Introducing Semi-orthogonal Decompositions

Amal Mattoo

February 5, 2025

1 Basics of Semi-orthogonal Decompositions

For X/k a variety, we want to understand $D^b_{Coh}(X)$, by breaking it into pieces. First, let's understand what the pieces look like. The following applies in the generality of triangulated categories.

Definition 1.1. A subcategory $i : \mathcal{A} \hookrightarrow \mathcal{D}$ of a triangulated category \mathcal{D} is *left (rep. right)* admissible if the inclusion i has a left (resp. right) adjoint i^* (resp. $i^!$). It is admissible if it is left and right admissible.

The following is a key example for generating admissible subcategories.

Definition 1.2. An object E is exceptional if $\text{Hom}^*(E, E) = k[0]$.

That is, E behaves homologically like a point, so $\langle E \rangle = D^b_{\rm coh}(k)$. This is the simplest form a component of a triangulated category can take.

Proposition 1.3. If E is exceptional, then $\langle E \rangle$ is admissible.

Proof. We will construct the adjoints to $i : \langle E \rangle \hookrightarrow \mathcal{D}$ directly. Define for $A \in \mathcal{D}$,

$$i^*(A) = \operatorname{Hom}^*(A, E)^{\vee} \otimes E, \quad i^!(A) = \operatorname{Hom}^*(E, A) \otimes E$$

We have an evaluation map $A \to \operatorname{Hom}^*(A, E)^{\vee} \otimes E$. Applying $\operatorname{Hom}^*(-, E)^{\vee}$ yields an isomorphism, so $\operatorname{Hom}^*(i^*(A), E) \cong \operatorname{Hom}^*(A, i(E))$. Every element of $\langle E \rangle$ is $\bigoplus E$, so we have adjunction. The case of $i^!$ follows symmetrically.

Remark. Hom^{*}(A, B) = $\bigoplus_i \operatorname{Hom}^i(A, B)[-i]$.

Now, let's understand how to decompose a triangulated category into admissible subcategories.

Definition 1.4. A semi-orthogonal decomposition of a triangulated category \mathcal{D} , denoted

$$\mathcal{D} = \langle \mathcal{D}_1, ..., \mathcal{D}_m \rangle$$

is a sequence of full triangulated subcategories such that

- 1. \mathcal{D} is the smallest triangulated category containing all \mathcal{D}_i .
- 2. If $A \in \mathcal{D}_i, B \in \mathcal{D}_j$ with i > j, then $\operatorname{Hom}(A, B) = 0$.
- 3. Any $A \in \mathcal{D}$ has a "filtration"

 $0 = A_m \to A_{m-1} \to \dots \to A_1 \to A_0 = A$

with $\pi_i(A) = \operatorname{Cone}(A_i \to A_{i-1}) \in \mathcal{D}_i$

Remark. Can check that the projections π_i are unique and functorial (using semi-orthogonality to diagram chase and applying Yoneda). And given $\langle \mathcal{A}, \mathcal{B} \rangle$ we can check \mathcal{A} is left-admissible and \mathcal{B} is right-admissible.

Definition 1.5. Given an admissible subcategory $\mathcal{A} \hookrightarrow \mathcal{D}$, define the *left-orthogonal* and *right-orthogonal* subcategories to be

$${}^{\perp}\mathcal{A} := \{B \in \mathcal{D} : \operatorname{Hom}^*(B, A) = 0, \forall A \in \mathcal{A}\} \text{ and } \mathcal{A}^{\perp} := \{B \in \mathcal{D} : \operatorname{Hom}^*(A, B) = 0, \forall A \in \mathcal{A}\}$$

Thus, we have semi-orthogonal decompositions

$$\mathcal{D} = \langle \mathcal{A}^{\perp}, \mathcal{A}
angle = \langle \mathcal{A}, {}^{\perp}\mathcal{A}
angle$$

with projections given by taking cones.

There are some technical results about sufficient conditions for admissibility which have nice consequences in the case of $D^b_{\text{Coh}}(X)$.

Proposition 1.6. For X smooth and projective, in $D^b_{Coh}(X)$, left and right admissibility are equivalent, and the left or right orthogonal of an admissible category is admissible.

Proof idea. A triangulated category \mathcal{D} is left (resp. right) saturated if every covariant (resp. contravariant) functor $\mathcal{D} \to D^b_{\text{Coh}}(k)$ is representable.

- A left (resp. right) admissible subcategory of a saturated category is saturated: get representing object by applying $i^*/i^{-1}/i!$.
- Saturated implies admissible: construct the adjoint point-wise via representing objects.
- $D^b_{\text{Coh}}(X)$ is saturated: follows from strong generation.

See Section 2.3 for details.

2 Fourier-Mukai Kernels

Let X, Y/k be smooth projective varieties, and let $p_1, p_2: X \times Y \to X, Y$ be the projections.

Definition 2.1. Given $\mathcal{E} \in D^b_{Coh}(X)$, the Fourier-Mukai functor with kernel \mathcal{E} is the functor $D^b_{Coh}(X) \to D^b_{Coh}(Y)$

$$\Phi_{\mathcal{E}}(-) := p_{2*}(\mathcal{E} \otimes p_1^*(-))$$

And let $\Phi'_{\mathcal{E}}$ respectively swap X and Y.

Can think of the kernel as the graph of the functor. This allows us to convert information about functors into information about objects of $D^b_{\text{Coh}}(X)$.

Example.

$$\Phi_{\Delta_*\mathcal{O}_X}(-) = p_{2*}(\Delta_*\mathcal{O}_X \otimes p_1^*(-))$$

= $p_{2*}(\Delta_*(\mathcal{O}_X \otimes \Delta^* p_1^*(-)))$
= $(p_2 \circ \Delta)_* \circ (\pi_1 \circ \Delta)^*(-)$
= id

by the projection formula (projection maps are flat so we're lazily omitting derived pullback notation). Likewise, $\Phi_{\Delta_*\mathcal{O}_X} = \mathrm{id}$, $\Phi_{\Gamma_f} = Rf_*$, $\Phi_{\Gamma'_f} = Lf^*$, $\Phi_{\mathcal{O}_X} = H^*(X, -)$.

Remark. Orlov showed that every fully faithful exact functor with an adjoint between D_{Coh}^b of smooth projective varieties is Fourier-Mukai.

Theorem 2.2 (Kuznetsov). Projection functors of semi-orthogonal decompositions are Fourier-Mukai.

Proof idea. Can lift $D^b_{\text{Coh}}(X) = \langle \mathcal{A}_0, ..., \mathcal{A}_m \rangle$ to $D^b_{\text{Coh}}(X \times X) = \langle \mathcal{A}_{0X}, ..., \mathcal{A}_{mX} \rangle$, where \mathcal{A}_{iX} is generated by $A \boxtimes F$ for $A \in \mathcal{A}_i$ and $F \in D^b_{\text{Coh}}(X)$. Then taking the cones of the filtration of $\Delta_* \mathcal{O}_X$ give the Fourier-Mukai kernels. Requires some technical considerations with base change.

The filtration of $\Delta_* \mathcal{O}_X$ can be thought of as a *universal filtration*.

Theorem 2.3. $D^b_{\text{Coh}}(\mathbf{P}^n) = \langle \mathcal{O}, \mathcal{O}(1) ... \mathcal{O}(n) \rangle.$

Proof sketch. Since $H^*(\mathbf{P}^n, \mathcal{O}) = \mathbf{C}[0]$ and $H^*(\mathbf{P}^n, \mathcal{O}(-i)) = 0$ for $1 \leq i \leq n$, the line bundles are exceptional and we have a semi-orthogonal decomposition, so it remains to check that it generates $D^b_{\text{Coh}}(\mathbf{P}^n)$.

Can show that $\Omega^1(1) \boxtimes \mathcal{O}(-1)$ is the ideal sheaf of $\Delta \subset \mathbf{P}^n \times \mathbf{P}^n$, which gives Koszul resolution

$$\Omega^n(n) \boxtimes \mathcal{O}(-n) \to \dots \to \Omega^1(1) \boxtimes \mathcal{O}(-1) \to \mathcal{O}_{\mathbf{P}^n \times \mathbf{P}^n} \to \mathcal{O}_\Delta \to 0$$

So for any $F \in D^b_{Coh}(\mathbf{P}^n)$, we get a resolution for $\Phi_{\mathcal{O}_{\Delta}}(F) = F$ whose terms are

$$p_{2*}(p_1^*\Omega^i(i) \otimes p_2^*\mathcal{O}(-i) \otimes p_1^*F) = p_{2*}p_1^*(\Omega^i(i) \otimes F) \otimes \mathcal{O}(-i)$$
$$= H^*(\mathbf{P}^n, \Omega^i(i) \otimes F) \otimes_k \mathcal{O}(-i)$$

by the projection formula and flat base change. Thus, $F \in \langle \mathcal{O}(-n), ..., \mathcal{O}(-1), \mathcal{O} \rangle$, and we can twist by n to get the desired decomposition.

Remark. If we use Φ' instead, we get another full exceptional collection $D^b_{\text{Coh}}(\mathbf{P}^n) = \langle \mathcal{O}, \Omega^1(1), ..., \Omega^n(n) \rangle$.

Definition 2.4. A semi-orthogonal decomposition with each component generated by exceptional objects is a *(full) exceptional collection*.

3 Splitting Functors

Another source of semi-orthogonal decompositions is mapping one triangulated category into another and taking kernels/images.

Let's look at a concrete example first, then give the general results.

Proposition 3.1. If $f : X \to Y$ is a smooth proper map between varieties, then there is a semi-orthogonal decomposition $D^b_{Coh}(X) = \langle \ker Rf_*, Lf^*(D^b_{Coh}(Y)) \rangle$.

Proof. By adjunction, $\operatorname{Hom}(Lf^*B, \ker Rf_*) = \operatorname{Hom}(B, Rf_* \ker Rf_*) = 0$, so we need to show admissibility and fullness. We do these at the same time by giving a decomposition triangle for arbitrary $F \in D^b_{\operatorname{Coh}}(X)$:

$$Lf^*Rf_*F \xrightarrow{\varphi} F \to \operatorname{Cone}(\varphi)$$

Clearly the object on the left is in the image of Lf^* , so it suffices to show $Rf_*(\varphi)$ is an isomorphism. We have $Rf_*\mathcal{O}_X \cong \mathcal{O}_Y$, so by the projection formula:

$$Rf_*Lf^*Rf_*F = Rf_*(Lf^*(\mathcal{O}_Y \otimes Rf_*F))$$
$$= Rf_*(\mathcal{O}_Y) \otimes Rf_*F$$
$$= Rf_*F$$

So the natural map is the identity.

Definition 3.2. An exact functor $\Phi : \mathcal{B} \to \mathcal{A}$ is *right (resp. left) splitting* if ker Φ is right (resp. left) admissible in \mathcal{B} , Im Φ is right (resp. left) admissible in \mathcal{A} , and $\Phi|_{(\ker \Phi)^{\perp}}$ (resp. $\Phi|_{\perp (\ker \Phi)}$) is fully faithful.

Theorem 3.3. An exact functor Φ is a left splitting iff the natural map $\Phi \to \Phi \Phi^* \Phi \cong \Phi$ is an isomorphism, in which case there are semi-orthogonal decompositions

 $\langle \ker \Phi, \operatorname{Im} \Phi^* \rangle, \quad \langle \operatorname{Im}, \ker \Phi^* \rangle$

See Theorem 3.3 for the full statement and proof.

Remark. Can think of splitting functors as a generalization of fully faithful functors with an adjoint: it is fully faithful away from its kernel. Kuznetsov conjectures that any splitting functor between D^b_{Coh} of smooth projective varieties is Fourier Mukai. Conversely, every Fourier-Mukai functor is a splitting functor.

4 Serre Functors

The notion of left vs. right has come quite a bit, and those two are symmetric in our cases thanks to Serre duality.

Definition 4.1. A Serre functor S on a triangulated category \mathcal{D} is an autoequivalence such that for all $A, B \in \mathcal{D}$, there is a natural isomorphism

$$\operatorname{Hom}(A, B) \cong \operatorname{Hom}(B, S(A))^{\vee}$$

By general category theory, this functor is unique up to isomorphism.

Proposition 4.2. For X a smooth and projective variety, any admissible subcategory $i : \mathcal{D} \hookrightarrow D^b_{Coh}(X)$ has a Serre functor $S_{\mathcal{D}}$.

Proof sketch. First note $S_X(-) := (-) \otimes \omega_X[\dim X]$ by Serre duality. Then can check

$$S_{\mathcal{D}} \cong i^! \circ S_X \circ i$$

satisfies the universal property.

The Serre functor of an admissible subcategory is not always easy to compute explicitly — one of the later talks may examine this. This also means that $i^!$ (or dually, in some cases, i^*) may be hard to compute.

Remark. $i^! = S_{\mathcal{D}} \circ i^* \circ S_X^{-1}$ and $i^* = S_{\mathcal{D}}^{-1} \circ i^! \circ S_X$.

The Serre functor is often one of the only tools available. For instance, consider the following big theorem.

Theorem 4.3 (Bondal-Orlov). Let X be a smooth projective variety with $\pm K_X$ ample. If there exist X' smooth projective variety with $D^b_{Coh}(X) \cong D^b_{Coh}(X')$, then $X \cong X'$.

Proof idea. Call P a point object of codimension n if $S(P) \simeq P[s]$, $\operatorname{Hom}^{<0}(P, P) = 0$, and $\operatorname{Hom}^{0}(P, P) = k$.

Point objects in $D^b_{\text{Coh}}(X)$ must map to those of $D^b_{\text{Coh}}(X')$, which we use to construct a map $X \to X'$. But for this you need to show $P \cong \mathcal{O}_{X,x}[k]$. We have $\mathcal{H}^i(P) \otimes \omega_X \cong \mathcal{H}^i(P)$, which if $\omega_X^{\pm 1}$ is ample means $\mathcal{H}^i(P)$ has finite support, and with a bit more argument must be as desired.

Remark. This argument obviously fails for abelian varieties, where $\omega_X \cong \mathcal{O}_X$. Indeed, Mukai showed for an abelian variety A that $D^b_{Coh}(A) \cong D^b_{Coh}(A^{\vee})$ using the Fourier-Mukai transform.