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1 Basics of Semi-orthogonal Decompositions

For X/k a variety, we want to understand Db
Coh(X), by breaking it into pieces. First, let’s

understand what the pieces look like. The following applies in the generality of triangulated
categories.

Definition 1.1. A subcategory i : A ↪→ D of a triangulated category D is left (rep. right)
admissible if the inclusion i has a left (resp. right) adjoint i∗ (resp. i!). It is admissible if it
is left and right admissible.

The following is a key example for generating admissible subcategories.

Definition 1.2. An object E is exceptional if Hom∗(E,E) = k[0].

That is, E behaves homologically like a point, so ⟨E⟩ = Db
coh(k). This is the simplest

form a component of a triangulated category can take.

Proposition 1.3. If E is exceptional, then ⟨E⟩ is admissible.

Proof. We will construct the adjoints to i : ⟨E⟩ ↪→ D directly. Define for A ∈ D,

i∗(A) = Hom∗(A,E)∨ ⊗ E, i!(A) = Hom∗(E,A)⊗ E

We have an evaluation map A → Hom∗(A,E)∨ ⊗ E. Applying Hom∗(−, E)∨ yields an
isomorphism, so Hom∗(i∗(A), E) ∼= Hom∗(A, i(E)). Every element of ⟨E⟩ is

⊕
E, so we

have adjunction. The case of i! follows symmetrically.

Remark. Hom∗(A,B) =
⊕

i Hom
i(A,B)[−i].

Now, let’s understand how to decompose a triangulated category into admissible subcat-
egories.

Definition 1.4. A semi-orthogonal decomposition of a triangulated category D, denoted

D = ⟨D1, ...,Dm⟩

is a sequence of full triangulated subcategories such that
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1. D is the smallest triangulated category containing all Di.

2. If A ∈ Di, B ∈ Dj with i > j, then Hom(A,B) = 0.

3. Any A ∈ D has a “filtration”

0 = Am → Am−1 → ... → A1 → A0 = A

with πi(A) = Cone(Ai → Ai−1) ∈ Di

Remark. Can check that the projections πi are unique and functorial (using semi-orthogonality
to diagram chase and applying Yoneda). And given ⟨A,B⟩ we can check A is left-admissible
and B is right-admissible.

Definition 1.5. Given an admissible subcategory A ↪→ D, define the left-orthogonal and
right-orthogonal subcategories to be

⊥A := {B ∈ D : Hom∗(B,A) = 0,∀A ∈ A} and A⊥ := {B ∈ D : Hom∗(A,B) = 0,∀A ∈ A}

Thus, we have semi-orthogonal decompositions

D = ⟨A⊥,A⟩ = ⟨A, ⊥A⟩

with projections given by taking cones.
There are some technical results about sufficient conditions for admissibility which have

nice consequences in the case of Db
Coh(X).

Proposition 1.6. For X smooth and projective, in Db
Coh(X), left and right admissibility are

equivalent, and the left or right orthogonal of an admissible category is admissible.

Proof idea. A triangulated category D is left (resp. right) saturated if every covariant (resp.
contravariant) functor D → Db

Coh(k) is representable.

• A left (resp. right) admissible subcategory of a saturated category is saturated: get
representing object by applying i∗/i−1/i!.

• Saturated implies admissible: construct the adjoint point-wise via representing objects.

• Db
Coh(X) is saturated: follows from strong generation.

See Section 2.3 for details.

2 Fourier-Mukai Kernels

Let X, Y/k be smooth projective varieties, and let p1, p2 : X×Y → X, Y be the projections.

Definition 2.1. Given E ∈ Db
Coh(X), the Fourier-Mukai functor with kernel E is the functor

Db
Coh(X) → Db

Coh(Y )
ΦE(−) := p2∗(E ⊗ p∗1(−))

And let Φ′
E respectively swap X and Y .
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Can think of the kernel as the graph of the functor. This allows us to convert information
about functors into information about objects of Db

Coh(X).

Example.

Φ∆∗OX
(−) = p2∗(∆∗OX ⊗ p∗1(−))

= p2∗(∆∗(OX ⊗∆∗p∗1(−)))

= (p2 ◦∆)∗ ◦ (π1 ◦∆)∗(−)

= id

by the projection formula (projection maps are flat so we’re lazily omitting derived pullback
notation). Likewise, Φ∆∗OX

= id, ΦΓf
= Rf∗, ΦΓ′

f
= Lf ∗, ΦOX

= H∗(X,−).

Remark. Orlov showed that every fully faithful exact functor with an adjoint between Db
Coh

of smooth projective varieties is Fourier-Mukai.

Theorem 2.2 (Kuznetsov). Projection functors of semi-orthogonal decompositions are Fourier-
Mukai.

Proof idea. Can lift Db
Coh(X) = ⟨A0, ...,Am⟩ to Db

Coh(X ×X) = ⟨A0X , ...,AmX⟩, where AiX

is generated by A⊠F for A ∈ Ai and F ∈ Db
Coh(X). Then taking the cones of the filtration

of ∆∗OX give the Fourier-Mukai kernels. Requires some technical considerations with base
change.

The filtration of ∆∗OX can be thought of as a universal filtration.

Theorem 2.3. Db
Coh(P

n) = ⟨O,O(1)...O(n)⟩.

Proof sketch. Since H∗(Pn,O) = C[0] and H∗(Pn,O(−i)) = 0 for 1 ≤ i ≤ n, the line
bundles are exceptional and we have a semi-orthogonal decomposition, so it remains to
check that it generates Db

Coh(P
n).

Can show that Ω1(1) ⊠ O(−1) is the ideal sheaf of ∆ ⊂ Pn × Pn, which gives Koszul
resolution

Ωn(n)⊠O(−n) → ... → Ω1(1)⊠O(−1) → OPn×Pn → O∆ → 0

So for any F ∈ Db
Coh(P

n), we get a resolution for ΦO∆
(F ) = F whose terms are

p2∗(p
∗
1Ω

i(i)⊗ p∗2O(−i)⊗ p∗1F ) = p2∗p
∗
1(Ω

i(i)⊗ F )⊗O(−i)

= H∗(Pn,Ωi(i)⊗ F )⊗k O(−i)

by the projection formula and flat base change. Thus, F ∈ ⟨O(−n), ...,O(−1),O⟩, and we
can twist by n to get the desired decomposition.

Remark. If we use Φ′ instead, we get another full exceptional collection Db
Coh(P

n) =
⟨O,Ω1(1), ...,Ωn(n)⟩.

Definition 2.4. A semi-orthogonal decomposition with each component generated by ex-
ceptional objects is a (full) exceptional collection.
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3 Splitting Functors

Another source of semi-orthogonal decompositions is mapping one triangulated category into
another and taking kernels/images.

Let’s look at a concrete example first, then give the general results.

Proposition 3.1. If f : X → Y is a smooth proper map between varieties, then there is a
semi-orthogonal decomposition Db

Coh(X) = ⟨kerRf∗, Lf
∗(Db

Coh(Y ))⟩.

Proof. By adjunction, Hom(Lf ∗B, kerRf∗) = Hom(B,Rf∗ kerRf∗) = 0, so we need to show
admissibility and fullness. We do these at the same time by giving a decomposition triangle
for arbitrary F ∈ Db

Coh(X):

Lf ∗Rf∗F
φ−→ F → Cone(φ)

Clearly the object on the left is in the image of Lf ∗, so it suffices to show Rf∗(φ) is an
isomorphism. We have Rf∗OX

∼= OY , so by the projection formula:

Rf∗Lf
∗Rf∗F = Rf∗(Lf

∗(OY ⊗Rf∗F ))

= Rf∗(OY )⊗Rf∗F

= Rf∗F

So the natural map is the identity.

Definition 3.2. An exact functor Φ : B → A is right (resp. left) splitting if kerΦ is right
(resp. left) admissible in B, Im Φ is right (resp. left) admissible in A, and Φ|(kerΦ)⊥ (resp.
Φ|⊥(kerΦ)) is fully faithful.

Theorem 3.3. An exact functor Φ is a left splitting iff the natural map Φ → ΦΦ∗Φ ∼= Φ is
an isomorphism, in which case there are semi-orthogonal decompositions

⟨kerΦ, Im Φ∗⟩, ⟨Im , kerΦ∗⟩

See Theorem 3.3 for the full statement and proof.

Remark. Can think of splitting functors as a generalization of fully faithful functors with
an adjoint: it is fully faithful away from its kernel. Kuznetsov conjectures that any splitting
functor between Db

Coh of smooth projective varieties is Fourier Mukai. Conversely, every
Fourier-Mukai functor is a splitting functor.

4 Serre Functors

The notion of left vs. right has come quite a bit, and those two are symmetric in our cases
thanks to Serre duality.

Definition 4.1. A Serre functor S on a triangulated category D is an autoequivalence such
that for all A,B ∈ D, there is a natural isomorphism

Hom(A,B) ∼= Hom(B, S(A))∨
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By general category theory, this functor is unique up to isomorphism.

Proposition 4.2. For X a smooth and projective variety, any admissible subcategory i :
D ↪→ Db

Coh(X) has a Serre functor SD.

Proof sketch. First note SX(−) := (−)⊗ ωX [dimX] by Serre duality. Then can check

SD ∼= i! ◦ SX ◦ i

satisfies the universal property.

The Serre functor of an admissible subcategory is not always easy to compute explicitly
— one of the later talks may examine this. This also means that i! (or dually, in some cases,
i∗) may be hard to compute.

Remark. i! = SD ◦ i∗ ◦ S−1
X and i∗ = S−1

D ◦ i! ◦ SX .

The Serre functor is often one of the only tools available. For instance, consider the
following big theorem.

Theorem 4.3 (Bondal-Orlov). Let X be a smooth projective variety with ±KX ample. If
there exist X ′ smooth projective variety with Db

Coh(X) ∼= Db
Coh(X

′), then X ∼= X ′.

Proof idea. Call P a point object of codimension n if S(P ) ≃ P [s], Hom<0(P, P ) = 0, and
Hom0(P, P ) = k.

Point objects in Db
Coh(X) must map to those of Db

Coh(X
′), which we use to construct a

map X → X ′. But for this you need to show P ∼= OX,x[k]. We have Hi(P )⊗ ωX
∼= Hi(P ),

which if ω±1
X is ample means Hi(P ) has finite support, and with a bit more argument must

be as desired.

Remark. This argument obviously fails for abelian varieties, where ωX
∼= OX . Indeed,

Mukai showed for an abelian variety A that Db
Coh(A)

∼= Db
Coh(A

∨) using the Fourier-Mukai
transform.
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