
Semi-orthogonal Decompositions Seminar Notes

Notes taken by Amal Mattoo, who apologizes for any mistakes.

April 2

Yoonjoo Kim: Derived equivalence of standard and Mukai flops.

0.1 Backgrounds from birational geometry

We work over k = C.
First, let’s consider curves. If C1 and C2 are smooth projective curves and C1 ∼bir C2,

then C1
∼= C2 (by valuative criterion of properness).

For surfaces, birational geometry is already non-trivial. Let S be a smooth projective
surface, S 99K S ′ birational. Then does that mean S ∼= S ′? No! If x ∈ S, then BlxS =: S̃

p−→
S is a birational morphism, but they are not isomorphic.

Fact: p−1(x) = E ∼= P1 and E2 = −1. Then E is called a (−1)-curve.

Theorem 0.1 (Castelnuovo). If S is a smooth projective surface and E ∼= P1 ⊂ S with
E2 = −1, then there exists S → S blowing down E.

So using this theorem, you can keep blowing down S → S1 → S2 → ... → S in a finite
sequence of blowdowns of (−1)-curves until there are no more (−1)-curves; it terminates
because each step decreases the Picard rank by 1. Call the smooth projective surface S a
minimal model.

Theorem 0.2. If S is a minimal surface, then ωS = OS(KS) is a nef line bundle, or S is
P2 or S is a P1 bundle over a smooth curve.

The first case means Kodaira dimensionK(S) ≥ 0, and the latter two cases meanK(S) =
−∞. This concludes the story of birational geometry for surfaces.

Now we turn to three-folds.

Definition 0.3. A smooth projective 3-fold X is a minimal model if KX is nef.

Given an arbitrary X with K(X) ≥ 0, can you develop a minimal model theory as with
surfaces?

It turns out there exists a birational morphism X → X1 that contracts a 2-dimensional
subvariety that is covered by P1’s. Note X1 might not be smooth, but is a terminal Q-
factorial variety. Sometimes you can do so again with X1 → X2. But you may not be able
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to do it again, and instead take X2 → ∗ contracting a rational curve. But this may not
even be Q-Gorenstein, so you can’t run the minimal model program further. But there is

a birational map X2 99K X
+

2 called a flip that commutes with a birational morphism X
+

2

which regenerates a curve. Then you can flip again, or maybe now you can contract a divisor,
and so on.

Note that flips do not change the Picard rank since contracting a curve does not change
it. But it is not known in general that flips have to terminate.

For 3-folds, it has been proven that flips terminate: if X is a smooth projective 3-fold,
then X is a minimal 3-fold birational to X. But X is usually not unique (and is usually
quite singular).

If X1 99Kbir Xr are minimal models, then there exists a finite sequence of flops between
them.

Now let’s define flips and flops precisely.

Definition 0.4. Let Xsm E−→ X be a contraction of a rational curve C ⊂ X to a point
x ∈ X. This is called a flipping contraction if KX .C < 0. It is called a flopping contraction
if KX · C = 0.

Theorem 0.5. If X
E−→ X is a flipping (resp. flopping) contraction, exists a unique X+ E+

−→
X such that E+ is a contraction of a curve C+ to x ∈ X and KX+ · C+ > 0 (resp. = 0).

The birational map X 99K X+ is a flip (resp. flop).

Example. Let X be a smooth projective 3-fold and

X X+

X

E

f

E+

is a flopping diagram contracting a rational C ⊂ X. It is a theorem that actually C is
smooth, so C ∼= P1.

By the adjunction formula,

O(−2) = ωC = ωX |C ⊗ detNC/X

where ωX |C is a line bundle with degree KX · C = 0, so detNC/X = O(−2). Thus, NC/X =
O(−a)⊕O(a− 2). Fact: either a = 1, 0,−1. If a = 1 so NC/X = O(−1)2, then it is called a
standard flop.

Example. Let X2n be a smooth symplectic variety and a flopping diagram

X X+

X

E

f

E+

contracting Z ⊂ X of codimension ≥ 2 to Z ⊂ X. The fibers of Z → Z are covered by P1.
Fact: dimZ ≥ n. Moreover, if dimZ = n, then Z = Pn and Z = pt. The case of Z = Pn is
called a Mukai flop. Fact: NZ/X

∼= ΩPn .
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0.2 Standard flops

Setup: Pk ⊂ Xk+ℓ+1 with X a smooth variety and k ≥ ℓ and NPk/X = OPk(−1)⊕ℓ+1

(threefold minimal model case: k = ℓ = 1).
Construction:

E X̃ = BlPkX

Pk X

i

p

codim ℓ+1

where E = Pk ×Pℓ. Note Pic(E) = Z2.

Lemma 0.6. OE(E) = OX̃(E)|E ∼= O(−1,−1).

Proof. Adunction: ωE = ωX̃ |E ⊗OE(E). Adjunction: ωPk = ωX|
Pk

⊗O(−ℓ− 1).

Because E = Pk × Pℓ, have ωE = O(−k − 1,−ℓ − 1). Fact: ωX̃ = p∗ωX ⊗ OX̃(ℓE) for
blowups. Then OE((ℓ+ 1)E) = O(−ℓ− 1,−ℓ− 1) so OE(E) = O(−1,−1).

Theorem 0.7 (Fujiki-Nakano, Artin in the algebraic setting). Let Y be a smooth variety
E ⊂ Y a smooth divisor such that E → Z with Pk-bundle with fiber F = Pk. If OF (E) ∼=
O(−1), then there exists a smooth algebraic space Y such that

Y Y

E Z

⊂

Pk

⊂

We showed OE(E) = O(−1,−1), and by the theorem we can contract E

E X̃

Pℓ X+

⊂

Pk Blowup

⊂

Conclusion:

X̃ E = Pk ×Pℓ

X X Pk Pℓ

p p+=q π π+

f

Remark. Suppose

X X+ Pk Pℓ

X pt

f

Then deg(KX |Pk) = ℓ − k. So if k > ℓ it is a flip, and if k = ℓ it is a flop. These are the
standard flip and flop.
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Theorem 0.8 (Bondal-Orlov 1995). Φ := p∗q
∗ : Db(X+) → Db(X) is fully faithful (for

k ≥ ℓ). Moreover, if k = ℓ, then Φ is an equivalence.

Proof. • Step 0. Recall

E X̃ = BlYX

Y X

i

π:Pℓ-bundle p

codim ℓ+1

Then Φt := ΦOE(tE) : D(Y ) → D(X̃) is fully faithful for all t ∈ Z. Also, p∗ : D(X) →
D(X̃) is same.

Setting D(Y )t = imΦt ⊂ D(X̃), exists a semi-orthogonal decomposition

D(X̃) = ⟨D(X)−ℓ, D(Y )−ℓ+1, ..., D(Y )−1, p
∗D(X)⟩

Applying

Pk ×Pℓ X̃ = BlYX

Pk X

i

π:Pℓ-bundle p

codim ℓ+1

we have a semi-orthogonal D(X̃) = ⟨O(a, b), p∗D(X)⟩. We can write

D(X̃) = ⟨O(−k,−ℓ),O(−k + 1,−ℓ), ...,O(0,−ℓ),

O(−k + 1),O(−k + 2,−ℓ+ 1),O(1,−ℓ+ 1)

...

O(−k + ℓ− 1,−1),O(−k + ℓ− 1), ...,O(−ℓ− 1,−1), p∗D(X)⟩

LetD1 := ⟨O(a, b)|a < 0⟩ andD2 := ⟨O(a, b)|a ≥ 0⟩. We wantD(X̃) = ⟨D1, D2, p∗D(X)⟩.

• Step 1. Show Φ := p∗q
∗ : D(X+) → D(X) is fully faithful. For all E,F ∈ D(X+),

Hom(E,F ) = Hom(p∗q
∗E, p∗q

∗E)

which are equal to both of

Hom(q∗E, q∗F ) → Hom(p∗p∗q
∗E, q∗F )

Consider the exact triangle
p∗p∗q

∗E → q∗E → H

It is enough to show Hom(H, q∗F ) = 0 for all F ∈ D(X+).

Claim: H ∈ D2.

– Hom(p∗G,H) = Hom(G, p∗H) = 0 for all G ∈ D(X), since since p∗ is fully faithful

p∗p
∗p∗q

∗E
∼=−→ p∗q

∗E → p∗H

so p∗H = 0.
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– Hom(H,O(a, b)) = 0 for all a < 0 by direct computation.

• Step 2. Conclusion. SinceH ∈ D2 = ⟨O(a, b)|a ≥ 0⟩, enough to show Hom(O(a, b), q∗F ) =
0 for a ≥ 0. This follows by computation.

0.3 Mukai Flop

Setup: let Pn ⊂ X2n a smooth variety and NPn/X = ΩPn . Construction:

E X̃ = BlPnX

Pn X

i

π:Pn−1-bundle p

with E = PΩPn . Fact: PΩPn ⊂ Pn × (Pn)∗ is the incidence variety: pairs (p,H) such that
p ∈ H.

Lemma 0.9. OE(E) = O(−1,−1) is a universal family of hyperplanes.

By contraction theorem,

X̃ E

X X+ Pn Pn

p q

f

is a Mukai flop.
But Φ = p∗q

∗ : D(X+) → D(X) is NOT fully faithful. To correct this, assume X and
X+ admit a common contraction to X:

X̃

X X+

X

E E+

Let Z := X ×X X+. In fact Z = X̃ ∪ (Pn × Pn) ⊂ X × X+ so this is well defined even
without the common contraction. It turns out OZ is the correct kernel of the equivalence.

Theorem 0.10 (Kawamata, Namikawa). Φ = ΦOZ
: D(X+) → D(X) is an equivalence.

Proof idea. Assume there is a curve C and deformations X ,X+ → C of X and X+ that are
isomorphic on C \ {0}. We can ensure that Pn ⊂ X has normal bundle O(−1)n+1 in X .
Thus, X → X+ is a standard flop and so a derived equivalence. This formally induces an
equivalence between the fibers over 0 ∈ C.
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