SOD FOR BLOW-UPS

WENQI LI

1. Setup

We start by recalling the following proposition:

Proposition 1.1. Suppose $f : S \to T$ is a projective morphism of smooth projective varieties such that $f_* : D^b(S) \to D^b(T)$ sends \mathcal{O}_S to \mathcal{O}_T . Then $f^* : D^b(T) \to D^b(S)$ is fully faithful and gives an equivalence of $D^b(T)$ with an admissible subcategory of $D^b(S)$.

Proof. Adjunction gives a natural map

$$F \to f_*f^*(F) \cong f_*(f^*F \otimes \mathcal{O}_S) \cong F \otimes f_*(\mathcal{O}_S) \cong F.$$

So f_*f^* is naturally isomorphic to the identity functor, so f^* is fully faithful.

Let \mathcal{N} be a vector bundle on a smooth projective variety Y. There is a natural projective morphism $\pi : \mathbf{P}(\mathcal{N}) \to Y$ that satisfies the condition in the proposition, so it induces a fully faith functor $\pi^* : D^b(Y) \to D^b(\mathbf{P}(\mathcal{N}))$ whose image is an admissible subcategory.

In fact, if \mathcal{N} has rank r, we have a semi-orthogonal decomposition of $D^b(\mathbf{P}(\mathcal{N}))$:

$$\pi^* D^b(Y) \otimes \mathcal{O}(a), \cdots, \pi^* D^b(Y) \otimes \mathcal{O}(a+r-1).$$

This is a relative version of the semi-orthogonal decomposition $\mathbf{P}^r = \langle \mathcal{O}(a), \cdots, \mathcal{O}(a+r-1) \rangle$.

The second situation where the condition in the proposition is satisfied is blow-ups. Let $q: \widetilde{X} \to X$ be the blow-up of a smooth projective variety X along some smooth closed $Y \subset X$. Then q is projective and $q_*\mathcal{O}_{\widetilde{X}} = \mathcal{O}_X$. So $q^*: D^b(X) \to D^b(\widetilde{X})$ gives an admissible subcategory of $D^b(\widetilde{X})$.

For blow-ups, let $i : E \hookrightarrow \widetilde{X}$ be the exceptional divisor, and let \mathcal{N} be the normal sheaf of Y, which is the dual of $\mathcal{I}/\mathcal{I}^2$. Then $E = \mathbf{P}(\mathcal{N})$ is a projective bundle $\pi : \mathbf{P}(\mathcal{N}) \to Y$ over Y. This is summarized by the following diagram

$$\begin{array}{c} \widetilde{X} & \stackrel{q}{\longrightarrow} X \\ \stackrel{i}{\uparrow} & \stackrel{j}{\downarrow} \\ E = \mathbf{P}(\mathcal{N}) & \stackrel{\pi}{\longrightarrow} Y \end{array}$$

2. CLOSED IMMERSION

A first step is to understand the closed immersion $j : Y \hookrightarrow X$. Suppose first Y is the zero subvariety of a section s of a locally free sheaf \mathcal{E} of rank c (so Y is of codimension c in X). Then we have the Koszul resolution

$$0 \to \bigwedge^{\circ} \mathcal{E}^{\vee} \to \cdots \to \mathcal{E}^{\vee} \to \mathcal{O}_X \to j_*\mathcal{O}_Y \to 0.$$

Date: February 11, 2025.

(Affine locally, given a element *s* of some free *R*-module *M*, we obtain a map $M^{\vee} \to R$ by evaluating against *s*. The differential is

$$d(e_1 \wedge \dots \wedge e_n) = \sum_{i=1}^n (-1)^i e_i(s) e_1 \wedge \dots \wedge \hat{e_i} \wedge \dots \wedge e_n$$

where e_1, \dots, e_n are the dual basis.) In other words, we have a quasi-isomorphism $\bigwedge^{\bullet} \mathcal{E}^{\vee} \to j_* \mathcal{O}_Y$. Also, in this case $\mathcal{N} \cong j^* \mathcal{E}$.

Proposition 2.1. In the situation above, we have a canonical isomorphism

$$j^*j_*\mathcal{O}_Y \cong \bigoplus_k \bigwedge^k \mathcal{N}^{\vee}[k].$$

Moreover, for any object $\mathcal{F}^{\bullet} \in D^{b}(Y)$ *, we have*

$$j_*j^*j_*\mathcal{F}^{ullet}\cong j_*\mathcal{O}_Y\otimes j_*\mathcal{F}^{ullet}\cong j_*\left(\bigoplus \bigwedge^k \mathcal{N}^{\vee}[k]\otimes \mathcal{F}^{ullet}\right)$$

and

$$\mathscr{H}om_X(j_*\mathcal{O}_Y, j_*\mathcal{F}^{\bullet}) \cong j_*\left(\bigoplus \bigwedge^k \mathcal{N}[-k] \otimes \mathcal{F}^{\bullet}\right)$$

Proof. Since we have the quasi-isomorphism $\bigwedge^{\bullet} \mathcal{E}^{\vee} \to j_* \mathcal{O}_Y$, we can compute $j^* j_* \mathcal{O}_Y$ by $\bigwedge^{\bullet} j^* \mathcal{E}^{\vee}$. The definition of the Koszul complex tells us the differentials of $\bigwedge^{\bullet} j^* \mathcal{E}^{\vee}$ are all zero, because the are given by evaluating against *s* but *Y* is exactly the subscheme where *s* is 0. Therefore

$$j^*j_*\mathcal{O}_Y \cong \bigwedge^{\bullet} j^*\mathcal{E}^{\vee} \cong \bigoplus_k \bigwedge^k j^*\mathcal{E}^{\vee}[k] \cong \bigoplus_k \bigwedge^k \mathcal{N}^{\vee}[k].$$

To prove the other two isomorphisms, we split the resolution $\bigwedge^{\bullet} \mathcal{E}^{\vee} \to j_* \mathcal{O}_Y$ into short exact sequences, and tensor each one with $j_* \mathcal{F}^{\bullet}$. Since $j_* \mathcal{F}^{\bullet}$ is supported on *Y* and the differentials vanish on *Y*, we obtain splitting triangles. Then taking the direct sum of all of those gives the desired results.

Corollary 2.2. In the same situation, for any $\mathcal{F}^{\bullet} \in D^b(Y)$ we have

$$\mathcal{H}^{l}(j^{*}j_{*}\mathcal{F}^{\bullet}) \cong \bigoplus_{s-r=l} \bigwedge^{\prime} \mathcal{N}^{\vee} \otimes \mathcal{H}^{s}(\mathcal{F}^{\bullet})$$

and

$$\mathcal{E}xt^l_X(j_*\mathcal{O}_Y, j_*\mathcal{F}^{\bullet}) \cong j_*\left(\bigoplus_{r+s=l}^r \bigwedge^r \mathcal{N} \otimes \mathcal{H}^s(\mathcal{F}^{\bullet})\right).$$

Proof. Since j is a closed immersion, j_* is exact, so it commutes with taking cohomology. Also, \mathcal{N} is locally free, so tensoring by \mathcal{N} and its exterior powers also commutes with taking cohomology. Using the previous proposition and these two fact to push symbols around and conclude.

Corollary 2.3. Now assume further that Y has codimension 1 in X. Then

$$j^* j_* \mathcal{O}_Y \cong \mathcal{O}_Y \oplus j^* \mathcal{O}_X(-Y)[1].$$

Moreover, for any object $\mathcal{F}^{\bullet} \in D^{b}(Y)$ *, we have a distinguished triangle*

$$\mathcal{F}^{\bullet} \otimes \mathcal{O}_Y(-Y)[1] \to j^* j_* \mathcal{F}^{\bullet} \to \mathcal{F}^{\bullet}$$

and an isomorphism

$$j_*j^*j_*\mathcal{F}^{\bullet} \cong j_*\mathcal{F}^{\bullet} \oplus j_*(\mathcal{F}^{\bullet} \otimes \mathcal{O}_Y(-Y))[1].$$

Proof. From the Proposition we get $j^*j_*\mathcal{O}_Y \cong \mathcal{O}_Y \oplus (\mathcal{I}/\mathcal{I}^2)[1]$, and $\mathcal{I} = \mathcal{O}_X(-Y)$. The third isomorphism is true for the same reason. Proof of the distinguished triangle is omitted.

We can upgrade to a more global situation.

Proposition 2.4. Let $j : Y \to X$ be an arbitrary closed immersion of smooth varieties. Then there are isomorphisms

 $\mathcal{H}^{i}(j^{*}j_{*}\mathcal{O}_{Y})\cong \bigwedge^{-i}\mathcal{N}^{\vee}$

$$\mathcal{E}xt^i_X(j_*\mathcal{O}_Y, j_*\mathcal{O}_Y) \cong \bigwedge^i \mathcal{N}$$

Proof. Choose a global locally free resolution $\mathcal{G}^{\bullet} \to \mathcal{O}_Y$, and glue the local results proved above. The local isomorphisms are canonical so they glue.

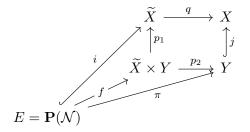
We return to the situation

Proposition 3.1. Suppose $Y \subset X$ is of codimension $c \ge 2$. The functor

$$\begin{split} \Phi_k : D^b(Y) \to D^b(\widetilde{X}) \\ \mathcal{F}^{\bullet} \mapsto i_*(\mathcal{O}_E(kE) \otimes \pi^*(\mathcal{F}^{\bullet})) \end{split}$$

is fully faithful for any k, and admits a right adjoint.

The functor Φ_k is a Fourier-Mukai transform with kernel $\mathcal{O}_E(kE)$ considered as an object in $D^b(Y \times \widetilde{X})$ (remember that $\mathcal{O}_E(kE)$ means $i^*\mathcal{O}_{\widetilde{X}}(kE)$). More precisely, we have the diagram



The Fourier-Mukai transform with kernel $f_*\mathcal{O}_E(kE)$ is

$$(p_1)_*(p_2^*\mathcal{F}^{\bullet} \otimes f_*\mathcal{O}_E(kE)) \cong (p_1)_*f_*(f^*p_2^*\mathcal{F}^{\bullet} \otimes \mathcal{O}_E(kE))$$
$$\cong i_*(\pi^*\mathcal{F}^{\bullet} \otimes \mathcal{O}_E(kE)).$$

Bondal and Orlov has the following result which gives a criterion for whether a Fourier-Mukai transform is fully faithful:

Theorem 3.2. A Fourier-Mukai transform $\Phi_{\mathcal{P}} : D^b(X) \to D^b(Y)$ with kernel \mathcal{P} is fully faithful if and only if for any two closed points $x, y \in X$,

$$\operatorname{Hom}(\Phi_{\mathcal{P}}(k(x)), \Phi_{\mathcal{P}}(k(y))[i]) = \begin{cases} k, & x = y \text{ and } i = 0\\ 0, & x \neq y \text{ or } i < 0 \text{ or } i > \dim(X). \end{cases}$$

Proof of Proposition 3.1. To use the criterion we first need to compute $\Phi_k(k(y))$ for $y \in Y$. We have $\pi^*k(x) = \mathcal{O}_{\pi^{-1}(y)}$, and $\mathcal{O}_E(E)$ restricted to any fiber is $\mathcal{O}(-1)$ of that fiber, so we end up with $i_*\mathcal{O}_{\pi^{-1}(y)}(-k)$. Hence if $x \neq y$, then $\Phi_k(k(x))$ and $\Phi_k(k(y))$ have disjoint supports, so there is no non-trivial morphism between them.

We are left with the case x = y. Namely, we want to compute

$$\operatorname{Hom}_{\widetilde{X}}(\Phi_{k}(k(x)), \Phi_{k}(k(x))[i]) = \operatorname{Ext}_{\widetilde{X}}^{i}(\Phi_{k}(k(x)), \Phi_{k}(k(x))) = \operatorname{Ext}_{\widetilde{X}}^{i}(i_{*}\mathcal{O}_{\pi^{-1}(x)}(-k), i_{*}\mathcal{O}_{\pi^{-1}(x)}(-k))$$

This is zero for i < 0. We have the spectral sequence

$$E_2^{p,q} = H^p(\tilde{X}, \mathcal{E}xt^q(i_*\mathcal{O}_{\pi^{-1}(x)}, i_*\mathcal{O}_{\pi^{-1}(x)})) \Rightarrow \operatorname{Ext}_{\tilde{X}}^{p+q}(i_*\mathcal{O}_{\pi^{-1}(x)}, i_*\mathcal{O}_{\pi^{-1}(x)})$$

We have just seen in Proposition 2.4 how to compute this. Namely,

$$\mathcal{E}xt^q(i_*\mathcal{O}_{\pi^{-1}(x)}, i_*\mathcal{O}_{\pi^{-1}(x)}) = \bigwedge^q \mathcal{N}_{\pi^{-1}(x)/\widetilde{X}}$$

So

$$E_2^{p,q} = H^p(\pi^{-1}(x), \bigwedge^q \mathcal{N}_{\pi^{-1}(x)/\widetilde{X}}) \Rightarrow \operatorname{Ext}_{\widetilde{X}}^{p+q}(i_*\mathcal{O}_{\pi^{-1}(x)}, i_*\mathcal{O}_{\pi^{-1}(x)})$$

We use the short exact sequence

$$0 \to \mathcal{N}_{\pi^{-1}(x)/E} \to \mathcal{N}_{\pi^{-1}(x)/\widetilde{X}} \to \mathcal{N}_{E/\widetilde{X}}|_{\pi^{-1}(x)} \to 0.$$

General theory of blow-ups tells us $\mathcal{N}_{\pi^{-1}(x)/E} \cong \mathcal{O}_{\pi^{-1}(x)}^{\oplus d}$ and $\mathcal{N}_{E/\widetilde{X}}|_{\pi^{-1}(x)} \cong \mathcal{O}_{\pi^{-1}(x)}(-1)$. Also,

$$\operatorname{Ext}^{1}(\mathcal{O}_{\pi^{-1}(x)}(-1), \mathcal{O}_{\pi^{-1}(x)}^{\oplus d}) = H^{1}(\pi^{-1}(x), \mathcal{O}_{\pi^{-1}(x)}(1)) = 0$$

because $\pi^{-1}(x) \cong \mathbf{P}^{c-1}$. So the short exact sequence splits. This allows use to conclude $E_2^{p,q} = 0$ for all p > 0 or p = 0 and q > d. Hence $\operatorname{Ext}^q_{\widetilde{X}}(i_*\mathcal{O}_{\pi^{-1}(x)}(-k), i_*\mathcal{O}_{\pi^{-1}(x)}(-k)) = E^{0,q} = 0$ for q > d and $\operatorname{Ext}^0 = H^0(\mathcal{O}_{\pi^{-1}(x)}) = k$.

Thus, for each $k = -c + 1, \cdots, -1$, the image

$$\mathcal{D}_k = \operatorname{Im}\left(\Phi_{-k}: D^b(Y) \to D^b(\widetilde{X})\right)$$

is an admissible subcategory of $D^b(\widetilde{X})$ that is equivalent to $D^b(Y)$. We will denote by \mathcal{D}_0 the full subcategory $q^*D^b(X)$.

Theorem 3.3 (Orlov). *The admissible subcategories*

$$\mathcal{D}_{-c+1}, \cdots, \mathcal{D}_{-1}, \mathcal{D}_0$$

form a semi-orthogonal decomposition of $D^b(\widetilde{X})$.

Proof. There are always two steps: check they are orthogonal, and check they generate $D^b(X)$.

First let $-c + 1 \leq l < k < 0$. We will show $\mathcal{D}_l \subset \mathcal{D}_k^{\perp}$. Let $\mathcal{E}^{\bullet}, \mathcal{F}^{\bullet} \in D^b(Y)$. Also write $\mathcal{O}_{\pi}(m)$ for $\mathcal{O}_E(-mE)$. We have

$$\operatorname{Hom}(i_*(\pi^*\mathcal{F}^{\bullet}\otimes\mathcal{O}_{\pi}(k)),i_*(\pi^*\mathcal{E}^{\bullet}\otimes\mathcal{O}_{\pi}(l)))\cong\operatorname{Hom}(i^*i_*\pi^*\mathcal{F}^{\bullet},\pi^*\mathcal{E}^{\bullet}\otimes\mathcal{O}_{\pi}(l-k))$$

We have a distinguished triangle by Corollary 2.3, which applies since *E* has codimension 1 in \widetilde{X}

$$\pi^* \mathcal{F}^{\bullet} \otimes \mathcal{O}_{\pi}(1)[1] \to i^* i_* \pi^* \mathcal{F}^{\bullet} \to \pi^* \mathcal{F}^{\bullet} \to \pi^* \mathcal{F}^{\bullet} \otimes \mathcal{O}_{\pi}(1)[2]$$

So it suffices to show

$$\operatorname{Hom}(\pi^* \mathcal{F}^{\bullet} \otimes \mathcal{O}_{\pi}(1), \pi^* \mathcal{E}^{\bullet} \otimes \mathcal{O}_{\pi}(l-k)) = 0$$

$$\operatorname{Hom}(\pi^* \mathcal{F}^{\bullet}, \pi^* \mathcal{E}^{\bullet} \otimes \mathcal{O}_{\pi}(l-k)) = 0$$

For example the second one is

$$\operatorname{Hom}(\mathcal{F}^{\bullet}, \mathcal{E}^{\bullet} \otimes \pi_* \mathcal{O}_{\pi}(l-k)) = 0$$

because $\pi_* \mathcal{O}_{\pi}(l-k) = 0$ for l-k < 0 (the fibers are global section of $\mathcal{O}(l-k)$ on \mathbf{P}^{c-1}).

Now we show these categories generate $D^b(\widetilde{X})$. The plan is to take an object \mathcal{E}^{\bullet} that is contained in \mathcal{D}_l^{\perp} for all $-c+1 \leq l < 0$, and show it is can't also be in \mathcal{D}_0^{\perp} . This assumption means

$$\operatorname{Hom}(i_*(\pi^*\mathcal{F}^{\bullet}\otimes\mathcal{O}_{\pi}(l)),\mathcal{E}^{\bullet})=0$$

for all $-c + 1 \le l < 0$. Applying the adjoint $i^! \mathcal{E} \cong i^* \mathcal{E} \otimes \mathcal{O}_E(E)[-1]$ and twising by 1 gives

$$\operatorname{Hom}(\pi^*\mathcal{F}^{\bullet}\otimes\mathcal{O}_{\pi}(l),i^*\mathcal{E}^{\bullet})=0$$

for all $-c+2 \leq l < 1$ and all $\mathcal{F}^{\bullet} \in D^b(Y)$. This means $i^*\mathcal{E}^{\bullet}$ is contained in orthogonal complement of $\pi^*D^b(Y) \otimes \mathcal{O}_{\pi}(l), -c+2 \leq l \leq 0$ inside $D^b(E)$. But in the very beginning we saw a semiorthogonal decomposition of $D^b(E)$ with these terms, so we conclude that $i^*\mathcal{E}^{\bullet} \in \pi^*D^b(Y) \otimes \mathcal{O}_{\pi}(-c+1)$. In other words, there exists some $\mathcal{G}^{\bullet} \in D^b(Y)$ such that $i^*\mathcal{E} \otimes \mathcal{O}_{\pi}(c-1) \cong \pi^*\mathcal{G}$.

Note that is $\mathcal{G} \cong 0$, then $i^* \mathcal{E} \otimes \mathcal{O}_{\pi}(c-1)$ has support outside the exceptional divisor E so it is in \mathcal{D}_0 , so we win. If \mathcal{G} is non-zero we can find a point $x \in X$ such that there is a non-zero map from $i^* \mathcal{E} \otimes \mathcal{O}_{\pi}(c-1)$ to $q^* k(x)$ after some shift, but this requires a bit more theory in the closed immersion situation than we covered.

Let's look an example. Let $X = \mathbf{P}^2$ and we blow it up at two points to obtain $\pi : \widetilde{X} \to X$. Then the blow-up \widetilde{X} has Picard group isomorphic to \mathbf{Z}^3 , generated by a line in the original \mathbf{P}^2 , and the two exceptional curves E_1, E_2 which are both isomorphic to \mathbf{P}^1 . The functor Φ_1 in this case has image generated by

$$i_*\mathcal{O}_{E_1}(-1), i_*\mathcal{O}_{E_2}(-1).$$

and we have a semi-orthogonal decomposition

$$\langle i_* \mathcal{O}_{E_1}(-1), i_* \mathcal{O}_{E_2}(-1), \pi^* \mathcal{D}^b(\mathbf{P}^2) \rangle$$

We know $\mathcal{D}^{b}(\mathbf{P}^{2}) = \langle \mathcal{O}_{\mathbf{P}^{2}}, \mathcal{O}_{\mathbf{P}^{2}}(1), \mathcal{O}_{\mathbf{P}^{2}}(2) \rangle$, so we get a exceptional collection

 $\langle i_*\mathcal{O}_{E_1}(-1), i_*\mathcal{O}_{E_2}(-1), \mathcal{O}_{\widetilde{X}}, \pi^*\mathcal{O}_{\mathbf{P}^2}(1), \pi^*\mathcal{O}_{\mathbf{P}^2}(2) \rangle$

It is well-known that the same surface \widetilde{X} can also by realized as a blow up of $\mathbf{P}^1 \times \mathbf{P}^1$: The Castelnovo criterion says there is a blow-up map $\beta : \widetilde{X} \to \mathbf{P}^1 \times \mathbf{P}^1$ that contracts the (-1)-curve on \widetilde{X} which is the strict transform of the line that passes through the two points on \mathbf{P}^2 . Let the exceptional curve form β be F. Then we obtain a semi-orthogonal decomposition

$$\langle \mathcal{O}_F(-1), \beta^* D^b(\mathbf{P}^1 \times \mathbf{P}^1) \rangle$$

We know that $\mathbf{P}^1 imes \mathbf{P}^1$ has a strong full exceptional collection

 $\langle \mathcal{O}, \mathcal{O}(1,0), \mathcal{O}(0,1), \mathcal{O}(1,1) \rangle$

So we get another full exceptional collection

$$\langle \mathcal{O}_F(-1), \mathcal{O}_{\widetilde{X}}, \beta^* \mathcal{O}(1,0), \beta^* \mathcal{O}(0,1), \beta^* \mathcal{O}(1,1) \rangle$$

of $D^b(\widetilde{X})$.