑
i=1

(
fi(ti−1)− fi(ti)

)
, (11.6)

where {ti}n−1i=1 are the jump times of γ, with tn = y and t0 = x. This expression is thus the sum
of increments of f along the portions of γ on each line. We define the last passage value in f
from (y, n) to (x, 1) by

f [(y, n) → (x, 1)] = sup
γ∈Πn

y,x

f [γ]. (11.7)

If the set Πn
y,x is empty, i.e., if y > x, we define the passage value to be −∞. The model of

Brownian LPP is specified by taking f to be a collection of n independent standard Brownian
motions defined on [0,∞).

Themelon function

We define the weight of a collection of disjoint (except possibly at shared endpoints) upright
paths as the sum of the weights of the constituent paths. Then for j ∈ JnK, we define f [(y, n)j →
(x, 1)j] to be the maximum weight over all collections of j disjoint paths from (y, n) to (x, 1).
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With this, we may define the melon functionWf = ((Wf)1, . . . , (Wf)n) : JnK × [0,∞) → R by

(Wf)j(x) = f [(0, n)j → (x, 1)j]− f [(0, n)j−1 → (x, 1)j−1], (11.8)

for j ≥ 2 and (Wf)1(x) = f [(0, n) → (x, 1)]. Two important deterministic properties are that
the curves of Wf are ordered, meaning that (Wf)i(·) ≥ (Wf)i+1(·) for each i ∈ Jn − 1K (see,
for instance, the discussion at the start [DOV18, Section 4] and references given there); and an
inference concerning last passage values in the melon environment:

Proposition 11.4 (Special case of Proposition 4.1 of [DOV18]). Let f = (f1, . . . , fn) : JnK ×
[0,∞) → R be continuous, and let y ≤ x. Then

f [(y, n) → (x, 1)] = (Wf)[(y, n) → (x, 1)].

In particular, this proposition applies when f = B, a collection of n Brownian motions, as
considered below in Section 11.1. An important technical condition imposed by the definition
ofWf , as well as by Proposition 11.4, is that the domain of each line is [0,∞), rather than R. It
is because of this condition that we consider only initial conditions which are −∞ for all small
enough arguments; which is to say, this is why we require Assumption 11.1(b).

Scaling limit of Brownian LPP

We will need the convergence of Brownian LPP values to the parabolic Airy sheet, a convergence
that holds uniformly on compact sets. Let B : JnK × R → R be a collection of n independent
two‐sided Brownian motions. Define Sn : R2 → R ∪ {−∞} by

Sn(y, x) := n−1/3 (B[(2yn2/3, n) → (n+ 2xn2/3, 1)]− 2n− 2(x− y)n2/3
)
; (11.9)

the co‐domain includes−∞ simply to handle the case that 2yn2/3 > n+2xn2/3. (Although here
we allow y to be negative, the definitions in (11.6) and (11.7) easily generalize.)

Here is a statement of convergence of Brownian LPP to the parabolic Airy sheet. (It is simply to
have a cleaner version of this statement that we allowed y to be negative in (11.9).)

Proposition 11.5 (Theorem 1.3 of [DOV18]). In the topology of uniform convergence on compact
sets, we have the convergence in law

S(y, x) = lim
n→∞

Sn(y, x). (11.10)

Wewill generallyworkwith a centred and scaled version ofWB. Indeed, letPn = (Pn,1, . . . ,Pn,n) :JnK × [−1
2n

1/3,∞) → R be given by

Pn,j(x) = n−1/3 ((WB)j(n+ 2xn2/3)− (2n+ 2xn2/3)
)
. (11.11)
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Here, P indicates “parabolic”, as these objects converge to the parabolic Airy line ensemble
(though we will not use this fact, as we only require the convergence of Brownian LPP values
to the parabolic Airy sheet as in Proposition 5.3). Since (WB)j(·) is ordered, and (WB)j(0) = 0
for j ∈ JnK, we see that, for x ≥ −1

2n
1/3,

Pn,1(x) = n−1/3 (B[(0, n) → (n+ 2xn2/3, 1)]− (2n+ 2xn2/3)
)

= Sn(0, x).
(11.12)

We used the definition ofWBn,1 (11.8) for the first equality and (11.9) for the second.

Note also that

Pn[(y, n) → (x, 1)] = n−1/3 ((WB)[(n+ 2yn2/3, n) → (n+ 2xn2/3, 1)]− 2(x− y)n2/3
)
,

(11.13)
for all −1

2n
1/3 ≤ y < x. We find then that, for y > 0 with x > y − 1

2n
1/3,

Sn(y, x) = Pn[(−1
2n

1/3 + y, n) → (x, 1)]− n2/3 (11.14)

by comparing (11.13) to the definition (11.9) of Sn, and using Proposition 11.4.

We may now define the prelimiting version of h, denoted h(n) : [−n1/60, n1/60] → R∪ {−∞}, by

h(n)(x) = sup
0≤y≤n1/60

(
h0(y) + Sn(y, x)

)
= sup

0≤y≤n1/60

(
h0(y) + Pn[(−1

2n
1/3 + y, n) → (x, 1)]− n2/3

)
,

(11.15)

since by assumption h0(y) = −∞ for y < 0. The final equality follows from (11.14). We adopt
the upper limit of n1/60 on y and |x| in order to meet a technical hypothesis in the application of
an upcoming estimate Proposition 11.9 from [GH20a]; note that n1/60 → ∞ as n → ∞ and so
in the limit y and x can be thought of as respectively taking any non‐negative value and any real
value. Finally, for given x, a path in the environment defined byPn which achieves the supremum
implicit in Pn[(−1

2n
1/3 + y, n) → (x, 1)] in the last equality of (11.15) is called a geodesic.

The next lemma translates the well‐known fact that WB can be described as non‐intersecting
Brownian motions to a similar statement about Pn’s distribution; see also Figure 11.3.

Lemma 11.6. The distribution of Pn : JnK× [−1
2n

1/3,∞) → R is that of n independent Brownian
motions of rate two and of drift−n1/3, with common initial value−n2/3, and conditioned on mutual
non‐intersection.

Proof. We may identify WB with n‐level Dyson Brownian motion [OY02], which may be de‐
fined as n independent Brownian motions of rate one and zero drift, with common initial value
zero, conditioned on mutual non‐intersection (the singular conditioning made precise via a suit‐
able limiting procedure or a Doob h‐transform); see, for example, [Dys62, Meh91, Gra99]. The
expressions for the rate, drift, and initial value in the sought statement follow from the defini‐
tion (11.11) of Pn.
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n2/3

drift = −n1/3

1
2n

1/3 O(1)

O(1)

(− 1
2n

1/3, 0)

Pn,1

Figure 11.3: A depiction of Pn from (11.11). The vertical shift by n−2/3, drift of −n−1/3, and
scaling by n−1/3 are picked so that the height and fluctuations of Pn,1 in a unit order interval
are also of unit order, as emphasized by the black box of unit order height and width.

Since we ultimately need to make inferences about h, we require that h(n) → h on compact sets.
This is recorded in the next statement, which we will prove in Section 11.2 using the convergence
of Sn to S from Proposition 11.5.

Lemma 11.7. Let h0 : R → R ∪ {−∞} satisfy Assumption 11.1. Then we have that h(n) → h in
distribution in the topology of uniform convergence on compact sets.

We will prove Theorem 11.2 by deriving the following analogous statement for h(n).

Proposition 11.8. Let h0 : R → R ∪ {−∞} satisfy Assumption 11.1 and suppose that A > 0.
There exist L0 and η > 0 (both depending on γ, θ, and A) such that, for all L > L0, there exists n0
(depending on γ, θ, and L) so that for all n > n0 and ε ∈ (0, 1),

P
(
h(n) ∈ TPε

A,L

)
≥ ηε.

Further, L0 and η may be taken to depend continuously on γ, θ, and A.

We show how Proposition 11.8 implies Theorem 11.2, and then turn to the proof of the former.

Proof of Theorem 11.2. As we have noted, wemay take t = 1 and use the notation h in place of h1.
Let L > L0 with L0 as given in Proposition 11.8. By combining the fact that h(n) converges to h
uniformly on compact sets (Lemma 11.7) with the Portmanteau theorem and Proposition 11.8, we
see that

P
(
h ∈ TPε

A,L

)
≥ lim

n→∞
P
(
h(n) ∈ TPε

A,L

)
≥ ηε.

For general t > 0, we must show that η and L0 can be taken to depend on t continuously. This
follows since the KPZ scaling, to move from the ε‐twin peaks’ event for t > 0 to t = 1, modifies
A, γ, θ, and ε in a manner that depends continuously on t; the dependence of η and L0 on these
quantities in Proposition 11.8 is also continuous. This completes the proof of Theorem 11.2.
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We now turn to the proof of Proposition 11.8. We start with a section on some technical estimates
regarding the location of maximizers of h(n) as well as of the maximum in its definition (11.15).

11.2 Locations of maximizers

We will need a uniform tail bound for Sn(y, x) as x and y vary over compact intervals. Such a
bound is proved in [GH20a], and we state it here now.

Proposition 11.9 (Proposition 3.15 of [GH20a]). There exist finite positive constants n0, K0, C,
and c such that, for n ≥ n0,K0 ≤ K ≤ n1/30, and 0 < R < n1/46,

P

(
sup

x,y∈[−R,R]

∣∣Sn(y, x) + (y − x)2
∣∣ > K

)
≤ CR2 exp(−cK3/2).

The proof of Proposition 11.9 as given in [GH20a] is not difficult and follows a strategy used
earlier in [BSS14] to prove a similar statement in another model of LPP; essentially, one considers
a fine discretization of the set of endpoints in [−R,R] and uses known one‐point tail bounds
and a union bound to get the uniform‐over‐endpoints statement.

It is to handle the bounds of n1/30 and n1/46 onK and R that we have imposed that y ≤ n1/60 in
the definition of h(n) and restricted h(n)’s domain to [−n1/60, n1/60].

Next, we show uniform‐in‐n control over xn
0 , the maximizer of h

(n).

Lemma 11.10. Let h0 : R → R ∪ {−∞} satisfy Assumption 11.1 . Let xn
0 be the maximizer of h

(n)

of largest absolute value. Given δ > 0, there exist n0 andM < ∞ (both depending on γ, θ, and δ)
such that, for all n ≥ n0,

P (|xn
0 | > M) ≤ δ.

Further,M can be taken to depend on γ, θ, and δ continuously.

Proof. Since by definition xn
0 ∈ [−n1/60, n1/60], it is enough to prove that

P

(
sup

M<|x|<n1/60
h(n)(x) > h(n)(0)

)
< δ

for large enough M depending only on δ, γ and θ. For any K > 0, we may bound above the
left‐hand side by

P

(
sup

M<|x|<n1/60
h(n)(x) > h(n)(0)

)
≤ P

(
sup

M<|x|<n1/60
h(n)(x) > −K

)
+ P (h(n)(0) < −K) .

(11.16)
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We will find a K such that both terms are less than δ/2. The second term is easier to bound,
and we address it first. Let y0 ∈ [−θ, θ] be such that h0(y0) ≥ −2θ and set K ≥ 4θ. From the
formula (11.15) for h(n), we see that

P (h(n)(0) < −K) ≤ P
(
h0(y0) + Sn(y0, 0) < −K

)
≤ P

(
Sn(y0, 0) < −K/2

)
.

We can bound this probability using the one‐point tail information for Sn(y, x) from Proposi‐
tion 11.9. Doing so shows that, for large enoughK, the probability is less than δ/2.

Returning to the first term on the right‐hand side of (11.16), recall that, by (11.5), there exists
γ > 0 such that h0(y) ≤ −γy2 for all y ∈ R. Then we have from (11.15) that

P

(
sup

M<|x|<n1/60
h(n)(x) > −K

)
≤ P

(
sup

M<|x|<n1/60

0≤y≤n1/60

(
Sn(y, x)− γy2

)
> −K

)

≤
⌈n1/60⌉∑
i=M

⌈n1/60⌉∑
j=0

P

(
sup

|x|∈[i,i+1]
y∈[j,j+1]

Sn(y, x) > −K + γj2

)
. (11.17)

Now we want to apply Proposition 11.9 to bound each summand. We see that

P

(
sup

|x|∈[i,i+1]
y∈[j,j+1]

Sn(y, x) > −K + γj2

)

≤ P

(
sup

|x|∈[i,i+1]
y∈[j,j+1]

(
Sn(y, x) + (x− y)2

)
> −K + γj2 + (|i− j| − 1)2

)
. (11.18)

We need a lower bound on the right‐hand side of the preceding line’s probability, whichwe record
next. We claim that there existsM large enough depending on γ such that, for i ≥ M and j ≥ 1,

γj2 + (|i− j| − 1)2 ≥ γ

4+ γ
(i2 + j2). (11.19)

The proof of this essentially follows by noting that 2ij ≤ (1 + γ/2)j2 + (1 + γ/2)−1i2 and we
omit the further details.

Using (11.19) in (11.18) gives

P

(
sup

|x|∈[i,i+1]
y∈γ−1/2[j,j+1]

(
Sn(y, x) + (x− y)2

)
> −K + γj2 + (|i− j| − 1)2

)

≤ P

(
sup

|x|∈[i,i+1]
y∈[j,j+1]

(
Sn(y, x) + (x− y)2

)
>

γ

4+ γ

(
j2 +

1
2
i2
))

.
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Here we assumed that K ≤ γ
2(4+γ)

i2 for i ≥ M , which can be assured by supposing that M is
large enough. We apply Proposition 11.9 after noting that we are permitted to do so since for
i ≤ n1/60 and j ≤ n1/60, we have i2, j2 < n1/30 and [j, j+ 1], [i, i+ 1] ⊆ [−n1/46, n1/46]. Thus we
see, for positive constants c and C depending on γ,

P

(
sup

|x|∈[i,i+1]
y∈[j,j+1]

Sn(y, x) > −K + γj2

)
≤ Cmax{i2, j2} exp

{
− c(i3 + j3)

}
.

Returning to the sum in (11.17) and substituting this bound yields, forM large enough,

P

(
sup

M<|x|<n1/60
h(n)(x) > −K

)
≤

⌈n1/60⌉∑
i=M

⌈n1/60⌉∑
j=0

Cmax{i2, j2} exp
{
− c(i3 + j3)

}
≤

∞∑
i=M

C ′i2 exp{−ci3},

which may be made smaller than δ/2 by choosing M suitably high (which overall depends on
γ and θ) and by further assuming that n > M 60, if required. It may be easily checked that the
dependence of M on these quantities is continuous. This completes the proof of Lemma 11.10.

The proof of Lemma 11.7 on the convergence of h(n) to h follows similar lines, relying on a bound
on the location of the maximizer in the definition of h(n) (11.15). We give it now.

Proof of Lemma 11.7. Set yn(x) equal to argmaxy (h0(y) + Sn(y, x)) (taking the choice of largest
absolute value when it is not unique). FixM > 0. We claim that (yn(x))n∈N is uniformly tight
for x ∈ [−M,M ]. To show this, let ε > 0 be given and let R ≥ M ∨ θ, so that we may choose
y0 ∈ [0, R] such that h0(y0) ≥ −2θ. Then we observe that, for everyK > 0,

P
(
yn(x) > R

)
≤ P

(
sup

R≤y≤n1/60

(
h0(y) + Sn(y, x)

)
> h0(y0) + Sn(y0, x)

)

≤ P

(
sup

R≤y≤n1/60

(
h0(y) + Sn(y, x)

)
> −K

)
+ P

(
h0(y0) + Sn(y0, x) < −K

)
.

(11.20)

We set K ≥ 4θ large enough that h0(y0) ≥ −2θ ≥ −K/2 and K ≥ (y0 − x)2 (for example by
setting K ≥ 4R2). Then we bound the second term of (11.20) by CR2 exp(−cK3/2) (uniformly
for all x ∈ [−M,M ]) by Proposition 11.9. Thus, for all K large enough, the second term is at
most ε/2.
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Next we bound the first term of (11.20). By a union bound,

P

(
sup

R≤y≤n1/60

(
h0(y) + Sn(y, x)

)
> −K

)
≤

⌈n1/60⌉∑
j=R

P

(
sup

y∈[j,j+1]

(
Sn(y, x)− γy2

)
> −K

)

≤
⌈n1/60⌉∑
j=R

P

(
sup

y∈[j,j+1]
Sn(y, x) > −K + γj2

)
.

Setting R such that γj2 > K for all j ≥ R shows that each summand in the last display is
bounded above byCj2 exp(−cj3), uniformly over x ∈ [−M,M ], again by Proposition 11.9. This
expression is summable in j. So takingR sufficiently large implies that the sum is bounded above
by ε/2. Thus, for such R, we find that, for x ∈ [−M,M ],

P
(
yn(x) > R) ≤ ε,

so that the claimed uniform tightness is obtained, because yn(x) ≥ 0 almost surely by our as‐
sumption on h0.

That the maximizer sequence has a convergent subsequence, combined with the uniform con‐
vergence on compact sets of Sn to S, implies that h(n) → h uniformly on compact sets as well.
To see this, fix M > 0 and let K be a random compact set such that yn(x) ∈ K for all n and
x ∈ [−M,M ]. Then simple manipulations show that

sup
x∈[−M,M ]

|h(n)(x)− h(x)| ≤ sup
x∈[−M,M ]

y∈K

∣∣∣Sn(y, x)− S(y, x)
∣∣∣→ 0.

11.3 The resampling framework

Toprove Proposition 11.8, wewill prove the following stronger proposition, fromwhich the former
immediately follows.

Proposition 11.11. Let h0 : R → R ∪ {−∞} satisfy Assumption 11.1 and suppose A > 0. There
exist η > 0 and L0 > 0 (both depending on γ, θ, and A) such that, for all L > L0, there exists n0
(depending on γ, θ, and L) such that, for all n > n0 and ε ∈ (0, 1),

P
(

sup
x∈[xn

0 +A,xn
0 +A+2]

h(n)(x) > h(n)(xn
0 )− ε; |h(n)(xn

0 )| ≤ L1/2; |xn
0 | ≤ L− A− 2

)
≥ ηε,

where xn
0 = argmax|x|≤n1/60 h

(n)(x) and is taken to be the largest (i.e., not necessarily greatest in
absolute value) one on the event that it is not unique; we will use shorthand x0 = xn

0 below at times.
Further, L0 and η can be taken to depend on γ, θ, and A continuously.
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The strengthening of Proposition 11.11 relative to Proposition 11.8 is that we now assert that it is
possible to achieve the twin peaks’ event of separation A by moving at most distance two to the
right of the maximizer x0 beyond the imposed distance A.

The proof of Proposition 11.11 follows a Gibbsian resampling argument. (We will recall the Brow‐
nian Gibbs property precisely in Section 11.4.) This argument is considerably easier in the case
where h0 is a narrow wedge; in Section 11.5, we explain how this case works and then give the
more general proof of this proposition. To set up the argument, we must first recall that h(n) can
be expressed in terms of P via the variational problem in (11.15); and that P can be expressed
in terms of non‐intersecting Brownian motions via Lemma 11.6. Roughly put, then, h(n) may be
expressed in terms of non‐intersecting Brownian motions. We will make use of the Gibbs resam‐
pling property for these motions, filtered through the variational problem. To do this, we need
to define a σ‐algebra F that contains the data which will not be resampled. We will study the
F ‐conditional distribution of h(n) on [x0+A, x0+A+2] and show that, with probability at least
ηε, an event occurs which implies that h(n) ∈ TPε

A,L.

To describe F , we need some notation: for a function f : I → R and an interval [a, b] ⊆ I, the
bridge of f on [a, b], denoted f [a,b] : [a, b] → R, is given by

f [a,b](x) = f(x)− x− a

b− a
· f(b)− b− x

b− a
· f(a); (11.21)

this is the function obtained by affinely transforming f so that its values at a and b vanish.

The σ‐algebra F is defined to be the one generated by the following collection of random vari‐
ables:

1. The maximizer of h(n): x0 = xn
0 = argmaxx∈[−n1/60,n1/60] h

(n)(x).

2. The curve data of Pn:
{
Pn,j(x) : j ∈ J2, nK, x ≥ −1

2n
1/3 or j = 1, x 6∈ [x0 + A, x0 +

A+ 2]
}
.

3. The side bridge data of the top curve in [x0 + A, x0 + A + 2]: P [x0+A,x0+A+1]
n,1 and

P [x0+A+1,x0+A+2]
n,1 . (Here P [x0+A,x0+A+1]

n,1 is the function on [x0 + A, x0 + A + 1] defined

via (11.21) with f = Pn,1, and similarly for P [x0+A+1,x0+A+2]
n,1 .)

Conditionings on similar collections of data have been used in earlier works such as [Ham19a,
CHH19], and in Part II of this thesis. There, however, the interval of focus—our [x0 + A, x0 +
A + 2]—is either deterministic or a stopping domain (an analogue of a stopping time suited to
the spatial nature of the Brownian Gibbs property used there). This means that the conditional
distribution is more easily analysed using standard Markovian properties. Here, x0 is a random
variable which depends on the entirety of Pn and so is rather non‐Markovian. This complicates
the analysis considerably; a careful treatment will be provided in Section 11.7, for which we set
up some notation and record some observations in the rest of this section.

Conditional on F , the only randomness left in determining h(n) is the value of the random vari‐
able Z := Pn,1(x0+A+1). Given a value of Z labelled z, and the data of F , we can reconstruct
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Pn,1

Pn,2

Pn,3a b

Pn,1

Pn,2

Pn,3a b

Figure 11.4: A depiction of the Brownian Gibbs resampling procedure. On the left in black is
all the data contained in the σ‐algebra Fext. The Fext‐conditional distribution of Pn,1 on [a, b]
is that of a Brownian bridge (in blue) of rate two from (a,Pn,1(a)) to (b,Pn,1(b)) conditioned
on not intersecting Pn,2 on [a, b].

Pn,1(·); when z is distributed according to the correct F ‐conditional distribution of Z, this re‐
construction may be thought of as the F ‐conditional distribution of Pn. We will denote the
reconstruction by Pz

n,1(·) : [−1
2n

1/3,∞) → R. It is given by the formula

Pz
n,1(x) =



Pn,1(x)
[l]for x ∈ [− 1

2n
1/3,∞)

\ [x0 + A, x0 + A+ 2],

[l](x0 + A+ 1− x)Pn,1(x0 + A)

+ (x− (x0 + A))z + P [x0+A+0,x0+A+1]
n,1 (x)

for x ∈ (x0 + A, x0 + A+ 1],

(x− (x0 + A+ 1))Pn,1(x0 + A+ 2)

+ (x0 + A+ 2− x)z + P [x0+A+1,x0+A+2]
n,1 (x)

for x ∈ [x0 + A+ 1, x0 + A+ 2);

(11.22)
while for j ≥ 2 and x ∈ R, Pz

n,j(x) = Pn,j(x). Note that Pz
n is F ‐measurable.

11.4 The Brownian Gibbs property

Here, we recall the Brownian Gibbs property ofPn, which was introduced and significantly lever‐
aged in [CH14]. It will be used in the proof of an important upcoming statement, Lemma 11.17,
on the F ‐conditional distribution of Z.
For a fixed interval [a, b] ⊆ (−1

2n
1/3,∞), define Fext to be the σ‐algebra generated by {Pn,1(x) :

x ∈ [−1
2n

1/3,∞)\ [a, b]} and {Pn,j(x) : j ∈ J2, nK, x ≥ [−1
2n

1/3,∞)}, i.e., the data of everything
external to [a, b] on the top line. The Brownian Gibbs property asserts that the Fext‐conditional
distribution of Pn,1(·) on [a, b] is that of a Brownian bridge of rate two from (a,Pn,1(a)) to
(b,Pn,1(b))which is conditioned not to intersect the second curvePn,2(·). This can be interpreted
as saying that Pn,1 can be resampled on [a, b] without changing its law by sampling a Brownian
bridge with prescribed endpoints and conditioning it to avoid the second curve: see Figure 11.4.
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(In fact, the full Brownian Gibbs property gives a similar description of the conditional distribu‐
tion even under a larger class of conditionings. For example, for k ∈ N, we may resample the
top k curves on [a, b] instead of merely the first; this amounts to a description of the conditional
distribution on [a, b] when the data of the top k curves on [a, b] is not included in Fext. However,
in this part of the thesis we will be only making use of the k = 1 case.)

Lemma 11.12. The ensemble Pn has the Brownian Gibbs property.

This statement is equivalent to the one that n‐level Dyson Brownian motion has the Brownian
Gibbs property. Though well‐known and used in previous works [CH14, DV18], we were unable
to locate a precise proof of this fact in the literature. However, it is fairly straightforward given
the fact that an ensemble of Brownian bridges with strictly ordered endpoints conditioned on
the (positive probability) event of non‐intersection has the Brownian Gibbs property, and we
will sketch the proof of Dyson Brownian motion having the Brownian Gibbs property given this
fact. That non‐intersecting Brownian bridges have the Brownian Gibbs property is very intuitive,
but was formally proved only recently, in [DM20].

Proof of Lemma 11.12. As mentioned, this follows from Pn being an affine transformation of n‐
level Dyson Brownian motion (Lemma 11.6) and the latter ensemble having the Brownian Gibbs
property. We briefly outline how to show that n‐level Dyson Brownian motion DBMn : JnK ×
[0,∞) → R has this property.

Let [a, b] ⊆ (0,∞). We first condition on the σ‐algebra generated by {DBMn,j(x) : j ∈J1, nK, x ∈ [0,∞) \ [a, b]}. The Markov property of DBMn then implies that this conditional
distribution depends on only the boundary values {DBMn,j(x) : j ∈ JnK, x ∈ {a, b}}. Then the
conditional distribution is that of n non‐intersecting Brownian bridges with the given endpoints,
as can be verified by comparing the transition probabilities of this ensemble with that of the con‐
ditioned Dyson Brownian motion (which makes use of the Karlin‐McGregor formula [KM59] for
non‐intersecting strong Markov processes). The ensemble of non‐intersecting Brownian bridges,
quite naturally, has the Brownian Gibbs property [DM20, Lemma 2.13].

11.5 An outline of the argument in the narrow‐wedge case

Before proving Proposition 11.11, we give an outline of the argument in the simpler narrow‐wedge
case, under which h0 is zero at the origin and −∞ elsewhere.

First observe from (11.15) that, for this initial condition, h(n)(x) = Sn(0, x) = Pn,1(x) for |x| ≤
n1/60. In particular, h(n) is a function of only the top line of Pn, and the same is true for x0 =
xn
0 defined earlier. The collection of curves P can be expressed in terms of non‐intersecting
Brownian motions via Lemma 11.6. We will show that, for some η (depending on A), it is with
probability at least ηε that the curve Pn,1 comes within ε of its maximum h(n)(x0) in the window
[x0 + A, x0 + A + 2]. Our first step, below, will be to identify the F ‐conditional distribution of
Z = Pn,1(x0 + A + 1). (The event h(n) ∈ TPε

A,L also imposes conditions on the location of the
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Pn,1

Pn,2

Pn,3

Pn,1(x0)

x0

A 1 1

Figure 11.5: A depiction of the resampling in the proof outline for the narrow‐wedge case. The
sigma‐algebra F contains information about all of the thick curves including the thick blue
curve, except that it forgets the location of the red circlewhose value is denoted byZ = Pn,1(x0+
A + 1). The reconstruction Pz

n,1 is given by linearly shifting the left and right blue bridges to
meet the value z of the red circle as it varies. The thin blue lines here represent two possible
reconstructions. The random variable Z is restricted by the fact that the reconstruction must
not exceed the global maximum Pn,1(x0) (here denoted by a horizontal dotted black line) and
must not intersect the second curve Pn,2. The vertical dashed red line represents the possible
range [Corner↓,Corner↑] for Z (with the upper and lower red circles corresponding to these
bounds).

maximizer and the value of the maximum, but these are more easily handled and not discussed
here.)

Step 1: The F‐conditional distribution of Z. As mentioned, x0 is defined in terms of the whole
curve Pn,1(·) and so is non‐Markovian; in particular, it is not a stopping time. But it is intuitively
plausible, based on the definition of x0 and the Brownian Gibbs property of Pn, that the distri‐
bution of Pn,1(·) on [x0, n

1/60] conditional on Pn,1(·) outside of the interval (x0, n1/60) and the
lower curves Pn,2,Pn,3, . . . is of a Brownian bridge (of rate two) between the appropriate end‐
points conditioned on (i) not intersecting the lower curve Pn,2 and (ii) not exceeding Pn,1(x0).
This intuition is correct and is carefully stated in Lemma 11.15.

This description of Pn,1 on [x0, n
1/60] makes it easy to derive the distribution of Z conditional

on F . Indeed, when we also condition on the data of Pn,1 on [x0, x0+A] and [x0+A+ 2, n1/60],
we see thatPn,1 on [x0+A, x0+A+2] has the law of Brownian bridge of rate two with endpoints
Pn,1(x0+A) and Pn,1(x0+A+2)which is conditioned to again (i) not intersect the lower curve
and (ii) not exceed Pn,1(x0). To get from this collection of conditioning data to F , we only have
to include the side bridge data P [x0+A,x0+A+1]

n,1 and P [x0+A+1,x0+A+2]
n,1 ; classical decompositions of

Brownian bridge then say that the F ‐conditional distribution of Z is that of a normal random
variable of appropriateF ‐measurablemean and unit variance, conditioned on the reconstruction
PZ

n,1(·) again satisfying (i) and (ii).
We can simplify this description ofZ. Essentially, condition (i) places a lower bound on how large
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Z can be, while (ii) places an upper bound: see Figure 11.5. To make this rigorous, we observe
that the reconstructionPz

n,1(x) is monotone in z for every x from its formula (11.22). These lower
and upper bounds are F ‐measurable random variables; they are corners of the acceptable range
of values Z can take, and we label them respectively Corner↓ and Corner↑. Thus, Z is a normal
random variable with explicitF ‐measurable mean and unit variance, conditioned on lying in the
interval [Corner↓,Corner↑].

Step 2: Finding the sweet spot for Z. It is easy to see that Corner↑ is such that, when z =
Corner↑, supx∈[x0+A,x0+A+2] Pz

n,1(x) = Pn,1(x0). With this in hand, the linear—and so certainly
Lipschitz—relationship of Pz

n,1(x) with z for every fixed x tells us that reducing z by ε from
Corner↑ reduces the value of supx∈[x0+A,x0+A+2] Pz

n,1(x) by an amount of order ε. Thus, to cause
TPε

A,L to occur, it is enough to have Z fall within a sweet spot interval Iε of length of order εwith
upper endpoint Corner↑.

Step 3: The probability of hitting the sweet spot. It remains to bound below the probability that
Z falls in Iε. To do so, we need control over two things: the F ‐measurable mean of Z, and the
value of Corner↑. (We can ignore Corner↓, i.e., take it to be−∞, as we are only aided in proving
a probability lower bound if its value is larger.) For this purpose, we consider a selection of
favourable F ‐measurable data Fav which is defined by demanding bounds on these quantities,
as well as on the location of the maximizer and the value of the maximum: see Section 11.8
ahead. We then show that Fav occurs with a probability that is uniformly positive in n. Given
control over themean andCorner↑ on a positive probability event, the form of the normal density
guarantees that the probability of Z falling in the order ε length interval is at least some constant
multiple of ε. This completes the proof outline in the narrow‐wedge case.

Complications with general initial data. The narrow‐wedge case provided a number of simplifica‐
tions, the primary being the equality of h(n) and the top line of Pn. This had two effects, both
in Step 1: we could define x0 in terms of only Pn,1(·), i.e., without the lower curves (making
it simpler to consider that process’ distribution on [x0, n

1/60]); and we could infer the existence
of a valid interval [Corner↓,Corner↑] for the F ‐conditional distribution of Z via monotonicity
properties of only Pn. Both these aspects will need modification in the general case.

Because we can perform Brownian resamplings only with Pn, we need the representation of h(n)

in terms of Pn recorded in the last equality of (11.15), which relies on the identification of LPP
values in the original and melon environments cited in Proposition 11.4. Note that h(n), and so
also x0, is now defined in terms of all the curves of Pn, not just the first. More specifically, while
in the narrow wedge case we could work with the function values of Pn,1(·), in the general case
we have to analyse last passage values through the environment given byPn. This is the underlying
complication that causes all the others in the general case.

To achieve a description of Z in terms of [Corner↓,Corner↑] in the general case, we first need a
formula for h(n),z, the reconstruction of h(n) when Z = z, in terms of Pz

n. This will be recorded
shortly in (11.23). Then we need a monotonicity statement about h(n),z(x) for fixed x that will
allow us to express the condition that z is such that supx∈[x0+A,x0+A+2] h

(n),z(x) ≤ h(n)(x0) as an
upper bound on z, just as we did with the monotonicity statement for Pz

n,1 above in simplifying
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the condition (ii). Such amonotonicity statement is actually not true for h(n),z, andwe circumvent
this difficulty by deriving one instead for the weights of individual paths (as opposed to their
supremum h(n),z) in the reconstructed environment. This is Lemma 11.13 recorded ahead. Finally,
we need to know that h(n),z(x) is Lipschitz in z for each fixed x: see Lemma 11.14 whose argument
also proceeds in a pathwise manner.

With these modifications, the proof in the general case proceeds largely along the lines of the
narrow‐wedge case outlined here. We move to giving the details next, starting with the facts
needed to handle the general case’s main complications, namely the monotonicity and Lipschitz
properties of h(n),z.

11.6 The reconstructed h(n) and its properties

Using (11.15), we provide a formula in terms of Pz
n for the reconstructed h(n), denoted h(n),z :

[−n1/60, n1/60] → R ∪ {−∞}. It is:

h(n),z(x) = sup
0≤y≤n1/60

(
h0(y) + Pz

n[(−1
2n

1/3 + y, n) → (x, 1)]− n2/3
)
. (11.23)

Since Pz
n is F ‐measurable for all z ∈ R, so is h(n),z. As we noted in the preceding section, it is

also immediate from the formula of Pz
n,1(x) that, for any x ∈ R, Pz

n,1(x) is non‐decreasing as a
function of z. The function h(n),z(x) further enjoys a monotonicity property in z that is slightly
more complicated, which we record in the next lemma.

Recall that, for an upright path γ, Pz
n[γ] is the weight of γ in the environment Pz

n. Imitating
(11.15), let

h(n),z(γ) = h0(y) + Pz[γ]− n2/3,

where y is the starting coordinate of γ on line n.

Lemma 11.13 (Monotonicity of h(n),z in z). For each upright path γ starting on line n and ending
on line 1, the process z 7→ h(n),z(γ) is non‐increasing almost surely; or constant almost surely; or
non‐decreasing almost surely. Moreover, it is an almost sure event that:

1. if −n1/60 ≤ x ≤ x0 + A, then h(n),z(x) = h(n)(x) for all z ∈ R; and
2. if x ≥ x0 + A+ 2, then h(n),z(x) is non‐increasing in z.

Proof. Let u be the coordinate at which γ jumps to the top line (i.e., line 1); and let x be its
ending coordinate. Let γu− be γ restricted to its path before coordinate u, i.e., γ’s restriction to
the lower n− 1 lines, indexed by J2, nK. Then

h(n),z(γ) = h(n),z(γu−) + Pz
n,1(x)− Pz

n,1(u)

= h(n)(γu−) + Pz
n,1(x)− Pz

n,1(u); (11.24)
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the latter equality because the environment of the lower n− 1 lines of Pz
n does not depend on z.

The claim that h(n),z(γ) is monotone and the nature of its monotonicity now follow readily by
examining the increment Pz

n,1(x)− Pz
n,1(u) from the definitions in (11.22).

Now we move to proving the two numbered claims. For (1), consider the set of paths which end
at x. We claim that, for such paths γ, h(n),z(γ) is constant in z; which implies (1). The claim
follows by noting that, if x ≤ x0 + A, then u ≤ x0 + A; and so Pz

n,1(x) − Pz
n,1(u) does not

depend on z from (11.22). This completes the claim by the decomposition (11.24).

A similar argument holds for (2). We claim that, for any path γ which ends at x, h(n),z(γ) is
non‐increasing in z. To see this, we use the same decomposition as (11.24), and observe that it
is enough to prove that Pz

n,1(x) − Pz
n,1(u) = Pn,1(x) − Pz

n,1(u) is non‐increasing in z. There
are two cases: u ∈ [x0 + A, x0 + A + 2] and u 6∈ [x0 + A, x0 + A + 2]. In the first, Pz

n,1(u) is
non‐decreasing in z; while, in the second, it is constant, as we see from (11.22). This completes
the proof of the claim and thus also of Lemma 11.13.

While a similar monotonicity statement in z as Lemma 11.13(1) and (2) holds for h(n),z(x) when
x ∈ [x0+A, x0+A+1], there is no counterpart when x ∈ [x0+A+1, x0+A+2]. In the notation
of the preceding proof, this is because, in the latter case, the type of monotonicity for the weight
of a given path ending at x depends on the value of u, the location at which the path jumps to
the top line from the second line: for a certain range of u depending on x, the weight of any path
with jump point u will be increasing in z; while, for larger u, it will be decreasing. Since h(n),z(x)
maximizes over all such paths, no monotonicity holds for this quantity. In contrast, notice from
the proof of Lemma 11.13 that, for x ∈ [−n1/60, x0 + A] or x ≥ x0 + A + 2, the weight of any
path ending at x has a single form of monotonicity for all possible u. It is in order to handle this
absence of z‐monotonicity for h(n),z(x) when x ∈ [x0 + A + 1, x0 + A + 2] that we proved the
first statement of Lemma 11.13, concerning the monotonicity of the weight of single paths.

Lemma 11.14 (sup h(n),z is Lipschitz in z). It holds almost surely that, for any z1, z2 ∈ R,∣∣∣∣∣ sup
x∈[x0+A,x0+A+2]

h(n),z1(x)− sup
x∈[x0+A,x0+A+2]

h(n),z2(x)

∣∣∣∣∣ ≤ 2|z1 − z2|.

Proof. For convenience of notation, let us define

h(z) = sup
x∈[x0+A,x0+A+2]

h(n),z(x).

The arguments that we will present hold on the probability one event Ω that, for each z ∈ R,
there exist x ∈ [x0 + A, x0 + A + 2], y ∈ [0, n1/60] and an upright path Γz,x (for which we use
the capital Greek letter to emphasise the path’s randomness) ending at x, such that

h(z) = h0(y) + Pz
n[Γ

z,x]− n2/3;

that the supremum in the definition of h is achieved uses the compactness of [x0+A, x0+A+2].
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By symmetry, it is enough to prove that h(z1)− h(z2) ≤ 2|z1 − z2|. On the event Ω, we see that,
for some y ∈ [0, n1/60], x ∈ [x0 + A, x0 + A+ 2], and upright path Γz1,x,

h(z1) = h0(y) + Pz1
n [Γz1,x]− n2/3,

h(z2) ≥ h0(y) + Pz2
n [Γz1,x]− n2/3,

and so
h(z1)− h(z2) ≤ Pz1

n [Γz1,x]− Pz2
n [Γz1,x].

Let u be the coordinate where Γz1,x jumps to the top line. Since the environments defined by Pz1
n

and Pz2
n differ only in the top line, we see that

Pz1
n [Γz1,x]− Pz2

n [Γz1,x] =
[
Pz1

n,1(x)− Pz1
n,1(u)

]
−
[
Pz2

n,1(x)− Pz2
n,1(u)

]
=
[
Pz1

n,1(x)− Pz2
n,1(x)

]
−
[
Pz1

n,1(u)− Pz2
n,1(u)

]
≤ 2|z1 − z2|.

The inequality follows from the definition of Pz
n,1 in (11.22). The equalities and the bound hold

deterministically on Ω. This completes the proof of Lemma 11.14.

11.7 TheF ‐conditional distribution ofZ

We next move towards a description of the F ‐conditional distribution of Z. First we define the
canonical filtration for the top curve, Fpast

t = σ
(
Pn,1(s) : s ∈ [−1

2n
1/3, t]

)
. We also define a

filtration that captures the future of the process by F future
t = σ (Pn,1(s) : s ≥ t). Certain addi‐

tional σ‐algebras are needed. Let Flower be the σ‐algebra generated by the lower n− 1 curves, i.e.,
Flower = σ(Pn,j(x) : x ≥ −1

2n
1/3, j ∈ J2, nK). Let Fpast

x0
be the σ‐algebra generated by all sets of

the form

Fs ∩ {x0 > s}, (11.25)

whereFs ranges over all elements ofFpast
s and s ranges over [−1

2n
1/3,∞). This σ‐algebra encodes

the information known by time x0. If x0 were a stopping time, Fpast
x0

would coincide with the
usual σ‐algebra associated with such times. Let Fpast

x0+A be defined similarly to Fpast
x0

in (11.25)
with x0 + A replacing x0. Let F future

x0+A+2 be defined as the σ‐algebra generated by all sets of the
form Fs ∩ {x0 + A + 2 < s}, where Fs ranges over all elements of F future

s and s ranges over
[−1

2n
1/3,∞).

Finally, let F ′ be generated by Flower ∪ Fpast
x0

∪ F future
n1/60

, and let F ′′ be generated by F ′ ∪ Fpast
x0+A ∪

F future
x0+A+2 (which should be thought of as equalling Flower ∪ Fpast

x0+A ∪ F future
x0+A+2, since typically

x0 + A+ 2 will be less than n1/60). Observe that F is the σ‐algebra generated by F ′′ along with
the side bridge data on [x0+A, x0+A+ 1] and [x0+A+ 1, x0+A+ 2]; i.e., P [x0+A,x0+A+1]

n,1 and

P [x0+A+1,x0+A+2]
n,1 . See (11.21) to recall the notation.
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We start by describing the F ′‐conditional distribution of Pn,1(·), which will then be used to
give the F ‐conditional distribution of Z = Pn,1(x0 + A + 1) in Lemma 11.17. To give the first
statement, and with a slight abuse of notation that, we hope, will not cause confusion with the
earlier defined Pz

n, define PB
n,1(·) : [−1

2n
1/3,∞) by

PB
n,1(x) =

{
Pn,1(x) for − 1

2n
1/3 ≤ x ≤ x0 or x ≥ n1/60

B(x) for x0 ≤ x ≤ n1/60,

whereB : [x0, n
1/60] → R is a given function withB(x0) = Pn,1(x0) andB(n1/60) = Pn,1(n

1/60);
also, let PB

n,j(x) = Pn,j(x) for j ∈ J2, nK and x in the domain. Define h(n),B (with a similar
notational abuse) to be the reconstructed h(n), given as in (11.23) by

h(n),B(x) = sup
0≤y≤n1/60

(
h0(y) + PB

n [(−1
2n

1/3 + y, n) → (x, 1)]− n2/3
)
.

Lemma 11.15. Conditionally on F ′,
{
Pn,1(x) : x ≥ −1

2n
1/3
}
has the law of PB

n,1, where B :

[x0, n
1/60] → R is Brownian bridge of rate two from (x0,Pn,1(x0)) to (n1/60,Pn,1(n

1/60)) condi‐
tioned on non‐intersection of the second curve Pn,2(·) and on supx0≤x≤n1/60 h

(n),B(x) ≤ h(n)(x0).

The proof will mainly rely on [Mil78]. This paper identifies the distribution of a homogeneous
strong Markov process X : [0,∞) → E on the unbounded interval whose left endpoint is the
maximizer of Φ(X(t)), for a given continuous function Φ : E → [−∞,∞]. Here, E is the state
space of the Markov process, a set that is supposed compact in [Mil78].

Proof of Lemma 11.15. First we recall that x0 ≥ −n1/60 by definition and soFpast
−n1/60

⊆ Fpast
x0

. Con‐
ditional on Flower, Fpast

−n1/60
and F future

n1/60
, the distribution of {Pn,1(x) : −n1/60 ≤ x ≤ n1/60} is that

of a Brownian bridge of rate two on [−n1/60, n1/60] with starting value Pn,1(−n1/60) and ending
valuePn,1(n

1/60) conditioned on non‐intersection with the second curvePn,2(·). This is the state‐
ment of the Brownian Gibbs property ofPn, Lemma 11.12. In particular, the conditioned process
is Markov (and non‐homogeneous), and, since Brownian bridge is a strong Markov process and
the conditioning event is almost surely of positive probability, the same is true of the conditioned
space‐time process. (Here we consider the space‐time process so as to have a time‐homogeneous
Markov process: see [RY13, Chapter III, exercise 1.10].)

Consider the processX : [−n1/60,∞) → [−∞,∞]2 × [−n1/60,∞] defined byX(t) := (Pn,1(t ∧
n1/60), h(n)(t∧n1/60), t); here [−∞,∞] and [−n1/60,∞] are compactifications ofR and [−n1/60,∞),
and are employed so that the state space of X is compact. We consider X to start at time
−n1/60, and to be killed at time n1/60, so that the maximizer of the second component of X
is xn

0 = argmax|x|≤n1/60 h
(n)(x). (To be precise, as earlier we will be working with the final max‐

imizer, i.e., the largest one, on the event that there are several. To see that there is such a final
maximizer for the process h(n)(t ∧ n1/60), note that there must be a final one on the interval
[−n1/60, n1/60] by continuity of h(n), and that, by Lemma 11.16 ahead, the final one is almost
surely not n1/60.)
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We claim that, conditionally on Flower, Fpast
−n1/60

and F future
n1/60

, X is a homogeneous strong Markov
process. To see this, first define the process X ′ by X ′(t) =

(
Pn,1(t ∧ n1/60), h(n)(t ∧ n1/60)

)
. It

is enough to prove that X ′ is a non‐homogeneous Markov process, as then, by the same trick as
used a few lines above, the space‐time process X(t) = (X ′(t), t) is necessarily a homogeneous
Markov process.

To show thatX ′ is Markov under this conditioning, we state a formula that expresses h(n)(t+ s)
in terms of h(n)(t) and data contained in Flower, Fpast

−n1/60
and F future

n1/60
:

h(n)(t+ s) = max
{
h(n)(t) + Pn,1(t+ s)− Pn,1(t),

sup
y

u>t

(
h0(y) + Pn[(−1

2n
1/3 + y, n) → (u, 2)] + Pn,1(t+ s)− Pn,1(u)− n2/3

)}
;

(11.26)

the supremum over y and u is taken over choices such that 0 ≤ y ≤ n1/60 and y ≤ −1
2n

1/3 + u.

This formula follows by considering the location u that the geodesic for endpoint t+ s jumps to
the top line. It is the first term that attains the maximum when u ≤ t; and it is the second that
does so when u > t. In the first case, h(n)(t+ s) is equal to h(n)(t) plus the remaining increment
on the top line as the (t+ s)‐geodesic must pass through (t, 1); this is because h(n)(t) is the value
attained by a similar maximization problem. In the second case, we have rewritten the formula
(11.15) for h(n) by decomposing the last passage value at (u, 2), which lies on the geodesic by
definition.

Observe that, since we have conditioned on the lower n−1 curves, Pn[(−1
2n

1/3+y, n) → (u, 2)]
is a deterministic function of y and u. Thus, conditional on (Pn,1(t), h

(n)(t)), Flower, Fpast
−n1/60

and
F future

n1/60
, it holds that h(n)

(
(t+ s) ∧ n1/60

)
is measurable with respect to {Pn,1(x) : t ≤ x ≤ n1/60},

which is conditionally independent ofFpast
t givenPn,1(t) by theMarkov property ofPn,1(·). This

proves that X ′ is Markov, and so X is a homogeneous Markov process. (We also used that the
canonical filtration of h(n) is contained in the filtration generated by Fpast

t and Flower.) This argu‐
ment reduced the Markov property of X ′ to that of Pn,1; the reduction also works to show that
X ′ is strong Markov since Pn,1 is strong Markov.

Since the state space of X is compact, we may apply the results of [Mil78]. Consider the pro‐
jection map Φ : [−∞,∞]2 × [−n1/60,∞] → [−∞,∞] given by (x, y, z) 7→ y. Then x0 =
xn
0 = argmaxt≥−n1/60 Φ(X(t)), the largest one if the argmax is not unique. The main theorem of
[Mil78] implies that, conditionally on Flower, Fpast

−n1/60
and F future

n1/60
, the process {X(x0+ t) : t > 0}

is conditionally independent ofFpast
x0

given the data (Pn,1(x0), h
(n)(x0), x0). Further, this process

is Markov and has the law ofX conditioned on the event that Φ(X(t)) ≤ Φ(X(x0)) for all t.

By projecting to the first coordinate of X, we see that this statement is equivalent to {Pn,1(x) :
x ≥ −1

2n
1/3} having the distribution of PB

n , where B : [x0, n
1/60] → R is a Brownian bridge of

rate two from (x0,Pn,1(x0)) to (n1/60,Pn,1(n
1/60)) conditioned on (i)B(·) > Pn,2(·) on [x0, n1/60]

and (ii) supx0≤x≤n1/60 h
(n),B(x) ≤ h(n)(x0). We get an equivalent condition on projecting because
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the second component of X is determined by the first along with the lower curve data. This
completes the proof of Lemma 11.15.

The following lemma was used in the proof of Lemma 11.15 and establishes that the distribution
of the maximizer of h(n)(·) has no atoms.

Lemma 11.16. Fix z with −n1/60 < z ≤ n1/60. Almost surely, h(n)(z) 6= sup|x|≤n1/60 h
(n)(x).

Proof. We use the formula (11.15) for h(n)(z) in terms of a last passage problem through Pn. It is
a consequence of Lemma 11.12 that Pn,j(·) − Pn,j(z − 1) is absolutely continuous with respect
to Brownian motion of rate two on [z − 1, z + 1] for each j ∈ JnK (see for example [CH14,
Proposition 4.1]). Thus we have with probability one that z is not a local maximizer of Pn,j for
any j ∈ JnK, which is the event we work on now. Let Γ be the geodesic associated to h(n)(z)
implicit in (11.15) and let J ∈ JnK be the index of the line that Γ visits at time z− (if J > 1, this
means that the geodesic jumps to line 1 at location z, and so the top line’s values do not contribute
to the last passage value). Let z̃ belong to the interval of time that Γ spends on line J and be such
thatPn,J(z̃) > Pn,J(z). Nowwe can consider amodification ofΓ that has endpoint (z̃, 1), which
it jumps to from (z̃, J); this implies that z is not a maximizer of h(n)(·) since h(n)(z̃) > h(n)(z)
and |z̃| ≤ n1/60.

With these preliminaries, we now state what the F ‐conditional distribution of Z is; recall that
Z = Pn,1(x0 + A+ 1).

Lemma 11.17. There exist F‐measurable random variables Corner↓ and Corner↑ such that the
following holds. Conditionally on F , and on the F‐measurable event that x0 + A+ 2 ≤ n1/60, the
distribution of Z is a normal random variable with mean 1

2(Pn,1(x0 +A) +Pn,1(x0 +A+ 2)) and
variance one, conditional on lying inside [Corner↓,Corner↑]. Further, when z = Corner↑,

sup
x∈[x0+A,x0+A+2]

h(n),z(x) = h(n)(x0). (11.27)

In the discussion of the narrow‐wedge case, the Corner↑ and Corner↓ random variables had a
clear interpretation respectively as the largest value of Z such that the reconstruction PZ

n,1 at
no point exceeds Pn,1(x0) and the smallest value of Z such that the reconstruction at no point
intersectsPn,2; each variable handled one condition. For general initial conditions, these random
variables play analogous but slightly different roles. In particular, they are respectively the largest
and smallest values of Z such that h(n),Z at no point exceeds h(n)(x0) and PZ

n,1 does not intersect
Pn,2. However, it may not be the case that each variable separately handles one of the conditions:
because of a larger class of possible geodesic paths, Corner↓ may also play a role in preventing
h(n),Z from exceeding h(n)(x0), unlike in the narrow‐wedge case. This will be seen in Corner↓’s
definition in the proof, to which we turn now.
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Proof of Lemma 11.17. From Lemma 11.15, we know that the process {Pn,1(x) : x0 ≤ x ≤ n1/60},
conditionally on F ′, has the law of Brownian bridge of rate two with appropriate endpoints
conditioned on not intersecting Pn,2 and on supx0≤x≤n1/60 h

(n)(x) ≤ h(n)(x0). Let Val (short for
“valid”) be this conditioning event, i.e.,

Val :=
{
Pn,1(x) > Pn,2(x) ∀x ∈ [x0, n

1/60]
}
∩

{
sup

x0≤x≤n1/60
h(n)(x) ≤ h(n)(x0)

}
. (11.28)

Recall that F ′′ is generated by F ′ and the additional data of Pn,1(·) on [x0, x0 + A] ∪ [x0 + A +
2, n1/60]. Note that the σ‐algebraF is generated byF ′′ along with the additional side bridge data,
i.e., P [x0+A,x0+A+1]

n,1 and P [x0+A+1,x0+A+2]
n,1 .

Recall the following decomposition of a Brownian bridge B of arbitrary endpoints and rate σ2

on an interval [a, b], with c ∈ [a, b]: conditionally on B(a), B(b), and the side bridges B[a,c] and
B[c,b], the distribution ofB(c) is that of a normal random variable with mean b−c

b−a
B(a)+ c−a

b−a
B(b)

and variance σ2 (c−a)(b−c)
b−a

. This is because such a Brownian bridge can be decomposed into three
independent parts: the side bridges B[a,c] and B[c,b] (both of which have the Brownian bridge
law) and the value of B(c) (which is normally distributed as specified).

This decomposition implies the following. By conditioning Pn,1(·) on the side bridge data in
addition to F ′′, and on the F ‐measurable event that x0 + A + 2 ≤ n1/60, the F ‐conditional
distribution of Z = Pn,1(x0+A+1) is that of a normal random variable with mean 1

2(Pn,1(x0+
A)+Pn,1(x0+A+ 2)) and variance one (as the Brownian bridge is of rate two), conditioned on
Val occurring.
We claim that there exist F ‐measurable random variables Corner↓ and Corner↑ such that the
occurrence of Val is equivalent to Z lying in [Corner↓,Corner↑].

We start by focusing on the second event on the right‐hand side of (11.28). Consider a fixed
upright path γ, and recall the definition of h(n),z(γ) from (11.23). The second event is equivalent
to the event that Z is such that h(n),Z(γ) ≤ h(n)(x0) for each upright path γ with endpoint lying
in [x0, n

1/60]. Now recall that, by Lemma 11.13, with probability one, h(n),z(γ) is monotone (i.e.,
non‐increasing, non‐decreasing, or constant) in z. Thus the condition that h(n),z(γ) ≤ h(n)(x0)
yields, for each such upright path γ, a condition that z lies in an interval Iγ of the form (−∞,∞),
(−∞, r↑γ), or (r

↓
γ,∞) for some real number r↑γ or r

↓
γ; which form of interval applies depends on

the nature of the monotonicity of h(n),z(γ). Note that r↑γ and r↓γ are F ‐measurable.
To satisfy the second event in the intersection definingVal in (11.28),Z must lie in the intersection
of all of the Iγ as γ varies over the set of upright paths with endpoint in [x0, n

1/60]. To satisfy
the first event in (11.28), we must also ensure that the value of Z gives non‐intersection of Pz

n,1(·)
with Pn,2(·). Recall from the definition (11.22) of Pz

n,1 thatPz
n,1(x) is non‐decreasing in z for all x.

Since thePn curves are also ordered, it follows that satisfying the first event in the definition ofVal
is equivalent to Z lying in an infinite ray Ilower = (rlower,∞). Further, rlower is an F ‐measurable
random variable.
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The idea now is to consider the intersection of Ilower and the intervals Iγ corresponding to all
paths γ with endpoint in [x0, n

1/60]. So, let

I = Ilower ∩
⋂
γ

Iγ.

Since we need I to beF ‐measurable, we take the big intersection over only a countable collection
of upright paths γ. More precisely, the intersection is taken over the set of upright paths γ which
have start point and endpoint lying inQ (with the endpoint in [x0, n1/60]) and all of whose jump
times from one line to the next occur at values in Q. The continuity of the curves of Pn implies
that this countable dense intersection is sufficient to ensure that Z ∈ I implies the satisfaction
of Val.
In principle, I may be the empty set. But it is not: by the definition of x0 and I, and since the
curves of Pn obey the non‐intersection condition, the value Pn,1(x0 + A + 1) almost surely lies
in I.

We define Corner↓ = inf I and Corner↑ = sup I, which are clearly F ‐measurable. We note the
characterization of Corner↑ as the largest value of Z which satisfies the second event of Val, i.e.,
that supx0≤x≤n1/60 h

(n),z(x) ≤ h(n)(x0).

We are left with proving the last assertion (11.27). Note that it is immediate from the defini‐
tion of I that, when Z = Corner↑, there exists some x′ 6= x0 such that h(n),z(x) = h(n)(x0).
We claim that at least one such x′ must lie in [x0 + A, x0 + A + 2]. Suppose to the contrary
that supx∈[x0+A,x0+A+2] h

(n),z(x) < h(n)(x0). Consider h(n),Z+ε for small ε > 0. We see from
Lemma 11.13 that h(n),Z+ε(x) ≤ h(n),Z(x) ≤ h(n)(x0) for all x 6∈ [x0 + A, x0 + A + 2]. But for
all small enough ε, we would still have supx∈[x0+A,x0+A+2] h

(n),Z+ε(x) < h(n)(x0) by Lemma 11.14,
contradicting the definition of I via the characterization of Corner↑ noted in the previous para‐
graph. This completes the proof of Lemma 11.17.

11.8 Positive probability favourable data

We next define aF ‐measurable favourable event FavK,L, which we will show holds with positive
probability. Recall that we are proving Proposition 11.11, which asserts a lower bound on the
probability of the twin peaks’ event. The argument for this proposition will rely on resampling
some randomness, namely Z = Pn,1(x0 + A + 1), conditionally on the data in F . The role of
the favourable event is to specify a class of goodF ‐measurable data under which the resampling
can be analysed more easily.

We again adopt the shorthand of x0 for xn
0 , and let µ := 1

2

(
Pn,1(x0 +A) +Pn,1(x0 +A+ 2)

)
be

the F ‐measurable mean of the normal random variable in the description of Z’s F ‐conditional
distribution from Lemma 11.17. We set

FavK,L = F1 ∩ F2 ∩ F′
3 ∩ F′

4,
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where

F1 =
{
Corner↑ ≤ 4K

}
, F2 =

{
µ ∈ [−K,K]

}
,

F′
3 =

{
|h(n)(x0)| ≤ L1/2

}
, F′

4 =
{
|x0| ≤ L− A− 2

}
,

(we will shortly define F3 and F4 to be modified versions of F′
3 and F′

4 which will be more conve‐
nient to work with).

Let us now say a few words on the form of FavK,L and the proof idea of Proposition 11.11. From
Lemma 11.17, we see that, when Z = Corner↑, we have that supx∈[x0+A,x0+A+2] h

(n)(x) = h(n)(x0).
Also, we see fromLemma11.14 that reducingZ’s value from this level affects supx∈[x0+A,x0+A+2] h

(n)(x)

in a Lipschitz manner. Thus the event in Proposition 11.11 occurs ifZ is within order ε of Corner↑.

We know from Lemma 11.17 that, conditionally on F , Z is distributed as a normal random vari‐
able with mean µ and variance one conditioned on lying inside [Corner↓,Corner↑]. Thus to get a
good lower bound on the event thatZ is close to Corner↑, it is enough to know that, with positive
probability, the mean of Z is not too extreme and that the upper limit Corner↑ is not too high.
These are the first two events in the intersection defining FavK,L, and the mentioned positive
probability lower bound is the content of the next lemma. The third event handles the first extra
condition in the definition ofTPε

A,L (11.3) on the value of h
(n)’s maximum, while the final event in

FavK,L’s intersection is imposed merely to ensure the second extra condition in (11.3), that twin
peaks occurs in the interval [−L,L].

Lemma 11.18. Let h0 : R → R ∪ {−∞} satisfy Assumption 11.1 and consider A > 0. There exist
K and L0 (both depending on γ, θ, and A) such that, for all L > L0, there exists n0 (depending on
γ, θ, and L) so that, for all n > n0,

P(FavK,L) ≥
1
2
.

Further,K and L0 may be made to depend on γ, θ and A in a continuous manner.

Proof. We start by specifying some further good events. Let y0 ∈ [−θ, θ] be some fixed real
number such that h0(y0) ≥ −2θ. ForM > 0 to be specified later, define

F3 =
{
|h(n)(x0)| ≤ K

}
, F4 =

{
|x0| ≤ M

}
,

F5 =
{
Sn(y0,−M) ≥ −K/2

}
, F6 =

{
Pn,1(−M) ≤ K/2

}
.

Note that FavK,L ⊇ F1 ∩ F2 ∩ F3 ∩ F4 when L ≥ M + A + 2 and L1/2 ≥ K. We set L0 high
enough that both conditions on L are met whenever L ≥ L0 (whenK andM are set, which will
be done in a way not depending on L).

We will show that P
(
FavcK,L

)
≤ 1

2 for large enoughK and L by showing the stronger statement
that, for δ = 1/10 and appropriate choices ofK, L, andM , we have

P

(
6⋃

i=1

Fc
i

)
≤ 5δ =

1
2
.
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Bounding P(Fc
4): This is a simple application of Lemma 11.10, which yields M = M(γ, θ) such

that P(Fc
4) ≤ δ = 1

10 for n ≥ n0 = n0(γ, θ). We fix the value ofM obtained here for the rest of
the proof.

Bounding P(Fc
2 ∩ F4): On the event F4 we have |x0| ≤ M . Also, for large enough K depending

only on δ = 1/10, A, andM ,

P
(

inf
|x|≤M+A+2

Pn,1(x) < −K

)
≤ δ/2 and P

(
sup

|x|≤M+A+2
Pn,1(x) > K

)
≤ δ/2;

this is implied by Proposition 11.9 after recalling from (11.12) that Pn,1(x) = Sn(0, x). Thus
P(Fc

2 ∩ F4) is at most δ, since µ = 1
2(Pn,1(x0 + A) + Pn,1(x0 + A + 2)) is bounded above and

below on F4 by supx∈[−M−A−2,M+A+2] Pn,1(x) and infx∈[−M−A−2,M+A+2] Pn,1(x).

Bounding P(Fc
5) and P(Fc

6): These correspond respectively to lower and upper tails on one‐point
last passage values, i.e., on Sn(y, x) for fixed y and x, because Pn,1(−M) = Sn(0,−M) in view
of (11.12). Thus, we obtain P(Fc

5) ≤ δ and P(Fc
6) ≤ δ by applying Proposition 11.9 in a closed

interval of unit length around the starting and ending points and by setting K high enough,
depending on θ.

Bounding P(Fc
3 ∩ F4 ∩ F5): We first bound the probability that h(n)(x0) ≥ K on F4. Recall that,

by assumption, h0(y) ≤ −γy2 for all y ∈ R. Note that, on F4, h(n)(x0) = sup|x|≤M h(n)(x). Thus,

sup
|x|≤M

h(n)(x) = sup
|x|≤M

0≤y≤n1/60

(
h0(y) + Sn(y, x)

)
≤ sup

|x|≤M

0≤y≤n1/60

(
Sn(y, x)− γy2

)
.

By a union bound, we can bound P
(
sup|x|≤M h(n)(x) > K

)
above by

⌈n1/60⌉∑
j=0

P

(
sup
|x|≤M

y∈[j,j+1]

(
Sn(y, x)− γy2

)
> K

)
≤

⌈n1/60⌉∑
j=0

P

(
sup
|x|≤M

y∈[j,j+1]

Sn(y, x) > K + γj2

)

≤
⌈n1/60⌉∑
j=0

Cmax(M 2, j2) exp
(
−c(K3/2 + j3)

)
,

the final inequality by an application of Proposition 11.9. The final expression can be made less
than δ = 1

10 by raising K appropriately (depending onM and γ) if needed. Doing so, we learn
that P({h(n)(x0) ≥ K} ∩ F4) ≤ δ.

Next we bound the probability that h(n)(x0) ≤ −K on F5. Recall that y0 ∈ [−θ, θ] is such that
h0(y0) ≥ −2θ, and increase K if needed so that h0(y0) ≥ −K/3. Since x0 is the maximizer of
h(n), and (11.15) holds, we see that

h(n)(x0) ≥ h0(y0) + Sn(y0,−M) ≥ −5K/6 > −K,
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the last inequality holding on F5. Thus P({h(n)(x0) ≤ −K} ∩ F5) = 0. Overall we have shown
that P(Fc

3 ∩ F4 ∩ F5) ≤ δ.

Bounding P(Fc
1 ∩ F3 ∩ F4 ∩ F5 ∩ F6): Recall that we have set y0 and K such that h0(y0) ≥

−K/3 > −K. Observe that Corner↑ > 4K implies that there is a value of z in [4K,∞) such that
h(n)(x0) = supx∈[x0+A,x0+A+2] h

(n),z(x) by Lemma 11.17. But we will now show that if z ≥ 4K,

then, on the event
⋂6

i=3 Fi, we have that h(n),z(x0 + A + 1) > h(n)(x0); this is a contradiction
and so the probability we are bounding must be zero. We use the formula for h(n),z from (11.23),
and the formula (11.14) relating Sn and LPP values through Pn. Indeed, if z ≥ 4K and the event⋂6

i=3 Fi holds, then

h(n),z(x0 + A+ 1) = sup
0≤y≤n1/60

(
h0(y) + Pz

n[(−1
2n

1/3 + y, n) → (x0 + A+ 1, 1)]− n2/3
)

≥ −K +
(
Pz

n[(−1
2n

1/3 + y0, n) → (−M, 1)]− n2/3
)

+ Pz
n[(−M, 1) → (x0 + A+ 1, 1)]

= −K + Sn(y0,−M) + z − Pn,1(−M)

≥ 3K + Sn(y0,−M)− Pn,1(−M) ≥ 2K.

The first inequality bounded the supremum by the choice of y = y0 and used our assumption
that h0(y0) > −K; the penultimate inequality used the assumption that z ≥ 4K; and the final
inequality used the bounds that hold on F5 ∩ F6. The conclusion h(n),z(x0 + A + 1) ≥ 2K
contradicts h(n)(x0) ≤ K, which holds on F4, since, on this event, x0+A+ 1 ∈ [−M,M ]. Thus
the probability we are bounding is zero.

Overall we have shown that P
(⋃6

i=1 Fc
i

)
≤ 5δ = 1/2. It may be easily checked that the set‐

ting of K and L0 can be made to depend on γ, θ, and A continuously, completing the proof of
Lemma 11.18.

11.9 Performing the resampling: the proof of Proposition 11.11

In this proof, we will need amonotonicity property of conditional probabilities of the normal dis‐
tribution. The proof is a straightforward calculation that we omit here, but details are available
in [CHH19, Lemma 5.15].

Lemma 11.19. Fix r > 0, m ∈ R, and σ2 > 0, and let X be distributed as N(m,σ2). Then the
quantity P(X ≥ s− r | X ≤ s) is a strictly decreasing function of s ∈ R.

Proof of Proposition 11.11. We fix K and L0 as given by Lemma 11.18. For any given L > L0, we
have that P(FavK,L) ≥ 1/2.

Recall x0 = xn
0 = argmax|x|≤n1/60 h

(n)(x). We have that

P

(
sup

x∈[x0+A,x0+A+2]
h(n)(x) > h(n)(x0)− ε; |h(n)(x0)| ≤ L1/2; |x0| ≤ L− A− 2

)
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= E

[
P

(
sup

x∈[x0+A,x0+A+2]
h(n)(x) > h(n)(x0)− ε

∣∣∣∣ F
)
1|h(n)(x0)|≤L1/2 |x0|≤L−A−2

]
.

We have to bound below the inner conditional probability. Set Fav = FavK,L for notational
convenience. Recall that the occurrence of Fav implies that |x0| ≤ L−A−2 and |h(n)(x0)| ≤ L1/2.
We claim that, on Fav, the event of the inner conditional probability is implied by

Z := Pn,1(x0 + A+ 1) ∈
[
Corner↓ ∨ (Corner↑ − ε/2), Corner↑

]
=: Iε. (11.29)

The validity of the claim follows from two facts. The first is that supx∈[x0+A,x0+A+2] h
(n),z(x) =

h(n)(x0) when z = Corner↑ (from Lemma 11.17); and the second is that, almost surely for all

z ∈ R,
∣∣∣supx∈[x0+A,x0+A+2] h

(n),z1(x)− supx∈[x0+A,x0+A+2] h
(n),z2(x)

∣∣∣ is at most 2|z1 − z2| (from
Lemma 11.14). We apply this to z1 = Corner↑ and z2 ∈ Iε.

With this preparation, we see that

P

(
sup

x∈[x0+A,x0+A+2]
h(n)(x) > h(n)(x0)− ε

∣∣∣∣ F
)
1|h(n)(x0)|≤L1/2, |x0|≤L−A−2

≥ P

(
sup

x∈[x0+A,x0+A+2]
h(n)(x) > h(n)(x0)− ε

∣∣∣∣ F
)

· 1Fav

≥ P
(
Z ∈ Iε

∣∣ F) · 1Fav. (11.30)

Recall now from Lemma 11.17 that Z is distributed as a normal random variable with mean µ =
1
2(Pn,1(x0+A)+Pn,1(x0+A+2)) and variance one, conditioned on lying inside [Corner↓,Corner↑].
Observe from (11.29) that Iε is one of two intervals: [Corner↓,Corner↑] or [Corner↑−ε/2,Corner↑].
In the first case, the conditional probability in (11.30) equals one. We show now that, in the sec‐
ond case, the conditional probability is bounded below by ηε for some constant η > 0.

We let N be a standard normal random variable with mean zero and variance one. Then, on
the event Fav ∩ {Corner↓ < Corner↑ − ε/2}, we have that |µ| ≤ K and Corner↑ ≤ 4K, which
implies that, on the same event,

P
(
Z ∈ Iε

∣∣ F) = P
(
N + µ ∈ [Corner↑ − ε/2,Corner↑]

∣∣∣ N + µ ∈ [Corner↓,Corner↑],F
)

=
P
(
N + µ ∈ [Corner↑ − ε/2,Corner↑]

∣∣∣ F)
P
(
N + µ ∈ [Corner↓,Corner↑]

∣∣∣ F)
≥ P

(
N + µ ≥ Corner↑ − ε/2

∣∣∣ N + µ ≤ Corner↑,F
)

≥ P
(
N + µ ≥ 4K − ε/2

∣∣∣ N + µ ≤ 4K,F
)

≥ P
(
N + µ ∈ [4K − ε/2, 4K]

∣∣ F).
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For the first equality, we interpret P(Z ∈ · | F) as a regular conditional distribution, which
exists as Z takes values in R (see [Kal02, Theorem 6.3]); conditioning on an event E is then
understood by the usual equality of conditional probability with a ratio of probabilities, i.e., P(· |
E,F) = P(· ∩ E | F)/P(E | F). Then the first equality follows from the characterization
of Z’s law recalled above after (11.30). The second equality can be seen by noting that we are
working on the event that Corner↓ < Corner↑ − ε/2, and some simple manipulations of the
probabilities in the ratio gives the third line, i.e., the first inequality. The penultimate inequality
used the monotonicity property of normal random variables recorded in Lemma 11.19 and that
Corner↑ ≤ 4K on Fav. Now the form of the normal density gives that the final expression is
bounded below by ηε · 1Fav for some η > 0 depending only on K, since |µ| ≤ K; further, this
dependence is clearly continuous inK.

Substituting into (11.30) this bound, as well as the earlier bound of one in the case that Corner↓ ≥
Corner↑ − ε/2, gives that

P

(
sup

x∈[x0+A,x0+A+2]
h(n)(x) > h(n)(x0)− ε; |h(n)(x0)| ≤ L; |x0| ≤ L− A− 2

)
≥ ηε · P

(
FavK,L

)
≥ 1
2
ηε,

in view of K and L being such that P(FavK,L) ≥ 1/2. Relabelling η completes the proof of
Proposition 11.11.
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Appendix A

Proofs of basic bootstrapping tools

In this appendix we explain how to obtain the first, second, and fourth tools of Section 7.6, i.e.,
Theorem 7.14 and Propositions 7.15 and 7.17, and provide the outstanding proofs of Lemmas 9.5,
9.10, and 9.7 from the main text. The third tool was already explained in Section 9.3.

The proofs of the first and fourth tools follow verbatim from corresponding results in [BGHH20]
by replacing the upper and lower tails used there with Assumption 3; the parabolic curvature
assumption there is provided by our Assumption 2. In particular, Theorem 7.14 follows from
[BGHH20, Theorem 3.3] and Proposition 7.17 from [BGHH20, Proposition 3.7].

The proof of the second tool, Proposition 7.15, will be addressed in Section A, after we next
provide the outstanding proofs of Lemmas 9.5, 9.10, and 9.7 from the main text.

We start with the proofs of Lemmas 9.5 and 9.10 on an upper tail bound of the interval‐to‐interval
weight; this largely follows the proof of [BGHH20, Proposition 3.5]. The strategy is to back up
from the intervals appropriately and consider a point‐to‐point weight for which we have tail
bounds by hypothesis; this strategy was illustrated in Figure 9.2 and in the proof of Lemma 9.9.

Proofs of Lemmas 9.5 and 9.10. We prove Lemma 9.5 and indicate at the end the modifications
for Lemma 9.10. We set λ = λj and λ′ = λj+1 to avoid confusion later when we describe the
modifications for Lemma 9.10. Note that λ′ < λ.

By considering the event that Z is large and two events defined in terms of the environment
outside of U , we find a point‐to‐point path which has large length. To define these events, first
define points ϕlow and ϕup on either side of the lower and upper intervals as follows, where δ =
1
2

(
λ
λ′ − 1

)
> 0:

ϕlow := (−δr,−δr)

ϕup := ((1+ δ)r − w, (1+ δ)r + w) .

Let u∗ and v∗ be the points on A and B where the suprema in the definition of Z are attained,
and let the events Elow and Eup be defined as

Elow =

{
Xϕlow,u∗−(1,0) > µδr − t

3
r1/3
}

and Eup =

{
Xv∗+(1,0),ϕup > µδr − t

3
r1/3
}
.
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Let r̃ = λ
λ′ r = (1+ 2δ)r, and observe that the diagonal distance of ϕlow and ϕup is r̃. Also note

Xϕlow,ϕup ≥ Xϕlow,u∗−(1,0) + Z +Xv∗+(1,0),ϕup .

Then we have the following:

P
(
Z > µr − λ′Gw2

r
+ tr1/3, Elow, Eup

)
≤ P

(
Xϕlow,ϕup ≥ µ(1+ 2δ)r − λ′Gw2

r
+

t

3
r1/3
)
(A.1)

= P

(
Xϕlow,ϕup ≥ µr̃ − λ

Gw2

r̃
+

t

3
·
(
λ′

λ

)1/3

· (r̃)1/3
)

≤

{
exp(−c̃tβ) t0 < t < rζ

exp(−c̃tα) t ≥ rζ .

The final inequality uses the hypothesis (9.1) on the point‐to‐point tail, which is applicable since
the antidiagonal separation of ϕlow and ϕup is w while the diagonal separation is (1 + 2δ)r, and
clearly |w| ≤ r5/6 implies |w| ≤ (1 + 2δ)5/6r5/6. We applied (9.1) with θ = t(λ′/λ)1/3/3, which
is required to be greater than θ0. This translates to t ≥ t0 for a t0 depending on θ0 and λ′/λ.
Similarly, we absorbed the λ′/λ dependency in the tail into the value of c̃, which thus depends
on the original tail coefficient c in (9.1) and λ′/λ.

Let us denote conditioning on the environment U by the notation P( · | U). By this we mean we
condition on the weights of vertices interior to U as well as those on the lower side A, but not
those on the upper side B. Then we see

P
(
Z > µr − λ′Gw2

r
+ tr1/3, Elow, Eup | U

)
= P

(
Z > µr − λ′Gw2

r
+ tr1/3 | U

)
· P (Elow | U) · P

(
Eup | U

)
.

So with (A.1), all we need is a lower bound on P (Elow | U) and P
(
Eup | U

)
. This is straightfor‐

ward using independence of the environment below and above U from U :

P (Ec
lower | U) ≤ sup

u∈A
P
(
Xϕlow,u ≤ µδr − t

3
r1/3
)

≤ 1
2

(A.2)

for large enough t (independent of δ) and r (depending on δ), using Assumption 3b. A similar
upper bound holds for P

(
Ec
upper | U

)
. Together this gives

P
(
Z > µr − λ′Gw2

r
+ tr1/3, Elow, Eup | U

)
≥ 1
4
· P
(
Z > µr − λ′Gw2

r
+ tr1/3

)
,
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and taking expectation on both sides, combined with (A.1), gives Lemma 9.5. The fact that λ′/λ
depends only on j and the previously mentioned dependencies gives the claimed dependencies
of t̃0, r̃0, and c̃.

To prove Lemma 9.10, we take δ = 1, which is equivalent to λ′ = λ/3. Then in (A.1) the final
bound is done with the hypothesized bound onXϕlow,ϕup , i.e.,

P
(
Xϕlow,ϕup > µr̃ − λ

Gw2

r̃
+ tr1/3

)
≤ exp(−c̃tα).

Applying this bound requires |w| ≤ r̃/2. Since |w| ≤ r and r̃ = λr/λ′ = 3r, this is valid.

Next we prove Lemma 9.7, on a constant probability lower bound on the lower tail, based on
Assumptions 2 and 3b.

Proof of Lemma 9.7. Let X̃z
r = Xz

r − µr + Gz2/r. We know from Assumption 2 that E[X̃z
r ] ≤

−g2r
1/3. Let E be the event

E = E(θ) =

{
Xz

r < µr − Gz2

r
− θr1/3

}
,

so that P(E) ≤ exp(−cθα) for θ > θ0, by Assumption 3b.

Observe that −X̃z
r1E is a positive random variable and so, by Assumption 3b,

E[−X̃z
r1E] = r1/3

∫ ∞

0
P
(
X̃z

r1E < −tr1/3
)
dt

= r1/3
[
θ · P

(
Xz

r < µr − Gz2

r
− θr1/3

)
+

∫ ∞

θ

P
(
Xz

r < µr − Gz2

r
− tr1/3

)
dt
]

≤ r1/3
[
θ exp(−cθα) +

∫ ∞

θ

exp(−ctα) dt
]
;

this may be made smaller than 0.5g2r1/3 by taking θ large enough. We now set θ to such a value.

We also have E[X̃z
r ] = E[X̃z

r (1E + 1Ec)]. Combining this, the above lower bound on E[X̃z
r1E],

and the upper bound on E[Xz
r ], gives that

E[X̃z
r1Ec ] ≤ −1

2
g2r

1/3. (A.3)

The fact that X̃z
r1

c
E is supported on [−θr1/3,∞) implies that

P
(
Xz

r1Ec < µr − Gz2

r
− 1
4
g2r

1/3

)
≥ g2
4θ

; (A.4)

this follows from (A.3) and since

E[X̃z
r1

c
E] ≥ −θ · P

(
X̃z

r1
c
E < −1

4
g2r

1/3

)
− 1
4
g2r

1/3P
(
X̃z

r1
c
E ≥ −1

4
g2r

1/3

)
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≥ −θ · P
(
X̃z

r1
c
E < −1

4
g2r

1/3

)
− 1
4
g2r

1/3.

Since X̃z
r1E < 0, it follows that X̃z

r ≤ X̃z
r1Ec , so (A.4) gives a lower bound on the lower tail of

Xz
r , as desired, with C = 1

4g2 and δ = g2/4θ.

Proof of transversal fluctuation bound, Proposition 7.15

In this section we prove Proposition 7.15 on the tail (with exponent 2α) of the transversal fluctua‐
tion of the geodesic path on scale r2/3; we closely follow the proof of Theorem 11.1 of the preprint
[BSS14], but adapted to our setting and assumptions. We give the argument for the left‐most
geodesic Γz

r from (1, 1) to (r − z, r + z); the argument is symmetric for the right‐most geodesic.
(Note that these are well‐defined by the planarity and the weight‐maximizing properties of all
geodesics).

We start with a similar bound at the midpoint of the geodesic, which needs some notation. For
x ∈ J1, rK, let Γz

r(x) be the unique point y such that (x− y, x+ y) ∈ Γz
r.

Proposition A.1. Under Assumption 2 and 3, there exist c = c(α) > 0, r0, and s0 such that, for
r > r0, s > s0, and |z| ≤ r5/6,

P
(
|Γz

r(r/2)| > z/2+ sr2/3
)
≤ 2 exp(−cs2α).

To prove this we will need a bound on the maximum, Z̃, of fluctuations of the point‐to‐point
weight as the endpoint varies over an interval, i.e.,

Z̃ = sup
v∈Lup

(
Xv − E[Xv]

)
,

where Lup is the interval of width 2r2/3 around (r − w, r + w). Note that this is not the same as
the point‐to‐interval weight.

Lemma A.2. Let K > 0 and |w| ≤ Kr5/6. Under Assumptions 2 and 3, there exist c > 0,
θ0 = θ0(K), and r0, such that, for θ > θ0 and r > r0,

P
(
Z̃ > θr1/3

)
≤ exp(−cθα).

Proof. The proof is very similar to that of Lemma 9.5 above.

We take ϕup = (2(r − w), 2(r + w)) to be the backed up point. Let v∗ ∈ Lup be the maximizing
point in the definition of Z̃. For clarity, define the lower and upper mean weight functionsMlow

andMup byMlow(v) = E[Xv] andMup(v) = E[Xv,ϕup ]; this is to use the unambiguous notation
Mlow(v

∗) (which is a function of v∗) instead of E[Xv∗ ]. We also define

Eup =

{
Xv∗+(1,0),ϕup −Mup(v

∗ + (1, 0)) > −θ

2
r1/3
}
.
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Now observe that

Xv∗ −Mlow(v
∗) +Xv∗+(1,0),ϕup −Mup(v

∗ + (1, 0))

≤ Xϕup − inf
v∈Lup

(
Mlow(v) +Mup(v + (1, 0))

)
. (A.5)

We want to replace the infimum on the right hand side by E[Xϕup ]. The latter is at most 2µr −
2Gw2/r. We need to show that the infimum term is at least something which is within O(r1/3)
of this expression. For this we do the following calculation using Assumption 2. Parametrize
v ∈ Lup as (r − w − tr2/3, r + w + tr2/3) for t ∈ [−1, 1]. Then, for all t ∈ [−1, 1],

Mlow(v) +Mup(v + (1, 0)) ≥
[
µr − G(w + tr2/3)2

r
−H

(w + tr2/3)4

r3

]
+

[
µr − G(w − tr2/3)2

r
−H

(w − tr2/3)4

r3

]
≥ 2µr − 2Gw2

r
− 2Gt2r1/3 − 32HK4r1/3,

the last inequality since |w ± tr2/3| ≤ 2Kr5/6. Since t ∈ [−1, 1], 2Gt2r1/3 ≤ 2Gr1/3, and so the
right hand side of (A.5) is at most Xϕup − E[Xϕup ] +

θ
4r

1/3 for all large enough θ (depending on
K). Thus, recalling the definition of Eup,

P
(
Z̃ > θr1/3, Eup

)
≤ P

(
Xϕup − E[Xϕup ] >

θ

4
r1/3)

)
≤ exp(−cθα).

We now claim that Eup has probability at least 1/2; since Eup is independent of Z̃, this will
imply that P(Z̃ > θr1/3) ≤ 2 exp(−cθα). The proof of the claim is straightforward using the
independence of u∗ with the environment above Lup and Assumption 3b, for

P
(
Ec
up

)
≤ sup

v∈Lup
P
(
Xv+(1,0) −Mup(v + (1, 0)) ≤ −θ

2
r1/3
)

≤ 1/2,

for all θ larger than an absolute constant.

Proof of Proposition A.1. We will prove the bound for the event that Γz
r(r/2) > z/2 + sr2/3, as

the event that it is less than −z/2− sr2/3 is symmetric.

For j ∈ J0, r1/3K, let Ij be the interval(r
2
− z

2
− sr2/3,

r

2
+

z

2
+ sr2/3

)
− [j, j + 1] · (r2/3,−r2/3).

Let Aj be the event that Γz
r passes through Ij, for j ∈ J0, r1/3K. Observe that

{
Γz
r(r/2) > z/2+ sr2/3

}
⊆

r1/3⋃
j=0

Aj. (A.6)
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We claim that P(Aj) ≤ exp(−c(s + j)2α) for each such j; this will imply Proposition A.1 by a
union bound which we perform at the end.

Let Z(1)
j = X(1,1),Ij and Z

(2)
j = XIj ,(r−z,r+z). Also, let Z̃

(1)
j = supv∈Ij(Xv − E[Xv]), and define

Z̃
(2)
j analogously.

We have to bound the probability of Aj. The basic idea is to show that any path from (1, 1) to
(r − z, r + z) which passes through Ij suffers a weight loss greater than that whichXz

r typically
suffers (which is of orderGz2/r), and so such paths are not competitive. When j is very large, it
is possible to show this even if we do not have the sharp coefficient of G for the parabolic loss;
but for smaller values of j, we will need to be very tight with the coefficient of the parabolic loss.
So we divide into two cases, depending on the size of j, and first address the case when j is large
(in a sense to be specified more precisely shortly). Observe that, for a c2 > 0 to be fixed,

P (Aj) ≤ P
(
Xz

r < E[Xz
r ]− c2(s+ j)2r1/3

)
+ P

(
Z

(1)
j + Z

(2)
j > E[Xz

r ]− c2(s+ j)2r1/3
)
;

the first term is bounded by exp(−c(s + j)2α) by Assumption 3b for a c depending on c2, and
we must show a similar bound for the second. Note that the second term is bounded by

P
(
Z

(1)
j + Z

(2)
j > µr − Gz2

r
−Hr1/3 − c2(s+ j)2r1/3

)
, (A.7)

using Assumption 2 and since |z| ≤ r5/6.

Recall from (9.21) and Lemma 9.10 that there exists a λ ∈ (0, 1) such that, for |z/2+(s+j)r2/3| ≤
r, and i = 1 and 2,

P
(
Z

(i)
j > νi,j + θr1/3

)
≤ exp(−cθα), (A.8)

where νi,j = 1
2µr− λ · G

r/2 · (
1
2z± (s+ j)r2/3)2 with the+ for i = 1 and− for i = 2; νi,j captures

the typical weight of these paths. Note that we are very crude with the parabolic coefficient, but
the bound (A.8) holds for all j; and also that we measure the deviation from the same expression
νi,j (which is obtained by evaluating (9.21) at one endpoint) for all points in the interval. As we
will see, comparing the full interval to a single point will not work for the second case of small j.

We want to show that the typical weight ν1,j + ν2,j is much lower than µr − Gz2/r. Simple
algebraic manipulations show that, if (s + j)r2/3 > (λ−1 − 1)1/2r5/6 (which is the largeness
condition on j defining the first case),

2∑
i=1

νi,j < µr − λ
Gz2

r
− (1− λ)Gr2/3 − 3λG(s+ j)2r1/3 < µr − Gz2

r
− 3λG(s+ j)2r1/3,

the final inequality since |z| ≤ r5/6. We have to bound (A.7) with some value of c2, and we take
it to be 2λG; note that any bound we prove on (A.7) will still be true if we later further lower c2.
The previous displayed bound shows that, for (s+ j)r2/3 > (λ−1 − 1)1/2r5/6,

P
(
Z

(1)
j + Z

(2)
j > µr − Gz2

r
−Hr1/3 − c2(s+ j)2r1/3

)
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≤ P
(
Z

(1)
j + Z

(2)
j > ν1,j + ν2,j +

1
2λG(s+ j)2r1/3

)
.

In the inequality we absorbed −Hr1/3 into the last term by imposing that s is large enough,
depending on λ, G, and H. Now by a union bound and (A.8), the last display, and hence (A.7),
is bounded by 2 exp(−c(s+ j)2α).

Now we address the other case that (s + j)r2/3 ≤ (λ−1 − 1)1/2r5/6. Thus Ij is close to the
interpolating line, and we need a bound on the interval‐to‐interval weight with a much sharper
parabolic term than in the previous case. Here above approach of the first case faces an issue.
Since the gradient of Gz2/r at z is 2Gz/r, the weight difference across an interval of length r2/3

at antidiagonal displacement z is of order z/r1/3, which is much larger than the bearable error of
O(r1/3) when z is, say, r5/6; so the crude approach of using the same expression (which we need
to be less than µr − Gz2/r) for the typical weight of all points in the interval, as we did in the
first case, is insufficient—to have a single expression for which a tail bound exists for all points
in the interval, we must necessarily include the linear gain of moving across the interval in the
expression, and this will force it aboveµr−Gz2/r. So, for this case, wewill use LemmaA.2, which
avoids the problem by taking the supremum after centering by the point‐specific expectation.

LetX ′
v = Xv,(r−z,r+z). Now we observe

P (Aj) ≤ P
(
Xz

r < E[Xz
r ]− c2(s+ j)2r1/3

)
+ P

(
sup
v∈Ij

(Xv +X ′
v) > E[Xz

r ]− c2(s+ j)2r1/3

)
;

note thatXv +X ′
v counts the weight of v twice, but this is acceptable as this sum dominates the

weight of the best path through v. The first term is atmost exp(−c(s+j)2α) for a c > 0 depending
on c2. We bound the second term as follows. First we note that E[Xz

r ] ≥ µr − Gz2/r − Hr1/3

and that supv∈Ij (E[Xv +X ′
v]) ≤ µr − Gz2/r − G(s + j)2r1/3 by a simple calculation with

Assumption 2, and so

P

(
sup
v∈Ij

(Xv +X ′
v) > E[Xz

r ]− c2(s+ j)2r1/3

)

≤ P

(
sup
v∈Ij

(Xv − E[Xv] +X ′
v − E[X ′

v]) > −Hr1/3 + (G− c2)(s+ j)2r1/3

)
.

We lower c2 (if required) from its earlier value to be less than G/2. Now, we need to absorb the
−Hr1/3 term above into the (s + j)2r1/3 term, which we can do for s > s0 by setting s0 large
enough depending onG andH. So for such s, by a union bound we see that the previous display
is at most

P

(
sup
v∈Ij

(Xv − E[Xv]) >
1
6G(s+ j)2r1/3

)
+ P

(
sup
v∈Ij

(X ′
v − E[X ′

v]) >
1
6G(s+ j)2r1/3

)
.
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We bound this by applying Lemma A.2, with K = (λ−1 − 1)1/2 and θ = 1
6G(s + j)2. Recall

that the bound of Lemma A.2 holds for θ > θ0(K). Thus we raise s0 further if necessary so that
(s + j)2 > θ0(K) for all s > s0 and j ≥ 0. Then we see that, for s and j such that s > s0 and
(s+ j)r2/3 ≤ (λ−1 − 1)r5/6, the last display is at most 2 exp(−c(s+ j)2α).

Returning to the inclusion (A.6) and the bound of exp(−c(s + j)2α) of P(Aj) for the two cases,
we see that

P
(
Γz
r(r/2) > z/2+ sr2/3

)
≤

r1/3∑
j=1

exp(−c(s+ j)2α) ≤ C exp(−cs2α)

for some absolute constantC < ∞ and c > 0 depending onα. Herewe used that, ifα ∈ (0, 1/2),
then (s + j)2α ≥ 22α−1(s2α + j2α), while if α ≥ 1/2, then (s + j)2α ≥ s2α + j2α; and finally
exp(−cj2α) is summable over j. This completes the proof of Proposition A.1.

To extend the transversal fluctuation bound from the midpoint (as in Proposition A.1) to any‐
where along the geodesic (as in Proposition 7.15), we follow very closely a multiscale argument
previously employed in [BSS14, Theorem 11.1] and [BGHH20, Theorem 3.3] for similar purposes.
For this reason, we will not write a detailed proof but only outline the idea.

Proof sketch of Proposition 7.15. First, the interpolating line is divided up into dyadic scales, in‐
dexed by j. The jth scale consists of 2j + 1 anti‐diagonal intervals, placed at separation 2−jr, of
length of order sjr2/3 :=

∏j
i=1(1 + 2−i/3)sr2/3. By choosing the maximum j for which this is

done large enough, it can be shown that, on the event that TF(Γz
r) > sr2/3, there must be a j

such that there is a pair (I1, I3) of consecutive intervals on the jth scale, and the interval I2 of the
(j + 1)th scale in between such that the following holds: the geodesic passes through I1 and I3,
but fluctuates enough that it avoids I2, say by passing to its left.

Planarity and that the geodesic is a weight‐maximising path then implies that the geodesic from
the left endpoint of I1 to that of I3 is to the left of the geodesic Γz

r (this observation is often
called geodesic or polymer ordering), and so must have midpoint transversal fluctuation at least
of order (sj+1 − sj)r

2/3 = 2−(j+1)/3sr2/3. But since this transversal fluctuation happens across a
scale of length r′ = 2−jr, in scaled coordinates it is of order 2j/3s(r′)2/3. Applying PropositionA.1
says that this probability is at most exp(−c22αj/3s2α). Now it remains to take a union bound
over all the scales and the intervals within each scale. Since the number of intervals in the jth scale
is 2j, and since 2j exp(−c22αj/3s2α) ≤ 2−j exp(−cs2α) for all s ≥ s0 (by setting s0 large enough)
and j ≥ 1, we obtain the overall probability bound of exp(−cs2α) of Proposition 7.15.
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