Semi-orthogonal Decompositions Seminar Notes

Notes taken by Amal Mattoo, who apologizes for any mistakes.

April 23

James Hotchkiss: Homological projective duality.

All due to Alexander Kuznetsov in Homological Projective Duality.

Let X be smooth projective over a field. Fix a map $X \to \mathbf{P}(V)$, e.g., an embedding but not necessarily.

Given a linear subspace $L \subset V$, we can form $X_L = X \times_{\mathbf{P}(V)} \mathbf{P}(L)$. There is a nice class of semi-orthogonal decompositions that behave well under restriction.

Definition 0.1. A *(right)* Lefschetz decomposition is a semi-orthogonal decomposition

 $D^{b}(X) = \langle \mathcal{A}_{0}, \mathcal{A}_{1}(H), ..., \mathcal{A}_{m-1}((m-1)H) \rangle$

for admissible subcategories $\mathcal{A}_0 \supset \mathcal{A}_1 \supset ... \supset \mathcal{A}_{m-1}$ and with H the pullback to X of $\mathcal{O}_{\mathbf{P}(V)}(1)$.

If $\mathcal{A}_0 = \dots = \mathcal{A}_{m-1}$, we call this a *rectangular* Lefschetz decomposition.

Lemma 0.2. Let $L \subset V$ be linear such that X_L has expected dimension (*). If X has Lefschetz decomposition as above, then

$$D^{b}(X_{L}) = \langle \mathcal{C}_{L}, \mathcal{A}_{s}(sH), .., \mathcal{A}_{m-1}((m-1)H) \rangle$$

is a semi-orthogonal decomposition for $s = \operatorname{codim}(L \subset V)$.

This is not, in general, a Lefschetz decomposition, as the Kuznetsov component C_L is mysterious for now.

Remark. The composition $\mathcal{A}_s(sH) \hookrightarrow D^b(X) \to D^b(X_L)$ is fully faithful.

Example. If $\mathbf{P}(W) \xrightarrow{|\mathcal{O}(d)|} \mathbf{P}(V)$, we get standard semi-orthogonal decomposition for a degree d hypersurface, for $d < \dim W$.

In this case, $\mathcal{A}_0 = \langle \mathcal{O}, ..., \mathcal{O}(d-1) \rangle$, $\mathcal{A}_1(d) = \langle \mathcal{O}(d), ..., \mathcal{O}(N) \rangle$ if N < 2d for $N = \dim \mathbf{P}(W)$.

About (*): ignore it if you use derived fiber product $X_L = X \times_{\mathbf{P}(V)}^{L} \mathbf{P}(L)$.

Remark. Exists a decomposition into $\mathcal{A}_0 = \langle a_0, ..., a_{m-1} \rangle$ such that $\mathcal{A}_i = \langle a_i, ..., a_{m-1} \rangle$. The categories a_i are called *primitive Lefschetz components*.

There is a notion of a left Lefschetz decomposition

$$D^{b}(X) = \langle \mathcal{A}_{1-m}((1-m)H), ..., \mathcal{A}_{-1}(-H), \mathcal{A}_{0} \rangle$$

for $\mathcal{A}_{1-m} \subset ... \subset \mathcal{A}_{-1} \subset \mathcal{A}_0$. The analogue of the lemma holds: $D^b(X_L) = \langle ..., \mathcal{D}_L \rangle$. Left and right are "equivalent": given $\mathcal{A}_0 \subset D^b(X)$,

$$\mathcal{A}_i := \begin{cases} \mathcal{A}_{i-1} \cap {}^{\perp} (\mathcal{A}_0(-iH)) & i \ge 1\\ \mathcal{A}_{i+1} \cap (\mathcal{A}_0(iH))^{\perp} & i \le -1 \end{cases}$$

And in fact: $\langle \mathcal{A}_0, ..., \mathcal{A}_{m-1}((m-1)H) \rangle$ is a right Lefschetz decomposition if and only if $\langle \mathcal{A}_{1-m}((1-m)H), ..., \mathcal{A}_0 \rangle$ is a left Lefchetz decomposition.

Goal: let $L \subset V$ be a hyperplane. Consider $(\mathcal{C}_L)_{L \in \mathbf{P}(V^{\vee})}$. Let

$$\mathcal{H} = \{ (x, L) \in X \times \mathbf{P}(V^{\vee}) : x \text{ maps into } L \text{ under } X \to \mathbf{P}(V) \}$$

Lemma 0.3. Exists a semi-orthogonal decomposition

$$D^{b}(\mathcal{H}) = \langle \mathcal{C}, \mathcal{A}_{1}(H) \boxtimes D^{b}(\mathbf{P}(V)^{\vee}), ..., \mathcal{A}_{m-1}((m-1)H) \boxtimes D^{b}(\mathbf{P}(V^{\vee}))$$

where the embedding is via $\mathcal{A}_i(iH) \boxtimes D^b(\mathbf{P}(V^{\vee})) \hookrightarrow D^b(X \times \mathbf{P}(V^{\vee})) \to D^b(\mathcal{H}).$

Note that we need the above composition to be fully faithful, which it is.

The map $\mathcal{H} \to \mathbf{P}(V^{\vee})$ implies there's an "action" of $D^b(\mathbf{P}(V^{\vee}))$ on $D^b(\mathcal{H})$, where $E \in D^b(\mathbf{P}(V^{\vee}))$ acts on $D^b(\mathcal{H})$ via $\mathrm{pr}_2^* E \otimes -$.

The action preserves the components of the semi-orthogonal decomposition of $D^b(\mathcal{H})$, i.e., the semi-orthogonal decomposition is $\mathbf{P}(V^{\vee})$ -linear. Can think of the semi-orthogonal decomposition of $D^b(X_L)$ as the semi-orthogonal decomposition of $D^b(\mathcal{H})$ base changed by:

The base change of \mathcal{C} is \mathcal{C}_L .

Definition 0.4. The homological projective dual (HPD) of $D^b(X)$ is \mathcal{C} , denoted by $D^b(X)^{\#}$. A variety $Y \to \mathbf{P}(V^{\vee})$ is an HPD variety of X (denoted $X^{\#}$) if there is an equivalence $D^b(Y) \cong D^b(X)^{\#}$ linear over $D^b(\mathbf{P}(V^{\vee}))$.

Should think of $D^b(X)^{\#}$ as linear over $D^b(\mathbf{P}(V^{\vee}))$.

Theorem 0.5 (Main). Assume $X^{\#}$ exists.

1. $X^{\#}$ is smooth and proper over the base field, and

{critical values of $X^{\#} \to \mathbf{P}(V^{\vee})$ } = { $L \in \mathbf{P}(V^{\vee})$ such that X_L is singular}

The right hand side is the classical projective dual X^{\vee} .

2. $X^{\#}$ has a left Lefschetz decomposition

$$D^{b}(X^{\#}) = \langle \mathcal{B}_{1-n}((1-n)H'), ..., \mathcal{B}_{0} \rangle$$

Moreover, $(X^{\#})^{\#} = X$ in a natural way.

3. Given $L \subset V$, let $L^{\perp} = \operatorname{Ann}(L) \subset V^{\vee}$. We have

$$D^b(X_L) = \langle \mathcal{C}_L, \mathcal{A}_s(sH), \dots \rangle$$

$$D^b(X^{\#}_{L^{\perp}}) = \langle ..., \mathcal{B}_{-r}(-rH'), \mathcal{D}_{L^{\perp}} \rangle$$

where $s = \operatorname{codim}(L)$ and $r = \operatorname{codim}(L^{\perp})$. Then $\mathcal{C}_L \simeq \mathcal{D}_{L^{\perp}}$.

In practice: let's say we have an embedding $X \hookrightarrow \mathbf{P}(V)$. The classical projective dual X^{\vee} is usually singular. Then in practice a resolution $\widetilde{X^{\vee}} \to X^{\vee}$ has a semi-orthogonal component $D^b(X)^{\#} \subseteq D^b(\widetilde{X^{\vee}})$, and $D^b(X)^{\#}$ is a categorical resolution of $D^b(X^{\vee})$.

How to look at it.

Example. Let dim V = 9 and $\mathcal{A}_0 \supset \mathcal{A}_1 = \mathcal{A}_2 \supset \mathcal{A}_3 \neq 0$. It then follows that

$$\mathcal{B}_{-7} = \mathcal{B}_{-6} \subset \mathcal{B}_{-5} \subset \mathcal{B}_{-4} = \mathcal{B}_{-3} = \mathcal{B}_{-2} = \mathcal{B}_{-1} = \mathcal{B}_{0}$$

And it turns out $\mathcal{A}_0 = \mathcal{B}_0$.

Example. Let $X = Gr(2, 6) \hookrightarrow \mathbf{P}(V)$ where $V = \bigwedge^2 W$ and dim W = 6. Then

$$D^{b}(X) = \langle \mathcal{A}_0, \mathcal{A}_1(1), ..., \mathcal{A}_5(5) \rangle$$

where $\mathcal{A}_0 = \mathcal{A}_1 = \mathcal{A}_2 = \langle \mathcal{O}, U^{\vee}, S^2 U^{\vee} \rangle$ and $\mathcal{A}_3 = \mathcal{A}_4 = \mathcal{A}_5 = \langle \mathcal{O}, U^{\vee} \rangle$. We have

$$X^{\vee} = \operatorname{Pf}(4, 6) = \{\omega \in \bigwedge^2 W^{\vee} : \operatorname{rk}(\omega) \le 4\}$$

corresponds to a hypersurface of degree 3 (since the Pfaffian is the square root of the determinant). Then X^{\vee} is singular along $Pf(2,6) = Gr(2, W^{\vee})$, so singular locus has codimension 5.

Let $L \subset \bigwedge^2 W$, $L^{\perp} \subset \bigwedge^2 W^{\vee}$, $r = \dim L^{\perp}$. We have

$$\dim X_L = 8 - r, \quad \dim \operatorname{Pf}_L = r - 2, \quad \dim(\operatorname{Pf}^{\operatorname{sing}})_L = r - 7$$

Assume $r \leq 6$, so we can run HPD as if the Pfaffian were smooth.

• Let r = 1. Then $Pf_L = \emptyset$, so $D^b(X_L)$ has a full exceptional collection. Here $X_L =$ LGr(2, 6), the Lagrangian Grassmannian, consisting of planes isotropic with respect to the two-form ω .

- Let r = 2. Then Pf_L has 3 points, so X_L has a full exceptional collection.
- Let r = 3. Then Pf_L is an elliptic curve.
- Let r = 4. Then Pf_L is a cubic surface, so X_L has a full exceptional collection.
- Let r = 5. Then Pf_L is a cubic 3-fold. And $X_L = V_{14}$ a Fano 3-fold.
- r = 6. Then Pf_L is a cubic 4-fold and X_L is a K3 surface. This verifies the conjecture that cubic fourfolds are rational if and only if their Kuznetsov component is isomorphic to the derived category of a K3 surface.