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1. SeTUuP

We start by recalling the following proposition:

Proposition 1.1. Suppose f : S — T is a projective morphism of smooth projective varieties such that
[ : D(S) — D(T) sends Og to Or. Then f* : D*(T) — D®(S) is fully faithful and gives an equivalence
of DY(T') with an admissible subcategory of D®(S).

Proof. Adjunction gives a natural map
So f.f* is naturally isomorphic to the identity functor, so f* is fully faithful. |

Let N be a vector bundle on a smooth projective variety Y. There is a natural projective morphism
7w : P(N) — Y that satisfies the condition in the proposition, so it induces a fully faith functor
7* . D*(Y) — D*(P(N)) whose image is an admissible subcategory.

In fact, if A" has rank r, we have a semi-orthogonal decomposition of D*(P(\)):
T DY(Y)® O(a),--- , 7" DY) ® O(a+1 —1).
This is a relative version of the semi-orthogonal decomposition P" = (O(a),--- ,O(a +r — 1)).

The second situation where the condition in the proposition is satisfied is blow-ups. Let g : X — X
be the blow-up of a smooth projective variety X along some smooth closed Y C X. Then q is

projective and ¢.O5 = Ox. So ¢* : D’(X) — DV(X) gives an admissible subcategory of Db(X).

For blow-ups, leti : £ — X be the exceptional divisor, and let N be the normal sheaf of Y, which is
the dual of Z/Z2. Then E = P (/) is a projective bundle 7 : P(N') — Y over Y. This is summarized
by the following diagram

2. CLoseED IMMERSION

A first step is to understand the closed immersion j : Y < X. Suppose first Y is the zero subvariety
of a section s of a locally free sheaf £ of rank ¢ (so Y is of codimension c in X'). Then we have the
Koszul resolution

O%Agv%---ﬁgvﬁoxﬁj*Oy%O.
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(Affine locally, given a element s of some free R-module M, we obtain a map M" — R by evalu-
ating against s. The differential is

n

dleg N+ Nep) :Z(—l)iei(s)el/\'--/\éi/\---/\en
i=1

where ey, - - - , e, are the dual basis.) In other words, we have a quasi-isomorphism A\* &Y — 5, Oy
Also, in this case N = j*&€

Proposition 2.1. In the situation above, we have a canonical isomorphism

k
750y =P \NVIK]
k

Moreover, for any object F* € D*(Y), we have

k
Ged"3xF* = §Oy @ j.F* = j. (EB ANV @ f’)
and

Homx (< Oy, j+F*) = ju (@/\N ®.7:'>

Proof. Since we have the quasi-isomorphism A* &Y — 5.0y, we can compute j*5,.Oy by A\* j*EV.
The definition of the Koszul complex tells us the differentials of A\*® j*£Y are all zero, because the
are given by evaluating against s but Y is exactly the subscheme where s is 0. Therefore

) k k
30y = Nie" = P Ni*e K = P ANIK]
k k

To prove the other two isomorphisms, we split the resolution A* &Y — ;. Oy into short exact se-
quences, and tensor each one with j, F*. Since j,.F* is supported on Y and the differentials vanish
on Y, we obtain splitting triangles. Then taking the direct sum of all of those gives the desired
results. -

Corollary 2.2. In the same situation, for any F* € D(Y') we have

'35 F) = P /\NV®”HS (F*)

s—r=l
and

Extly (j. Oy, juF®) = (EB /\N’@?—Ls (F*) >

r4s=l

Proof. Since j is a closed immersion, j, is exact, so it commutes with taking cohomology. Also, A/
is locally free, so tensoring by N and its exterior powers also commutes with taking cohomology.
Using the previous proposition and these two fact to push symbols around and conclude. |
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Corollary 2.3. Now assume further that Y has codimension 1 in X. Then
75Oy = Oy & j"Ox (-Y)[1].
Moreover, for any object F* € Db(Y), we have a distinguished triangle
F* @Oy (=Y)[1] = j jF* — F°
and an isomorphism
Jed 3o F* = o @ ju(F* @ Oy (=Y))[1].

Proof. From the Proposition we get j*j.Oy = Oy @ (Z/Z?%)[1], and T = Ox(-Y). The third iso-
morphism is true for the same reason. Proof of the distinguished triangle is omitted. |

We can upgrade to a more global situation.

Proposition 2.4. Let j : Y — X be an arbitrary closed immersion of smooth varieties. Then there are
isomorphisms

] ]*OY /\Nv

and

Ext (.Oy, j:Oy) = AN

Proof. Choose a global locally free resolution G* — Oy, and glue the local results proved above.
The local isomorphisms are canonical so they glue. n

3. BLow-ups

We return to the situation

Proposition 3.1. Suppose Y C X is of codimension ¢ > 2. The functor
@), : DY(Y) — D(X)
F* = i,(Op(kE) @ m*(F*))
is fully faithful for any k, and admits a right adjoint.

The functor ®;, is a Fourier-Mukai transform with kernel O (kE) considered as an object in D®(Y x
X) (remember that Op(kE) means i*O ¢ (kE)). More precisely, we have the diagram

X 1o X
Tpl ]j
XxY

p2 Yy
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The Fourier-Mukai transform with kernel f,Og(kE) is

(pl)*(p;f. ® f*OE(kE)) = (p1>*f*(f*p§f. ® OE(kE))
~ i (7" F* @ O(kE)).

Bondal and Orlov has the following result which gives a criterion for whether a Fourier-Mukai
transform is fully faithful:

Theorem 3.2. A Fourier-Mukai transform ®p : D*(X) — DP(Y) with kernel P is fully faithful if and
only if for any two closed points x,y € X,

k, x=yandi=0
0, z#yori<0ori>dim(X).

Hom(®p (k(x)), @p(k(y))[i]) = {

Proof of Proposition 3.1. To use the criterion we first need to compute ®(k(y)) for y € Y. We have
m*k(r) = Or-1(,), and Op(E) restricted to any fiber is O(—1) of that fiber, so we end up with
ixOr-1(,)(—k). Hence if z # y, then @, (k(z)) and @4 (k(y)) have disjoint supports, so there is no
non-trivial morphism between them.

We are left with the case = = y. Namely, we want to compute
Hom g (@4 (k(2)), @ (k(2))[i]) = Exts (4. (k(2)), B (k(2))) = EXt (1,051 () (), 12 Opr () ()
This is zero for i < 0. We have the spectral sequence

Eg,q = Hp(X,gl'tq(Z.*wal(l,),i*oﬂ—l(x))) = EX‘C?;_Q(Z'*OFA(LE),Z'*wal(l,))
We have just seen in Proposition 2.4 how to compute this. Namely,

q
Ext1(ixOr1(2), 150 -1()) = /\wal(;p)/)?'
So .
EY? = HP(x~(x), /\Nﬂ—l(lﬂ)/f{) = EXtI;rq(i*Ofr‘l(x)’ 5Or1(a))
We use the short exact sequence

0= Ne-1(a)/8 = Nﬂfl(x)/f( = NE/)?|7r—1(:v) — 0.

I

General theory of blow-ups tells us N;-1(,) /5 = 029 () @nd N gla-1(2) = Ox-1(z)(—=1). Also,

Ext!(Or1(s)(=1), 024 ) = H' (17! (), Or-14)(1))

(@) 0

because 7 !(x) = P¢~L. So the short exact sequence splits. This allows use to conclude E5¢ = 0
forallp > 0orp = 0and ¢ > d. Hence Ext%(i*Oﬂ_l(x)(—k:),i*Oﬂ_1(m)(—k)) =E% =0forq>d
and Ext’ = HY(O,-1(,)) = k. u

Thus, foreach k = —c+1,--- , -1, the image
Dy, = Im (@,k . DY) — Db()?))

is an admissible subcategory of D?(X) that is equivalent to D?(Y). We will denote by Dy the full
subcategory ¢*D°(X).
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Theorem 3.3 (Orlov). The admissible subcategories
D—C-I—ly T 7D—17 DO

form a semi-orthogonal decomposition of DY(X).

Proof. There are always two steps: check they are orthogonal, and check they generate D’(X).

First let —c+ 1 < [ < k < 0. We will show D; C Di-. Let £*, F* € D’(Y). Also write O, (m) for
Og(—mE). We have

Hom (i, (m* F* ® Or(k)), ix(7*E® ® Ox(1))) = Hom(i* i, F*, 7°E* @ O (1 — k))
We have a distinguished triangle by Corollary 2.3, which applies since F has codimension 1 in X
T F* R Or(1)[1] = "™ F® = 7" F°* = m° F* @ O(1)[2]
So it suffices to show
Hom(m* F* ® O (1),7"E* @ O (1 —k)) =0
Hom(m* F*, m*€°* @ O, (I — k)) =0
For example the second one is
Hom(F*,€* @ m.O0(1 —k)) =0
because 7.0 (I — k)) = 0 for | — k < 0 (the fibers are global section of O(I — k) on P¢71).

Now we show these categories generate D?(X). The plan is to take an object £°* that is contained

in D forall —c +1 < [ < 0, and show it is can’t also be in Dy-. This assumption means
Hom (i (7*F* ® O(1)),E*) =0

for all —c + 1 <1 < 0. Applying the adjoint i'€ = i*€ ® Og(E)[~1] and twising by 1 gives

Hom(7*F* ® Ox(1),i*E®) =0

forall —c+2 <[ < 1andall F* € D*(Y). This means i*£® is contained in orthogonal complement

of DY) ® Ox(l),—c +2 < I < 0inside D’(E). But in the very beginning we saw a semi-

orthogonal decomposition of D’(E) with these terms, so we conclude that i*£* € 7*D%(Y) ®

Ox(—c+ 1). In other words, there exists some G* € D?(Y') such that i*§ ® O, (c — 1) = 7*G.

Note that is G = 0, then *£ ® Ox(c — 1) has support outside the exceptional divisor E so it is
in Dy, so we win. If G is non-zero we can find a point # € X such that there is a non-zero map
from i*€ ® Or(c — 1) to ¢*k(x) after some shift, but this requires a bit more theory in the closed
immersion situation than we covered.

Let’s look an example. Let X = P2 and we blow it up at two points to obtain 7 : X — X. Then the
blow-up X has Picard group isomorphic to Z?, generated by a line in the original P2, and the two
exceptional curves E, E; which are both isomorphic to P!. The functor ®; in this case has image
generated by
1+Op, (—1),1.0p,(—1).
and we have a semi-orthogonal decomposition
<i*OE1 (_1)7 xOp, (_1)7 W*Db(PQ»
We know D’ (P?) = (Ops, Op2(1), Op2(2)), so we get a exceptional collection
(140p, (—1),ix0p,(—1), 05,7 Op2(1), 7 Op2(2))
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It is well-known that the same surface X can also by realized as a blow up of P! x P!: The Castel-
novo criterion says there is a blow-up map £ : X — P! x P! that contracts the (—1)-curve on X
which is the strict transform of the line that passes through the two points on P2. Let the excep-
tional curve form 8 be F. Then we obtain a semi-orthogonal decomposition

(Op(-1), 8*D*(P! x P1)).
We know that P! x P! has a strong full exceptional collection
(0,0(1,0),0(0,1),0(1,1))
So we get another full exceptional collection
(Or(=1),0%,670(1,0), 5°0(0,1), B*O(1, 1))
of Db(X).
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