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1. Setup

We start by recalling the following proposition:

Proposition 1.1. Suppose f : S → T is a projective morphism of smooth projective varieties such that
f∗ : D

b(S) → Db(T ) sendsOS toOT . Then f∗ : Db(T ) → Db(S) is fully faithful and gives an equivalence
of Db(T ) with an admissible subcategory of Db(S).

Proof. Adjunction gives a natural map
F → f∗f

∗(F ) ∼= f∗(f
∗F ⊗OS) ∼= F ⊗ f∗(OS) ∼= F.

So f∗f
∗ is naturally isomorphic to the identity functor, so f∗ is fully faithful. �

LetN be a vector bundle on a smooth projective variety Y . There is a natural projective morphism
π : P(N ) → Y that satisfies the condition in the proposition, so it induces a fully faith functor
π∗ : Db(Y ) → Db(P(N ))whose image is an admissible subcategory.

In fact, if N has rank r, we have a semi-orthogonal decomposition of Db(P(N )):
π∗Db(Y )⊗O(a), · · · , π∗Db(Y )⊗O(a+ r − 1).

This is a relative version of the semi-orthogonal decomposition Pr = 〈O(a), · · · ,O(a+ r − 1)〉.

The second situationwhere the condition in the proposition is satisfied is blow-ups. Let q : X̃ → X
be the blow-up of a smooth projective variety X along some smooth closed Y ⊂ X . Then q is
projective and q∗OX̃

= OX . So q∗ : Db(X) → Db(X̃) gives an admissible subcategory of Db(X̃).

For blow-ups, let i : E ↪→ X̃ be the exceptional divisor, and letN be the normal sheaf of Y , which is
the dual of I/I2. ThenE = P(N ) is a projective bundle π : P(N ) → Y over Y . This is summarized
by the following diagram

X̃ X

E = P(N ) Y

q

i

π

j

2. Closed Immersion

Afirst step is to understand the closed immersion j : Y ↪→ X . Suppose first Y is the zero subvariety
of a section s of a locally free sheaf E of rank c (so Y is of codimension c in X). Then we have the
Koszul resolution

0 →
c∧
E∨ → · · · → E∨ → OX → j∗OY → 0.
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(Affine locally, given a element s of some free R-module M , we obtain a map M∨ → R by evalu-
ating against s. The differential is

d(e1 ∧ · · · ∧ en) =
n∑

i=1

(−1)iei(s)e1 ∧ · · · ∧ êi ∧ · · · ∧ en

where e1, · · · , en are the dual basis.) In other words, we have a quasi-isomorphism
∧• E∨ → j∗OY .

Also, in this case N ∼= j∗E .

Proposition 2.1. In the situation above, we have a canonical isomorphism

j∗j∗OY
∼=
⊕
k

k∧
N∨[k].

Moreover, for any object F• ∈ Db(Y ), we have

j∗j
∗j∗F• ∼= j∗OY ⊗ j∗F• ∼= j∗

(⊕ k∧
N∨[k]⊗F•

)
and

H omX(j∗OY , j∗F•) ∼= j∗

(⊕ k∧
N [−k]⊗F•

)

Proof. Since we have the quasi-isomorphism
∧• E∨ → j∗OY , we can compute j∗j∗OY by

∧• j∗E∨.
The definition of the Koszul complex tells us the differentials of

∧• j∗E∨ are all zero, because the
are given by evaluating against s but Y is exactly the subscheme where s is 0. Therefore

j∗j∗OY
∼=

•∧
j∗E∨ ∼=

⊕
k

k∧
j∗E∨[k] ∼=

⊕
k

k∧
N∨[k].

To prove the other two isomorphisms, we split the resolution
∧• E∨ → j∗OY into short exact se-

quences, and tensor each one with j∗F•. Since j∗F• is supported on Y and the differentials vanish
on Y , we obtain splitting triangles. Then taking the direct sum of all of those gives the desired
results. �

Corollary 2.2. In the same situation, for any F• ∈ Db(Y ) we have

Hl(j∗j∗F•) ∼=
⊕
s−r=l

r∧
N∨ ⊗Hs(F•)

and

ExtlX(j∗OY , j∗F•) ∼= j∗

(⊕
r+s=l

r∧
N ⊗Hs(F•)

)
.

Proof. Since j is a closed immersion, j∗ is exact, so it commutes with taking cohomology. Also, N
is locally free, so tensoring by N and its exterior powers also commutes with taking cohomology.
Using the previous proposition and these two fact to push symbols around and conclude. �
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Corollary 2.3. Now assume further that Y has codimension 1 in X . Then
j∗j∗OY

∼= OY ⊕ j∗OX(−Y )[1].

Moreover, for any object F• ∈ Db(Y ), we have a distinguished triangle
F• ⊗OY (−Y )[1] → j∗j∗F• → F•

and an isomorphism
j∗j

∗j∗F• ∼= j∗F• ⊕ j∗(F• ⊗OY (−Y ))[1].

Proof. From the Proposition we get j∗j∗OY
∼= OY ⊕ (I/I2)[1], and I = OX(−Y ). The third iso-

morphism is true for the same reason. Proof of the distinguished triangle is omitted. �

We can upgrade to a more global situation.

Proposition 2.4. Let j : Y → X be an arbitrary closed immersion of smooth varieties. Then there are
isomorphisms

Hi(j∗j∗OY ) ∼=
−i∧

N∨

and

ExtiX(j∗OY , j∗OY ) ∼=
i∧
N

Proof. Choose a global locally free resolution G• → OY , and glue the local results proved above.
The local isomorphisms are canonical so they glue. �

3. Blow-ups

We return to the situation
X̃ X

E = P(N ) Y

q

i

π

j .

Proposition 3.1. Suppose Y ⊂ X is of codimension c ≥ 2. The functor

Φk : Db(Y ) → Db(X̃)

F• 7→ i∗(OE(kE)⊗ π∗(F•))

is fully faithful for any k, and admits a right adjoint.

The functorΦk is a Fourier-Mukai transformwith kernelOE(kE) considered as an object inDb(Y ×
X̃) (remember that OE(kE) means i∗O

X̃
(kE)). More precisely, we have the diagram

X̃ X

X̃ × Y Y

E = P(N )

q

p1

p2

j

i

f π
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The Fourier-Mukai transform with kernel f∗OE(kE) is
(p1)∗(p

∗
2F• ⊗ f∗OE(kE)) ∼= (p1)∗f∗(f

∗p∗2F• ⊗OE(kE))

∼= i∗(π
∗F• ⊗OE(kE)).

Bondal and Orlov has the following result which gives a criterion for whether a Fourier-Mukai
transform is fully faithful:

Theorem 3.2. A Fourier-Mukai transform ΦP : Db(X) → Db(Y ) with kernel P is fully faithful if and
only if for any two closed points x, y ∈ X ,

Hom(ΦP(k(x)),ΦP(k(y))[i]) =

{
k, x = y and i = 0

0, x 6= y or i < 0 or i > dim(X).

Proof of Proposition 3.1. To use the criterion we first need to compute Φk(k(y)) for y ∈ Y . We have
π∗k(x) = Oπ−1(y), and OE(E) restricted to any fiber is O(−1) of that fiber, so we end up with
i∗Oπ−1(y)(−k). Hence if x 6= y, then Φk(k(x)) and Φk(k(y)) have disjoint supports, so there is no
non-trivial morphism between them.

We are left with the case x = y. Namely, we want to compute

Hom
X̃
(Φk(k(x)),Φk(k(x))[i]) = Exti

X̃
(Φk(k(x)),Φk(k(x))) = Exti

X̃
(i∗Oπ−1(x)(−k), i∗Oπ−1(x)(−k))

This is zero for i < 0. We have the spectral sequence

Ep,q
2 = Hp(X̃, Extq(i∗Oπ−1(x), i∗Oπ−1(x))) ⇒ Extp+q

X̃
(i∗Oπ−1(x), i∗Oπ−1(x))

We have just seen in Proposition 2.4 how to compute this. Namely,

Extq(i∗Oπ−1(x), i∗Oπ−1(x)) =

q∧
N

π−1(x)/X̃
.

So

Ep,q
2 = Hp(π−1(x),

q∧
N

π−1(x)/X̃
) ⇒ Extp+q

X̃
(i∗Oπ−1(x), i∗Oπ−1(x))

We use the short exact sequence
0 → Nπ−1(x)/E → N

π−1(x)/X̃
→ N

E/X̃
|π−1(x) → 0.

General theory of blow-ups tells us Nπ−1(x)/E
∼= O⊕d

π−1(x)
and N

E/X̃
|π−1(x)

∼= Oπ−1(x)(−1). Also,

Ext1(Oπ−1(x)(−1),O⊕d
π−1(x)

) = H1(π−1(x),Oπ−1(x)(1)) = 0

because π−1(x) ∼= Pc−1. So the short exact sequence splits. This allows use to conclude Ep,q
2 = 0

for all p > 0 or p = 0 and q > d. Hence Extq
X̃
(i∗Oπ−1(x)(−k), i∗Oπ−1(x)(−k)) = E0,q = 0 for q > d

and Ext0 = H0(Oπ−1(x)) = k. �

Thus, for each k = −c+ 1, · · · ,−1, the image

Dk = Im
(
Φ−k : Db(Y ) → Db(X̃)

)
is an admissible subcategory of Db(X̃) that is equivalent to Db(Y ). We will denote by D0 the full
subcategory q∗Db(X).
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Theorem 3.3 (Orlov). The admissible subcategories
D−c+1, · · · ,D−1,D0

form a semi-orthogonal decomposition of Db(X̃).

Proof. There are always two steps: check they are orthogonal, and check they generate Db(X).

First let −c + 1 ≤ l < k < 0. We will show Dl ⊂ D⊥
k . Let E•,F• ∈ Db(Y ). Also write Oπ(m) for

OE(−mE). We have
Hom(i∗(π

∗F• ⊗Oπ(k)), i∗(π
∗E• ⊗Oπ(l))) ∼= Hom(i∗i∗π

∗F•, π∗E• ⊗Oπ(l − k))

We have a distinguished triangle by Corollary 2.3, which applies since E has codimension 1 in X̃

π∗F• ⊗Oπ(1)[1] → i∗i∗π
∗F• → π∗F• → π∗F• ⊗Oπ(1)[2]

So it suffices to show
Hom(π∗F• ⊗Oπ(1), π

∗E• ⊗Oπ(l − k)) = 0

Hom(π∗F•, π∗E• ⊗Oπ(l − k)) = 0

For example the second one is
Hom(F•, E• ⊗ π∗Oπ(l − k)) = 0

because π∗Oπ(l − k)) = 0 for l − k < 0 (the fibers are global section of O(l − k) on Pc−1).

Now we show these categories generate Db(X̃). The plan is to take an object E• that is contained
in D⊥

l for all −c+ 1 ≤ l < 0, and show it is can’t also be in D⊥
0 . This assumption means

Hom(i∗(π
∗F• ⊗Oπ(l)), E•) = 0

for all −c+ 1 ≤ l < 0. Applying the adjoint i!E ∼= i∗E ⊗ OE(E)[−1] and twising by 1 gives
Hom(π∗F• ⊗Oπ(l), i

∗E•) = 0

for all−c+2 ≤ l < 1 and all F• ∈ Db(Y ). This means i∗E• is contained in orthogonal complement
of π∗Db(Y ) ⊗ Oπ(l),−c + 2 ≤ l ≤ 0 inside Db(E). But in the very beginning we saw a semi-
orthogonal decomposition of Db(E) with these terms, so we conclude that i∗E• ∈ π∗Db(Y ) ⊗
Oπ(−c+ 1). In other words, there exists some G• ∈ Db(Y ) such that i∗E ⊗ Oπ(c− 1) ∼= π∗G.

Note that is G ∼= 0, then i∗E ⊗ Oπ(c − 1) has support outside the exceptional divisor E so it is
in D0, so we win. If G is non-zero we can find a point x ∈ X such that there is a non-zero map
from i∗E ⊗ Oπ(c − 1) to q∗k(x) after some shift, but this requires a bit more theory in the closed
immersion situation than we covered.

�

Let’s look an example. LetX = P2 and we blow it up at two points to obtain π : X̃ → X . Then the
blow-up X̃ has Picard group isomorphic to Z3, generated by a line in the original P2, and the two
exceptional curves E1, E2 which are both isomorphic to P1. The functor Φ1 in this case has image
generated by

i∗OE1(−1), i∗OE2(−1).

and we have a semi-orthogonal decomposition
〈i∗OE1(−1), i∗OE2(−1), π∗Db(P2)〉

We know Db(P2) = 〈OP2 ,OP2(1),OP2(2)〉, so we get a exceptional collection
〈i∗OE1(−1), i∗OE2(−1),O

X̃
, π∗OP2(1), π∗OP2(2)〉
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It is well-known that the same surface X̃ can also by realized as a blow up of P1 ×P1: The Castel-
novo criterion says there is a blow-up map β : X̃ → P1 × P1 that contracts the (−1)-curve on X̃
which is the strict transform of the line that passes through the two points on P2. Let the excep-
tional curve form β be F . Then we obtain a semi-orthogonal decomposition

〈OF (−1), β∗Db(P1 ×P1)〉.
We know that P1 ×P1 has a strong full exceptional collection

〈O,O(1, 0),O(0, 1),O(1, 1)〉
So we get another full exceptional collection

〈OF (−1),O
X̃
, β∗O(1, 0), β∗O(0, 1), β∗O(1, 1)〉

of Db(X̃).
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