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Abstract. Francesco Lin and I recently calculated the groups HMpY, sq for any 3-manifold, spinc structure,

and twisted coefficient group. Our work builds on Kronheimer and Mrowka’s model of HM in terms of
coupled Morse homology, and then their computation of coupled Morse homology in terms of twisted singular

homology, so that HM is the twisted singular homology of the torus TpY, sq of flat spinc connections.

Our computation is essentially algebraic in nature. We study twisted singular homology in a general con-
text; it is controlled by a gadget called a twisting sequence. We determine precisely the necessary structure

(Hirsch algebras) to control these twisting sequences when they are transferred along quasi-isomorphisms,
and compute this structure explicitly enough on the torus to work with it.

Surprisingly, the answer we obtain is not identical to what is usually called cup homology, but is rather

slightly more intricate (stated on the last page below). Computer calculations suggest that they are at least
isomorphic as abelian groups.

Context: Floer homology for 3-manifolds

Many moons ago, Oszváth and Szabó defined four invariants of closed oriented 3-manifolds equipped with
a spinc structure pY, sq. These are the Heegaard Floer homology groups: one is the finite-dimensional vector

space yHF pY, sq, while the others are the ZrU s-modules HF`, HF´, HF8. Here U acts as a degree ´2
variable; on HF`, the map U acts nilpotently on any element, while on HF´ it acts as an isomorphism in
sufficiently negative degrees, and in HF8 it acts invertibly. The simplest examples are

HF´pS3q – ZrU s, HF`pS3q – ZrU,U´1s{UZrU s, HF8pS3q – ZrU,U´1s, yHF pS3q – Z.
Of these, the complex describing HF´ contains the most information: from it, one may extract any of

the other three complexes. The groups HF8pY q are by far the simplest in structure. Oszváth and Szabó
constructed a spectral sequence with E2 page Λ˚H1pY ;Zq bZrU,U´1s, and offered the following conjecture
about its behavior. To state the conjecture below, we should define the contraction by the triple-cup-product.

Precisely, consider the map ιY : ΛmpH1Y q Ñ Λm´3pH1Y q given by sending

ιYpα1 ^ ¨ ¨ ¨ ^ αmq “
ÿ

1ďiăjăkďm

p´1qi`j`kpαi Y αj Y αkqrY s ¨ α1 ^ pαi,j,k ¨ ¨ ¨ ^ αm.

Conjecture 1 (Oszváth and Szabó’s conjecture). Let pY, sq be a closed oriented 3-manifold equipped with a
spinc structure so that c1psq P H

2pY ;Zq is torsion. Then the Oszváth-Szabó spectral sequence has only one
nontrivial differential, given by contraction with the triple cup product:

d3pω b U
kq “ ιYpωq b U

k´1.

This conjecture was verified with F2 coefficients in Tye Lidman’s thesis. Carrying out his argument over
the integers seems possible but at the very least extremely difficult: one would need to have a very firm
understanding of all of the signs involved in the constructions in Heegaard Floer homology.

We call this conjectural E3 page the cup complex of pY, sq, and its homology groups the cup homology
HC8pY, sq. Notice that this does not depend on the spinc structure, as stated above. Later we will describe
a corresponding version of cup homology with possibly twisted coefficients and possibly torsion c1psq; in this
case, the resulting complex only depends on the element rc1s P HompH2Y,Zq.

On the other hand, Kronheimer and Mrowka defined a Floer homology called monopole Floer homology.

It by and large fits into the same structure as outlined above: now instead of yHF,HF`, HF´, HF8, our

cast of characters are ĆHM,~HM,zHM,HM . These behave in roughly the same way as the Heegaard Floer
1
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homology groups do, and in fact, the difficult and pioneering work of two different teams has shown that the
two collections are isomorphic; for instance, for any closed oriented 3-manifold Y , we have

HF8pY, sq – HM pY, sq.

These homology groups are in fact functors, and we do not yet know that HF8 and HM are the same up
to natural isomorphism; but no matter.

Today’s story is really about HM pY, sq. Thanks to Kronheimer and Mrowka’s work in their original study
of HM , quite a lot was already known about its structure; we’ll explore that next. Using their structure
theorems, we will be able to prove the Conjecture above (and more).

Coupled Morse homology

Before explaining the connection, let’s discuss a variation of the usual Morse theory which arises naturally
in the monopole theory.

Definition 1. Let Q be a compact manifold (of arbitrary dimension), equipped with a bundle H Ñ Q of
separable, infinite-dimensional Hilbert spaces, and a family L : HÑ H of self-adjoint Fredholm operators on
each fiber.1 We write this data as pQ,Lq, suppressing the bundle of Hilbert spaces from notation.

If Q is given a Riemannian metric and if f : QÑ R is a Morse-Smale function, then we define the coupled
morse complex CMC˚pQ,Lq to be generated by pairs px, λq, where x P Critpfq and λ is an eigenvalue of
Lx : Hx Ñ Hx. The component of the differential running from px, λq to py, λ1q counts isolated curves
rγ : RÑ Hz0 satisfying the following equations, where γ “ prγ : RÑ Q is the curve projected to the base:

γ1ptq ` p∇fqpγptqq “ 0

rγ1ptqvert ` Lγptqrγptq “ 0.

The first equation says that γ is a Morse flowline on P , while the second equation says that its lift is a
flowline of the (time-dependent) operator Lγptq. The path γ is required to limit to x and y, respectively, while

rγ is asked to asymptotically take the form etλv for some v P Hλ.
We say the homology groups are the coupled Morse homology CMH˚pQ,Lq.

Remark 1. Like the Heegaard Floer CF8, this complex carries a degree p´2q endomorphism — which we’ll
call U — essentially given by flowing ”in each fiber”. If CMC˚pQ,Lq is filtered by the Morse index of x,
then the associated graded map of U is given by Upx, λiq “ px, λi´1q, where the notation indicates that λi´1

is the immediate predecessor of λi. (There may be other terms in lower filtration.)

Remark 2. The data of a pair pH, Lq up to ‘homotopy’ is the same as the data of a map L : QÑ Up8q up
to homotopy. The coupled Morse homology then depends only on an element of K1pQq. Kronheimer and
Mrowka ask whether it depends on less: there is a cohomology class c12 P H

3Up8q, and they ask if L˚rc12s
determines the coupled Morse homology. One of our results is that this is not true for general Q, but that
it is true for the case of relevance to monopole Floer theory.

One of Kronheimer and Mrowka’s results is that the flavor HM can be described as a coupled Morse
homology group. In fact, there is a certain torus TpY, sq (the torus of flat connections) and a certain family
of operators LA over TpY, sq (the Chern-Simons-Dirac operators of these flat connections). Precisely,

HM˚pY, sq – CMH˚pTpY, sq;Dq.
This isomorphism respects the FrU s-module structure, as well as the additional structure of a ZrH1pY ;Zq{Torss-
module (which we will otherwise not discuss).

This coupled Morse homology is lots of fun if you like to play with Morse theory itself. It is still in want
for non-Floer theoretic applications. (For one: does this have any connection to twisted K-theory?)

The above theorem is nice, but what really gets the machine moving is their calculation of coupled Morse
homology in a special case.

1I am suppressing a lot of technical details in this definition. Actually, we want these to be densely defined Fredholm

operators with a well-behaved spectral theory. The details can be found in Chapter 33 of ‘Monopoles and Three-Manifolds’.
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Theorem 1 (Monopoles and Three-Manifolds, Theorem 34.2.1). Suppose L : Q Ñ Up8q factors through
SUp2q, and furthermore that L : QÑ SUp2q is a simplicial map for an appropriate triangulation of SUp2q.
Then there exists a simplicial cocycle ξ3 P C

3
∆pQ;Zq which squares to zero so that

CMH˚pQ,Lq – H
`

C∆
˚ pQq b ZrU,U´1s, dtwpxb U

kq “ pdxq b Uk ` pξ3 X xq b U
k`1.

˘

This expression on the right is the homology of C∆
˚ pQqrU,U

´1s with a perturbed differential. We use the
normal simplicial differential, but there is an extra term — which takes us up one power of U — which is
given by cap product against ξ3.

To intuit this, one should imagine the eigenvalues are globally labeled λi with λi ď λi`1, so that our
complex CMC has generators px, iq, where i labels λi and Upx, iq “ px, i´ 1q (up to lower filtration). That
second term in the differential above thus corresponds to ‘flowing down one eigenvalue’.

One should imagine that ξ3 represents the intersection product with a codimension-3 submanifold of Q,
where one “flows one eigenvalue down in H” whenever one crosses this submanifold, and otherwise one does
not flow down in eigenvalues.

The proof is given by calculating the coupled Morse complex of SUp2q with its universal family L :
SUp2q Ñ Up8q, and pulling back this calculation to Q by a simplicial map (where the Morse function and
and L all respect this triangulation in an appropriate way).

This is very useful. Because HM is computed as the coupled Morse homology of a family of operators on
the torus T — which factors up to homotopy through SUp2q — we may compute it as the twisted homology
of C˚∆pTq with respect to this ξ3.

This theorem already proves that the monopole Floer analogue of Oszváth and Szabó’s spectral sequence
exists, and that the E2 and E3 pages behave as expected. Replacing SUp2q with Up2q, their construction
also works with little change in the case of local coefficient systems and in the case that c1psq is non-torsion.

Working over the reals one may relate this to Atiyah and Segal’s twisted cohomology, where one twists
the differential by a closed 3-form. This only depends on the cohomology class of that 3-form. This uses in
an essential way that ω2 “ 0 whenever ω is a 3-form, which is simply false at the level of simplicial cochains:
it was very special that ξ2

3 “ 0 in the description above.
From this description, Kronheimer and Mrowka were able to verify the monopole Floer analogue of the

Oszváth and Szabó conjecture over fields of characteristic zero, but it is not clear that there isn’t some
unexpected torsion.

Twisted homology

The proof that Atiyah and Segal’s twisted cohomology groups only depend on the choice of third cohomol-
ogy class is very algebraic. If ω is a closed 3-form, their twisted cohomology group is given as the homology
of Ω˚pQq with the differential η ÞÑ dη ` ω ^ η. That this is square-zero follows because ω2 “ 0 and dω “ 0.
If ω1 “ ω ` dζ, then

η ÞÑ η ` ζ ^ η `
ζ2

2
^ η `

ζ3

6
^ η ` ¨ ¨ ¨ ;

the crucial property here is that if b2n “
ζn

n! , then we have

db2n ` ωb2n´2 ´ b2n´2ω
1 “ 0

for all n.
When you phrase it in a sufficiently algebraic way like this, it inspires one to hope that a similar anal-

ysis might not be hopeless over the integers: one just needs the right perspective. We feel that twisted
(co)homology is the right perspective for understanding HM , thanks to Kronheimer and Mrowka’s results
above. I’ll now exclusively focus on cohomology for ease of discussion (talking about cohomology will amount
to talking about algebras; homology will involve talking about algebras and their modules).
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Definition 2. Let A be a dg-algebra (over any ring). A twisting sequence in A is a sequence px3, x5, ¨ ¨ ¨ q P
ś

ně1A
2n`1 so that

dx3 “ 0

dx5 ` x
2
3 “ 0

dx7 ` x3x5 ` x5x3 “ 0

¨ ¨ ¨

dx2n`1 `
ÿ

i`j“n

x2i`1x2j`1 “ 0.

A homotopy between twisting sequences x‚ and y‚ is a sequence b2n for n ě 1 with db2 “ x3 ´ y3 and in
general

db2n “ x2n`1 ´ y2n`1 `
ÿ

i`j“n

b2ix2j`1 ´ y2j`1b2i.

Such sequences are very well-studied in the literature on Lie algebras under the name twisting cocycle or
Maurer-Cartan elements; the first appearance in the literature was in a paper by Ed Brown in the 60s, where
he used such cochains to describe a ’twisted’ differential on C˚pBqbC˚pF q which recovers the homology of a
fiber bundle with base B and fiber F . These general constructions are much too complicated for our desired
application, which asks us to understand these twisting sequences as simply and explicitly as possible.

For us, the point is: a twisting sequence gives rise to a twisted homology group; a homotopy
between twisting sequences gives rise to an isomorphism between twisted cohomology groups.

Furthermore, if f : A Ñ B is a quasi-isomorphism of dg-algebras, the induced map HtwpA;x‚q Ñ
HtwpB; y‚q is an isomorphism. (What’s more, a quasi-isomorphism induces a bijection on the set of twisting
sequences modulo homotopy.)

Goal. Find a zig-zag of quasi-isomorphisms between C˚∆pTq and H˚pTq “ Λ˚H1pY q. Given the twisting
sequence ξ‚ “ pξ3, 0, ¨ ¨ ¨ q on the first arising from monopole Floer theory, transfer it to a sequence rξs‚ in
Λ˚H1pY q. Compute what that sequence is, and hope that it’s what we call cup homology.

Problem. If f : A Ñ B is a quasi-isomorphism of dg-algebras, it’s obvious what fpx‚q is; it has n’th
term fpx2n`1q. On the other hand, it is much more difficult to go backwards and lift a twisting sequence in
B to a twisting sequence in A (well-defined up to homotopy). The result above guarantees that it’s always
possible and indeed well-defined up to homotopy, but it’s completely inexplicit. It doesn’t give any way of
computing the result in practice.

Solution. Characteristic classes. If we can cook up computable cohomological gadgets Fnpx‚q which
essentially characterize the twisting sequence, we might be able to determine what they are for Kronheimer
and Mrowka’s twisting sequence ξ‚. We then might be able to determine which twisting sequence on Λ˚H1pY q
has the same characteristic classes, and thus corresponds to ξ‚.

One such characteristic class is pretty easy to come up with; set F1px‚q “ rx3s. By definition this is a
cocycle, and a homotopy between x‚ and y‚ amounts in this degree to a chain h2 with dh2 “ x3´ y3, so this
is indeed a homotopy invariant of the twisting sequence.

Constructing such characteristic classes in higher degrees becomes difficult (indeed, I suspect impossible).
One wants to start by taking rx5s, but dx5 “ ´x

2
3 ‰ 0. To construct an appropriate characteristic class, one

would need a natural chain Epx3q so that dEpx3q “ ´x
2
3. If one had such a natural chain, then we could set

F2px‚q “ rx5 ´ Epx3qs.

If this E is well-behaved this should end up being a homotopy invariant.
Well, why should x2

3 be null-homotopic to begin with? The element x3 is odd-degree, so our experience
with cochains suggests that x2

3 should be homotopic to ´x2
3 by some cup-1 product. Then (accepting that

we have to define our characteristic classes over the rationals, even if we use them to study integral twisting
sequences) we may set

Epx3q “ 1{2x3 !1 x3.
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This suggests that if we want to carry this out in general we need some sort of homotopy-commutative
structure on our dgas.

Hirsch algebras and characteristic classes

While attempting to define these higher characteristic classes, we spent a lot of time staring at a paper
of Kraines on higher Massey products; twisting sequences are the same as what he calls defining sequences
for Massey powers. In one particularly nice lemma, he shows how you can take any cocycle a and extend it
to a twisting sequence

pa, 1{2a !1 a, 1{6pa !1 aq !1 a, ¨ ¨ ¨ q;

his argument used the left Hirsch formula, which for odd-degree elements reads

pabq !1 c “ apb !1 cq ` pa !1 cqb.

It turns out that these lead to a really well-behaved theory of characteristic classes for algebras which
come with a cup-1 product satisfying the left Hirsch formula. Crucially, this will not work for us. To
construct our minimal model for the torus Tn we will need to work cubically ; the smallest simplicial model
has far too many simplices.

We instead must study Hirsch algebras — what A8 algebras are to dg-algebras, Hirsch algebras are to
dgas with a cup-1 product satisfying the left Hirsch formula. We are given a homotopy-commutator E1,1, as
well as higher-homotopy operators Ep,q which

These were studied in [San16], who noticed a generalization of Kraines’ formulas to this setting. His
generalizations inspired our construction of the characteristic classes in general.

Theorem 2 (F. Lin–ME). There are a sequence F1px‚q, F2px‚q, ¨ ¨ ¨ of rational cohomology classes of degree
3, 5, and so on, associated to a twisting sequence in a Hirsch algebra. If two twisting sequences are homotopic,
the resulting cohomology classes are equal. These twisting sequences are natural for Hirsch algebra maps.
These begin

F1px‚q “ rx3s

F2px‚q “ rx5 ´ 1{2x3 !1 x3s

F3px‚q “ rx7 ´ x5 !1 x3 ` 1{3px3 !1 x3q !1 x3 ` 1{3E2,1px3, x3;x3qs

¨ ¨ ¨

These get progressively more complicated — F4 is wildly more complicated than the previous, for instance,
and includes terms like px3 !1 x3q !1 x5.

The best way to intuit the construction of these classes is as follows. Kraines constructed a natural ex-
tension Kpaq of a cocycle to a twisting sequence (and Saneblidze taught us how to extend this idea to Hirsch
algebras). One can use the operations Ep,q to define products of twisting sequences as well; combining these
two ideas one gets a Kraines tower of approximations Kpnqpx‚q of a twisting sequence by these canonical
twisting sequences; the characteristic classes above are the obstructions to finding a homotopy from x‚ to
Kpnqpx‚q. One should think of Kpnq as something like the n’th Taylor polynomial, and the Fn`1 as the
pn` 1q’th derivative of a function.

When A has no torsion in its cohomology, this is enough to completely determine twisting sequences (and
are therefore the right tool to use to study twisting sequences on the torus).

Theorem 3 (F. Lin–ME). Suppose A is a Hirsch algebra with torsion-free cohomology supported in a bounded
range of degrees, and let x‚ and y‚ be twisting sequences.

Then the characteristic classes Fnpx‚q “ Fnpy‚q for all n if and only if x‚ and y‚ are homotopic.

This is pleasant abstract theory, but to apply this to our specific case we need two things:

(1) We need to construct Hirsch algebra structures on C˚∆pTq and H˚pTq and construct a zigzag of
Hirsch algebra structure quasi-isomorphisms between them.

(2) We need to compute the characteristic classes Fnpξ‚q of Kronheimer and Mrowka’s twisting sequence.
(3) We need to determine what cohomology class in H˚pTq has these characteristic classes (and therefore

we need a very explicit handle on its Hirsch algebra structure).
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The second of these is easy: ξ‚ is pulled back from the 3-sphere which has H2n`1 “ 0 for n ą 1, and it is
known that

rξ3s “ Y
3
Y P H

˚pTq “ Λ˚pH1Y q_

is the triple cup product form of Y .
The construction of a Hirsch algebra structure on simplicial cochains can be found in [Kad04]. Unfortu-

nately, this will not suffice for us. It will turn out that H˚pTq is best described as the cubical cochains on
a minimal cubical model for the torus. Therefore, we need a formula for the E-operations on cubical
sets.

A major part of our work is deriving such formulas from extremely recent diagrammatic/operadic con-
structions by Ralph Kaufmann and Anibal Medina-Mardones. They constructed an E8-algebra structure
on cubical and simplicial cochains, which is generated by very simple operations and whose operations can
all be represented by certain immersed graphs. We show how to use their machine to produce a Hirsch
algebra structure on cubical and simplicial cochains, and what’s more we check that their work shows that
the natural cubical-to-simplicial comparison map induces a Hirsch algebra map.

However, we still have (3) to think about.

The minimal torus

Let Tn1 be the cubical model for the torus given by pasting together all opposite sides of the n-cube. Its
cubical cochains have zero differential; we have C˚˝ pTn1 q “ Λ˚pZnq. What’s more, we have an completely
explicit algebraic description of the operations E1,p.

Theorem 4 (F.Lin–ME). Write a basis element of Λ˚pZnq as eI “ ei1 ^ ¨ ¨ ¨ ^ eik , where I “ ti1 ă ¨ ¨ ¨ ă
iku Ă t1, ¨ ¨ ¨ , nu.

Say a family peJ ; eI1 , ¨ ¨ ¨ , eIpq is p1; pq-regular if Ij X Ik “ ∅ for distinct j, k, while |J X Ik| “ 1 for all k;
writing J X Ik “ tjku, we also demand that j1 ă ¨ ¨ ¨ ă jp. In this case we write

J “ J0 Y tj1u Y J1 Y ¨ ¨ ¨ Y tjpu Y Jp,

where J0 ă j1 ă J1 etc.
Then

E1,ppeJ ; eI1 , ¨ ¨ ¨ , eIpq “

#

eJ0 ^ eI1 ^ ¨ ¨ ¨ ^ eIp ^ eJp pJ ; I1, ¨ ¨ ¨ , Ipq is p1; pq ´ regular

0 else

Other than the asymmetry, we call this a special case of the insertion product ; we’re feeding the eI ’s into
one another, so long as the various subsets intersect in a relatively simple way. Iterates of these operations
figure into our story in an important way.

Definition 3. Given a set pI1, ¨ ¨ ¨ , Ipq of subsets of t1, ¨ ¨ ¨ , nu, we may construct a graph by pasting together
p intervals (the j’th with |Ij | vertices) so that the j’th and k’th intervals intersect at precisely |Ij X Ik| points
(and in fact, at the points corresponding to Ij X Ik inside of Ij and Ik).

We saay pI1, ¨ ¨ ¨ , Ipq is 1-regular if the graph constructed above is a tree. Equivalently, the I’s may be
reordered so that Ij X pI1 Y ¨ ¨ ¨ Y Ij´1q is a singleton for all j. Reorder them so that this is the case. In that
case, we say the insertion product

jpeI1 , ¨ ¨ ¨ , eIpq “ peI1 !1 e
I2q ¨ ¨ ¨ !1 e

Ip

is given as the iterated cup-1 product.
If a “

ř

I aIe
I P Λ˚pZnq, then we say its insertion powers are

a˝m “
ÿ

tI1,¨¨¨ ,Imu
pI1,¨¨¨ ,Imq is 1´regular

aI1 ¨ ¨ ¨ aImjpe
I1 , ¨ ¨ ¨ , eImq.

For example,
pe123 ` e345q˝2 “ e12345

and
pe123 ` e345 ` e146q˝2 “ e12345 ` e12346 ` e13456,
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but both of these have insertion cube equal to zero; an expression with nonzero insertion cube is

pe123 ` e345 ` e567q˝3 “ e1234567 “ pe123 ` e456 ` e147q˝3.

After some work with the Kraines construction itself and some combinatorics of subsets of t1, ¨ ¨ ¨ , nu, we
are able to prove the following.

Theorem 5 (F.Lin–ME). Let a P Λ3pZnq be a degree 3 element. Then the Kraines construction returns

Kpaq “ pa, a˝2, a˝3, ¨ ¨ ¨ q.

Furthermore,

FnKpaq “

#

ras n “ 1

0 n ą 1

Therefore when we transfer ξ‚ to H˚T, it is ultimately sent to Kprξ3sq. If we write out the triple cup
product with respect to some basis of H1pY q, we obtain an element a P Λ3pZnq, and may then compute its
insertion powers as above (which a computer can do nearly instantaneously).

Putting it all together

Kronheimer and Mrowka took us from HM to CMH˚pTpY, sq;Dq. They calculate that K1pTpY qq injects
into HoddpTpY qq, and evaluate its image: it is precisely the class corresponding to the triple-cup-product.
Because the higher classes are zero, they are able to show that the map D : TpY q Ñ U is homotopic to a
map factoring through SUp2q.

Their theorem then takes us to
Htw
˚ pC

∆
˚ pTq; ξ3q,

the twisted homology of this torus with respect to a certain twisting 3-cycle.
We used a zigzag of quasi-isomorphisms to show that this is isomorphic to

Htw
˚ pΛ

˚pZnq;K‚q
for an appropriate twisting sequence K‚ in Λ˚pZnq.

Lastly, in the previous section, we computed what this K‚ was.

Theorem 6 (F.Lin–ME). Let pY, sq be a 3-manifold. Choose a basis H1Y – Zn, and write a “ Λ3Zn for
the triple cup product written in this basis; write ιa for contraction against this element. Then we have an
isomorphism of Λ˚pH1Y {TorsqrU,U´1s-modules

HMpY, s;Zq – H
´

Λ˚pZnqrU,U´1s, x ÞÑ ιaxU ` ιa˝2xU2 ` ¨ ¨ ¨

¯

A version of this with only slight modifications holds for any local coefficient system as well. We call
these groups the extended cup homology groups. About a thousand random computer computations show
that these give the same answer that cup homology does; it probably just takes a clever eye to cook up some
isomorphism of abelian groups between the extended cup homology and the usual cup homology. However,
it’s not clear whether or not one should expect that these are the same as Λ-modules or not; we have not
thusfar been checking this (as computing homology over non-integral domains is rather difficult).
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