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1 Basics of Semi-orthogonal Decompositions

For X/k a variety, we want to understand D2, (X), by breaking it into pieces. First, let’s
understand what the pieces look like. The following applies in the generality of triangulated
categories.

Definition 1.1. A subcategory i : A < D of a triangulated category D is left (rep. right)
admissible if the inclusion i has a left (resp. right) adjoint i* (resp. i'). It is admissible if it
is left and right admissible.

The following is a key example for generating admissible subcategories.
Definition 1.2. An object E is exceptional if Hom*(E, E) = k[0].

That is, E behaves homologically like a point, so (E) = D% (k). This is the simplest
form a component of a triangulated category can take.

Proposition 1.3. If E is exceptional, then (E) is admissible.
Proof. We will construct the adjoints to i : (F) < D directly. Define for A € D,
i*(A) = Hom*(A,E) ® E, i'(A) =Hom*(E,A)® E

We have an evaluation map A — Hom"(A, E)Y ® E. Applying Hom*(—, E)" yields an
isomorphism, so Hom*(i*(A), ) = Hom"(A,i(F)). Every element of (F) is @ F, so we
have adjunction. The case of i* follows symmetrically. m

Remark. Hom*(A4, B) = @, Hom'(A, B)[—1].

Now, let’s understand how to decompose a triangulated category into admissible subcat-
egories.

Definition 1.4. A semi-orthogonal decomposition of a triangulated category D, denoted
D = (Ds,...,Dp)

is a sequence of full triangulated subcategories such that



1. D is the smallest triangulated category containing all D;.
2. If Ae D;, B € D; with ¢ > j, then Hom(A4, B) = 0.
3. Any A € D has a “filtration”
0=A4, > A4,.1—>..— A > A=A
with m;(A) = Cone(A4; — A;—1) € D;

Remark. Can check that the projections 7; are unique and functorial (using semi-orthogonality
to diagram chase and applying Yoneda). And given (A, B) we can check A is left-admissible
and B is right-admissible.

Definition 1.5. Given an admissible subcategory A < D, define the left-orthogonal and
right-orthogonal subcategories to be

LA:={BecD:Hom"(B,A) =0,YA € A} and At := {B € D:Hom"(A,B) =0,YA € A}
Thus, we have semi-orthogonal decompositions
D= (A" A) = (A+A)

with projections given by taking cones.
There are some technical results about sufficient conditions for admissibility which have
nice consequences in the case of D2 (X).

Proposition 1.6. For X smooth and projective, in D%, ,(X), left and right admissibility are
equivalent, and the left or right orthogonal of an admissible category is admissible.

Proof idea. A triangulated category D is left (resp. right) saturated if every covariant (resp.
contravariant) functor D — D%, (k) is representable.

e A left (resp. right) admissible subcategory of a saturated category is saturated: get
representing object by applying i* /i ~1/i".

e Saturated implies admissible: construct the adjoint point-wise via representing objects.
e DY, (X) is saturated: follows from strong generation.

See [Section 2.3 for details. O]

2 Fourier-Mukai Kernels

Let X,Y/k be smooth projective varieties, and let py, ps : X XY — XY be the projections.

Definition 2.1. Given £ € D¢, (X), the Fourier-Mukai functor with kernel € is the functor
Dgoh(X) - Dlg]oh(y)
De(—) = p2. (€@ pi(—))

And let @) respectively swap X and Y.


https://arxiv.org/pdf/math/0507292

Can think of the kernel as the graph of the functor. This allows us to convert information
about functors into information about objects of D2, (X).

Example.

Pa,0x (=) = P2, (AOx @ pi(—))
= P2, (Au(Ox ® A"pi(—)))
= (p20A)s o (moA) (=)
=id
by the projection formula (projection maps are flat so we’re lazily omitting derived pullback
notation). Likewise, ®a,0, = id, ®r, = Rf,, (I>p/f =Lf* o, = H*(X,—).

Remark. Orlov showed that every fully faithful exact functor with an adjoint between D2,
of smooth projective varieties is Fourier-Mukai.

Theorem 2.2 (Kuznetsov). Projection functors of semi-orthogonal decompositions are Fourier-
Mukas.

Proof idea. Can lift D2, (X) = (Ag, ..., Apn) to D2 (X x X) = (Aox, -, Amx ), where A; x
is generated by AX F for A € A; and F € D, (X). Then taking the cones of the filtration
of A,Ox give the Fourier-Mukai kernels. Requires some technical considerations with base
change. O]

The filtration of A,Ox can be thought of as a universal filtration.
Theorem 2.3. D%, (P") = (0,0(1)...0(n)).

Proof sketch. Since H*(P",O) = CJ[0] and H*(P",O(—i)) = 0 for 1 < ¢ < n, the line
bundles are exceptional and we have a semi-orthogonal decomposition, so it remains to
check that it generates DY, (P™).

Can show that Q'(1) X O(—1) is the ideal sheaf of A C P™ x P", which gives Koszul

resolution
Q"(n)RO(—n) = ... > Q1)K O(=1) = Opnyxpn — Oa — 0
So for any F' € DY, (P"), we get a resolution for ®p, (F)) = F whose terms are
P2 (P1Y (i) @ p3O(—i) @ i F) = p2.,pi (X' (i) ® F) ® O(—i)
= H*(P",Q'(i) ® F) ® O(—i)

by the projection formula and flat base change. Thus, F' € (O(—n), ..., O(—1),0), and we
can twist by n to get the desired decomposition.

[]

Remark. If we use ® instead, we get another full exceptional collection D2, (P") =

(0,Q1(1), ..., " (n)).

Definition 2.4. A semi-orthogonal decomposition with each component generated by ex-
ceptional objects is a (full) exceptional collection.
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3 Splitting Functors

Another source of semi-orthogonal decompositions is mapping one triangulated category into
another and taking kernels/images.
Let’s look at a concrete example first, then give the general results.

Proposition 3.1. If f : X — Y is a smooth proper map between varieties, then there is a
semi-orthogonal decomposition D%, (X) = (ker Rf,, Lf*(D%, (Y))).

Proof. By adjunction, Hom(Lf*B, ker Rf.) = Hom(B, Rf. ker Rf.) = 0, so we need to show
admissibility and fullness. We do these at the same time by giving a decomposition triangle
for arbitrary F' € D2, (X):

Lf*Rf.F % F — Cone(y)

Clearly the object on the left is in the image of Lf*, so it suffices to show Rf.(y) is an
isomorphism. We have Rf.Ox = Oy, so by the projection formula:

RELf*Rf.F = RE(Lf"(Oy @ RL.F))
= Rf.(Oy) @ Rf.F
= Rf.F
So the natural map is the identity. m

Definition 3.2. An exact functor ® : B — A is right (resp. left) splitting if ker ® is right
(resp. left) admissible in B, Im ® is right (resp. left) admissible in A, and ®|e, )+ (resp.
DL (er@)) is fully faithful.

Theorem 3.3. An exact functor @ is a left splitting iff the natural map ® — PP*P = P 45
an isomorphism, in which case there are semi-orthogonal decompositions

(ker @, Im ®*), (Im , ker &)

See Theorem 3.3 for the full statement and proof.

Remark. Can think of splitting functors as a generalization of fully faithful functors with
an adjoint: it is fully faithful away from its kernel. Kuznetsov conjectures that any splitting
functor between DY, of smooth projective varieties is Fourier Mukai. Conversely, every
Fourier-Mukai functor is a splitting functor.

4 Serre Functors

The notion of left vs. right has come quite a bit, and those two are symmetric in our cases
thanks to Serre duality.

Definition 4.1. A Serre functor S on a triangulated category D is an autoequivalence such
that for all A, B € D, there is a natural isomorphism

Hom(A, B) & Hom(B, S(A))"
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By general category theory, this functor is unique up to isomorphism.

Proposition 4.2. For X a smooth and projective variety, any admissible subcategory i :
D — D% ,(X) has a Serre functor Sp.

Proof sketch. First note Sx(—) := (—) ® wx[dim X| by Serre duality. Then can check
Sp=ioSyoi
satisfies the universal property. O]

The Serre functor of an admissible subcategory is not always easy to compute explicitly
— one of the later talks may examine this. This also means that i' (or dually, in some cases,
i*) may be hard to compute.

. . _ . _ .
Remark. 7 = Spoi*o le and 7* = Spl o7 oSy.

The Serre functor is often one of the only tools available. For instance, consider the
following big theorem.

Theorem 4.3 (Bondal-Orlov). Let X be a smooth projective variety with £Kyx ample. If
there exist X' smooth projective variety with D2, (X) = Db (X"), then X = X'.

Proof idea. Call P a point object of codimension n if S(P) ~ Pl[s], Hom<°(P, P) = 0, and
Hom"(P, P) = k.

Point objects in DY, (X) must map to those of Dg_ , (X’), which we use to construct a
map X — X’. But for this you need to show P = Ox,[k]. We have H'(P) ® wx = H'(P),
which if w)jgl is ample means H'(P) has finite support, and with a bit more argument must
be as desired. O

Remark. This argument obviously fails for abelian varieties, where wx = Ox. Indeed,
Mukai showed for an abelian variety A that D2, (A) = D, (AY) using the Fourier-Mukai
transform.
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