Semi-orthogonal Decompositions Seminar Notes

Notes taken by Amal Mattoo, who apologizes for any mistakes.

April 16

Fan Zhou: Bridgeland Stability and Highest Weight Categories.

Will say a bit about Bridgeland stability, then talk about highest weight categories, which is in a precise sense the same thing.

Definition 0.1. Given an abelian category \mathcal{A} , a stability function is a central charge

$$Z: K_0(\mathcal{A}) \xrightarrow{\operatorname{grp}} \mathbf{C}$$

such that the image of any nonzero object is in the upper half plane, i.e., $\mathbf{R}_{>0}e^{i\pi\phi}$ or $0 < \phi \leq 1$.

Given $X \in \mathcal{A}$, call $\phi(X)$ the phase in $Z(X) \in \mathbb{C}$.

Say $X \in \mathcal{A}$ is *semi-stable* if for all $0 \neq A \subset X$ we have $\phi(A) \leq \phi(X)$. Say X is *stable* if all $\phi(A) < \phi(X)$.

Definition 0.2. Given Z on \mathcal{A} , a Harder-Narasimhan filtration

$$0 = X_0 \subset X_1 \subset \ldots \subset X_n = X$$

such that each X_i/X_{i-1} is semi-stable and

$$\phi(X_1/X_0) > \dots > \phi(X_n/X_{n-1})$$

Harder-Narasimhan filtrations are unique.

We could equivalently define (semi-)stability by requiring for all $X \twoheadrightarrow B$ we have $\phi(X) \leq \phi(B)$. This is equivalent because given

$$0 \to A \to X \to B \to 0$$

we have Z(X) = Z(A) + Z(B) so $\phi(X)$ is between $\phi(A)$ and $\phi(B)$.

If X and Y are semi-stable, then for any $0 \neq f : X \to Y$ we have $\phi(X) \leq \phi(Y)$, because

$$0 \to \ker f \to X \to \operatorname{Im}(f) \to 0$$

implies

$$\phi(\ker f) \le \phi(X) \le \phi(\operatorname{Im}(f)) \le \phi(Y)$$

where the first two inequalities are by stability of X and the last is by stability of Y.

Proposition 0.3. If a Z satisfies

1. There is no infinite sequence of subobjects

$$\dots \subset X_{i+1} \subset X_i \subset \dots \subset X_1$$

with $\phi(X_{i+1}) > \phi(X_i)$.

2. There is no infinite sequence of quotients

$$X_1 \twoheadrightarrow X_1 \twoheadrightarrow \dots \twoheadrightarrow X_i \twoheadrightarrow X_{i+1} \twoheadrightarrow$$

with $\phi(X_i) > \phi(X_{i+1})$.

Then Z is Harder-Narasimhan.

Proof. Any $X \in \mathcal{A}$ has either X semi-stable or there exists $A \subset X$ with $\phi(A) > \phi(X)$.

Iterating this must terminate, so all X have some semi-stable subobject $A \subset X$ with $\phi(A) \ge \phi(X)$.

Similarly, all X are semi-stable or have a semi-stable quotient $X \to B$ with $\phi(X) \ge \phi(B)$. Let a maximal destabilizing quotient of X be $X \to B$ with B semi-stable and $\phi(X) \ge \phi(B)$ such that all $X \to B'$ have $\phi(B') \ge \phi(B)$ with equality when

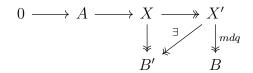
Claim: this exists. If X is semi-stable, then it's true. Otherwise, find

$$0 \to A \hookrightarrow X \to X' \to 0$$

with A semi-stable and $\phi(A) > \phi(X) > \phi(X')$. We want to show that if $X' \to B$ with $\phi(X') \ge \phi(B)$ is a maximal destabilizing quotient, then $X \to X' \to B$ works; this suffices, or else we could produce an infinite chain. This is because there exists $X \to B'$ semi-stable. Assume for the sake of contradiction $\phi(B') < \phi(B)$. Then

$$\phi(B') < \phi(B) \le \phi(X) < \phi(A)$$

so there is no nonzero $A \to B'$, and so



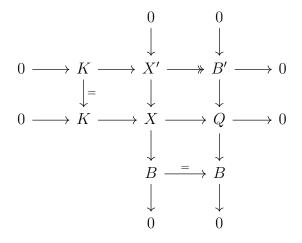
which contradicts B having minimal phase. Repeating the argument with X' in $X \twoheadrightarrow X'$, $\phi(X) > \phi(X')$. This must terminate. Hence, maximal destabilizing quotients exist.

Next, if X is semi-stable, we have a Harder-Narasimhan filtration trivially. Otherwise, take

$$0 \to X' \hookrightarrow X \twoheadrightarrow B \to 0$$

with $X \to B$ a maximal destabilizing quotient, and $\phi(X') > \phi(X) > \phi(B)$.

Find a maximal destabilizing quotient $X' \twoheadrightarrow B'$ and build



since B is a maximal destabilizing quotient, we have $\phi(Q) > \phi(B)$, so $\phi(B') > \phi(Q) > \phi(B)$. Letting X'' = K we can iterate $\ldots \subset X'' \subset X' \subset X$ with $\ldots > \phi(X'') > \phi(X') > \phi(X)$ with $\phi(B') > \phi(B)$. This terminates by (2), giving a Harder-Narasimhan filtration.

Definition 0.4. A stability condition on a triangulated category \mathcal{D} is (Z, \mathcal{P}) with $Z : K_0(\mathcal{D}) \xrightarrow{\text{grp}} \mathbf{C}$ and $\mathcal{P}(\phi)$ is a full additive subcategory for $\phi \in \mathbf{R}$ such that

- 1. $Z: \mathcal{P}(\phi) \to \mathbf{R}_{>0} e^{i\pi\phi}$.
- 2. $\mathcal{P}(\phi+1) = \mathcal{P}(\phi)[1].$
- 3. Hom_{\mathcal{D}}($\mathcal{P}(\phi_1), \mathcal{P}(\phi_2)$) = 0 for $\phi_1 > \phi_2$.
- 4. For all $X \neq 0$, exists $\phi_1 > \phi_2 > ... > \phi_n$ such that

$$0 = X_0 \to X_1 \to X_2 \to \dots \to X_{n-1} \to X_{n-1} \to X_n$$

such that $\operatorname{Cone}(X_{i-1} \to X_i) \in \mathcal{P}(\phi_n)$.

Conditions (2), (3), (4) are called a *slicing*.

Can put a *t*-structure on a derived category \mathcal{D} with a stability condition with $\mathcal{D}^{\leq 0} = \mathcal{P}(>\phi)$. The heart of $\mathcal{P}(>\phi)$ is $\mathcal{P}(\phi, \phi+1]$.

Can similarly define a *t*-structure $\mathcal{D}^{\leq 0}\mathcal{P}(\geq \phi)$ with heart $\mathcal{P}[\phi, \phi+1)$.

Lemma 0.5. For $\sigma = (Z, \mathcal{P})$ on \mathcal{D} , have $\mathcal{P}(\phi)$ is abelian.

Proposition 0.6. Stability condition on \mathcal{D} is equivalent to a bounded t-structure on \mathcal{D} with a stability function on \mathcal{D}^{\heartsuit} satisfying Harder-Narasimhan filtrations.

Now we turn to highest weight categories.

Definition 0.7. A k-linear abelian category is "Deligne-finite" if

- 1. Hom, Ext-finite.
- 2. Jordan-Hölder category, i.e., Noetherian and Artinian.
- 3. Finite number of simples.
- 4. Enough projectives.

Such a category is Morita-equivalent to Mod-End_{\mathcal{A}}(Proj-gen) endomorphisms of a projective generator.

Choose an ordering $L_1, ..., L_n$ of simples with projective covers P_i and injective hulls Q_i .

$$0 = \mathcal{A}_0 \subset \mathcal{A}_1 \subset \ldots \subset \mathcal{A}_n = \mathcal{A}$$

Then $\mathcal{A}_i = \text{Filt}(L_1, ..., L_i)$ is a Serre subcategory, i.e., objects with Jordan-Hölder quotients L_i .

Definition 0.8. Let Δ_i be the maximal quotient of P_i lying in \mathcal{A}_i . This is the standard module.

Let ∇_i be the maximal subobject of Q_i lying in \mathcal{A}_i . This is the costandard module.

Then Δ_i is the projective cover of L_i in \mathcal{A}_i and ∇_i is the injective hull of L_i in \mathcal{A}_i .

Definition 0.9. A highest weight category is a Deligne-finite category such that

- 1. End_{\mathcal{A}_i}(Δ_i) $\cong k$, and
- 2. $P_i \in \operatorname{Filt}(\Delta_i, .., \Delta_n).$

Recall a recollement diagram consists of categories $\mathcal{A}, \mathcal{B}, \mathcal{C}$, with functors $\mathcal{A} \xrightarrow{i_*} \mathcal{B}, \mathcal{B} \xrightarrow{j^!} \mathcal{C}$, $\mathcal{B} \xrightarrow{i^*, i^!} \mathcal{A}, \mathcal{C} \xrightarrow{j_!, j_*} \mathcal{B}$ such that

- 1. i_*, j^* are exact with two adjoints given,
- 2. i_* is fully faithful with essential image the kernel of $j^!$, and
- 3. $j^*j_* \xrightarrow{\sim} [\varepsilon] \mathrm{Id}_{\mathcal{C}} \xrightarrow{\sim} [\eta] j^! j_!.$

An ideal $I \subset A$ is hereditary if

1.
$$I^2 = I$$
,

- 2. IjI = 0, where j is the Jacobson radical, and
- 3. I is projective as left or right A-module.

And A is quasi-hereditary if there exists $0 = J_0 \subset J_1 \subset ... \subset J_n = A$ with J_i/J_{i-1} is hereditary in A/J_{i-1} .

Theorem 0.10. The following are equivalent:

- A is a highest weight category,
- $\mathcal{A}_{i-1} \to \mathcal{A}_i \to \mathcal{A}_i / \mathcal{A}_{i-1}$ is a homological recollement,
- $(\Delta_1, ..., \Delta_n)$ is a strictly full exceptional sequence, and
- $\mathcal{A} \simeq \operatorname{Mod} A$ for A quasi-hereditary.

Theorem 0.11. If \mathcal{A} be Deligne-finite category. Fix an ordering. The following are equivalent:

- 1. \mathcal{A} is a highest weight category,
- 2. $[\Delta_i : L_i] = 1, \ [P_i] = \sum_{j=1}^n [\nabla_j : L_i] [\Delta_j] \text{ in } K_0(\mathcal{A}), \text{ and}$
- 3. Exists a stability function $Z: K_0(\mathcal{A}) \to \mathbf{C}$ such that
 - (a) Δ_i is stable, $\phi(\Delta_1) < ... < \phi(\Delta_n)$, and
 - (b) Harder-Narasimhan factors of P_i are direct sums of $\Delta_i, ..., \Delta_n$.

Example. Recalling the Auslander construction from last week, letting $S = \text{Spec}(k[t]/t^2)$, $I^n = 0$, we constructed an algebra $A_{S,I,n}$, e.g.,

$$A_{S,\langle t\rangle,2} = \begin{pmatrix} k[t]/t^2 & \langle t\rangle \\ k[t]/t & k[t]/t \end{pmatrix}$$

This corresponds to a quiver $e : \bullet \leftrightarrows \bullet : f$ with ef = 0.

Then L_i corresponds to the quiver representation with **C** on vertex *i* and 0 on the other vertex.

Then $\mathcal{A} = \operatorname{Filt}(\mathcal{L}_1, \mathcal{L}_2)$ while $\operatorname{Filt}(\mathcal{L}_1)$ is the quiver category of a single vertex.

So $P_2 = \Delta_2$ is the projective cover of L_2 in $\mathcal{A}_2 = \mathcal{A}$, which by general theory is $0 : \mathbb{C} \hookrightarrow \mathbb{C} : 1$.

And $\Delta_1 = L_1$, since it is projective in $\mathcal{A}_1 = \operatorname{Filt}(\mathcal{L}_1)$. And P_1 is the projective cover of L_1 in \mathcal{A} , which is again by general theory is $\mathbf{C}^2 \leftrightarrows \mathbf{C}$ with maps $1 : \mathbf{C} \to \mathbf{C}$ and $0 : \mathbf{C} \leftrightarrows \mathbf{C} : 1$.

The full exceptional collection is $\langle \Delta_1, \Delta_2 \rangle$, and we have exact sequences

$$0 \to L_1 \to \Delta_2 \to L_2 \to 0$$
$$0 \to \Delta_2 \to P_1 \to \Delta_1 \to 0$$