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February 19

Kuan-Wen Chen: More examples of SOD’s (Grassmannians, quadrics).

Definition 0.1. Given a k-linear triangulated category D, and E1, ..., En ∈ Ob(D),

• E1, ..., En is an exceptional sequence if

Hom(Ei, Ej[ℓ]) =

{
k i = j, ℓ = 0

0 i > j or i = j, ℓ ̸= 0

• An exceptional sequence is full if D = ⟨E1, ..., En⟩.
A full exceptional collection defines a semi-orthogonal decomposition.
Let’s review the full exceptional collection on Pn, due to Beilinson.

Db(Pn) = ⟨O(a), ...,O(a+ n)⟩

Strategy to prove this:

1. Exceptionalness is just a cohomology computation, following from Hom(O(i),O(j)[ℓ]) =
Hℓ(Pn,O(j − i))

2. For fullness, consider the diagonal ∆ ⊆ Pn ×Pn, for which Rp2∗(Lp
∗
1F ⊗O∆) = F for

all F , and construct a resolution of O∆

0 →
n∧
(Ω(1)⊠O(−1)) →

n−1∧
(Ω(1)⊠O(−1)) → ... → Ω(1)⊠O(−1) → OPn×Pn → O∆ → 0

which follows from the Koszul resolution from

0 → Ω(1) → O⊕n+1 → O(1) → 0.

For each term we have a quasi-isomorphism

Rp2∗(p
∗
1F ⊗ (Ωk(k)⊠O(−k))) ≃

⊕
i∈Z

Hi(F ⊗ Ωk(k))⊗O(−k)[−i] =: Tk,

so for the whole resolution we have a quasi-isomorphism

F = Rp2∗(p
∗
1F ⊗O∆) ≃ Cone(...Cone(Cone(Tn → Tn−1) → Tn−2)),

which is in ⟨O(n), ...,O(−1)⟩.
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Now, we will do something similar for the Grassmannian. Fix G := Gr(k, V ) for dimV = n.
Question 1: What is the resolution of O∆?
Let ∆ ⊆ G × G be the diagonal, and let S ⊆ V be the tautological sub-bundle (k-

dimensional). We have
0 → S → V → V/S → 0

or, dualizing
0 → (V/S)∗ → V ∗ → S∗

define S⊥ := (V/S)∗.
Fact 1: H0(G,S∗) = V ∗, H0(G, V/S) = V .
Then

H0(G×G,S∗ ⊠ V/S) = V ∗ ⊗ V = End(V )

Let ξ ∈ H0(G × G,S∗ ⊠ V/S) correspond to Id ∈ End(V ), and note that it corresponds to
OG×G → S∗ ⊠ (V/S), or dually to

S ⊠ S⊥ ⌟ξ−→ OG×G → O∆ → 0.

Taking the Koszul complex yilds a resolution

... →
k∧
(S ⊠ S⊥) →

k−1∧
(S ⊠ S⊥) → ... → S ⊠ S⊥ → OG×G → O∆ → 0.

Fact 2: For W1, W2 vector spaces, we have

p∧
(W1 ⊗W2) ∼=

⊕
α≥0,

∑
αi=p

ΣαW1 ⊗ Σα∗
W2

as a GL(W1) × GL(W2) module. Here α is a Young diagram and Σα is a Schur functor
associated to α, and α∗ is the dual diagram, which reverses rows and columns.

Definition 0.2. For α = (α1, ..., αn) a decreasing sequence of integers and W a vector space
of dimW = n, the irreducible representation of GL(W ) with highest weight α is called ΣαW .
If α ≥ 0, then α corresponds to a Young diagram.

The representation is constructed by tensor operations.

Example. Σ(1,1,...,1)W =
∧n W , and Σ(n)W = SymnW .

Fact 2 implies
p∧
(S ⊠ S⊥) =

⊕
α≥0,

∑
αi=p

ΣαS ⊠ Σα∗
S⊥

Proposition 0.3 (Kapranov).

Db(Gr(k, V )) ∼= ⟨ΣαS : Σα∗
S⊥ ̸= 0⟩

This corresponds to ΣαS for α such that the number of rows of α is ≤ k an the number of
columns of α is ≤ n− k.
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Question 2: Are ΣαS an exceptional sequence?
We will show that they are, taking the objects in any order preserving inclusion of Young

diagrams.

Hom(ΣαS,ΣβS[ℓ]) = Extℓ(ΣαS,ΣβS)

= Hℓ(G,Σ(−αk,−αk−1,...,−α1)S ⊗ ΣβS)

= Hℓ(G,Σ(−αk,−αk−1,...,−α1)∗S⊥ ⊗ ΣβS)

where the last step requires (−αk, ...,−α1) ≥ 0.

Proposition 0.4. • If α1 ≥ α2 ≥ ... ≥ αk ≥ −(n− k), then

H i(G,ΣαS) =

{
0 i > 0 or i = 0 for some αi ≥ 0

Σ−αk...,−α1V ∗ all αi < 0

• If n− k ≥ α1 ≥ ... ≥ αk ≥ 0 and k ≥ β1 ≥ ... ≥ βn−k ≥ 0, then ΣαS ⊠ΣβS⊥ can have
non-zero cohomology only when β = α∗. In this case, HΣαi = C, Hj = 0 for j ̸=

∑
αi.

Proof idea. Use Bott–Borel–Weil theorem in representation theory. Consider

F = Flag(1, 2, ..., n− 1, V ) = GL(V )/B

where B is the Borel subgroup consisting of upper triangular matrices. Line bundles on
F correspond to characters χ of maximal torus χ = (a1, ..., an). Denote the line bundle
corresponding to χ as O(χ).

Let πi be the i-dimensional tautological bundle, so

π1 ⊂ ... ⊂ πn−2 ⊂ πn−1 ⊂ V ⊗OF .

Then the line bundle πi+1/πi corresponds to the character (0, 0, 0, ...,−1, 0, ...) where only
the i+ 1 entry is nonzero.

Define the positive chamber of the character space C+ = {(a1, ..., an) : a1 ≥ a2 ≥ ... ≥
an}.

Theorem 0.5 (BBW). • If χ ∈ C+, then

H i(F,O(χ)) =

{
ΣχV i = 0

0 i > 0

• If α /∈ C+, take a σ ∈ Sn such that σ(α) ∈ C+. Let ρ = (n, n− 1, ..., 1). Then:

– if σ(α + ρ)− ρ /∈ C+, then H i(O(χ)) = 0 for all i.

– if σ(α + ρ)− ρ ∈ C+, then

H i(O(χ)) =

{
Σσ(χ+ρ)−ρV i = ℓ(σ)

0 otherwise
,

where ℓ(σ) is the length of σ.

3



In our case, let F1 = Flag(1, 2, 3, .., k, V ) and p1 : F1 → G the natural map. Let

L1 = π⊗αk
1 ⊗ (π2/π1)

αk−1 ⊗ ...⊗ (πk/πk−1)
α1

be the line bundle corresponding to (−αk,−αk−1, ...,−α1). Then using the BBW theorem,
Rp1∗L1 = ΣαS.

Similarly, let F2 = Flag(k, k + 1, ..., n− 1, V )
p2−→ G and

L2 = (πk+1/πk)
⊗1−β1 ⊗ ...⊗ (V/πn−1)

−βn−k .

Then Rp2∗L2 = ΣβS⊥.

Thus, letting F1 × F2
p=(p1,p2)−−−−−→ G, we have

H i(G,ΣαS ⊠ ΣβS⊥) = H i(F1 × F2, L1 ⊠ L2).

Finally, we turn to the case of quadrics. Let Q ⊂ P(E), for E an N -dimensional vector
space.

Question 1: can we find a resolution of O∆ ⊆ Q×Q?
A Koszul algebra is a quadratic algebra with a linear minimal free resolution, i.e., exists

...
ϕ2−→ B(−1)

ϕ1−→ B → k → 0

requiring that entries of ϕi are either 0 or linear.
Fact: any complete intersection quadratic algebra is Koszul.
Koszul dual (Priddy dual):

• If B is a Koszul algebra T (V )/R, let A = ExtB(k, k) = T (V ∗)/R∗, where R and R∗

are dual relations. Then ExtA(k, k) = B.

• There is a generalized Koszul complex

→ A∗
1 ⊗B → A∗

0 ⊗B → C → 0

exact as a B-module, where the maps are Σi(rξi ⊗ ℓχi
), where ξi and χi are dual bases.

For our quadric Q, let B =
⊕

iH
i(Q,O(i)) and A be the Koszul dual of B. Exists an exact

sequence
L(A∗) = {→ ... → Ã∗

i (−i) → ... → A∗
0}

Set Ψi = ker(Ã∗
i → Ãi−1(1)) for i ≥ 0.

Proposition 0.6. Exists an exact sequence

... → Ψ2 ⊠O(−2) → Ψ1 ⊠O(−1) → OQ×Q → O∆ → 0

Proposition 0.7.

ker(C−N+3 → C−N+4) = Σ(−1)⊗ Σ(−N + 2)

when N is odd. Here Σ is a Spinor bundle on Q (involves Σ+ and Σ− when N is even).
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Theorem 0.8 (Kapranov). Db(Q) = ⟨Σ,O,O(1), ...,O(N + 3)⟩ when N is odd (slightly
different when N is even).

Example. Gr(2, 4) ↪→ P5 is a quadric under the Plücker embedding. Then

Db(Gr(2, 4)) = ⟨O, S, Sym2S,O(−1), S(−1),O(−2)⟩,

where the terms correspond to the Young diagrams ∅, (1), (1, 1), (2), (2, 1), (2, 2).
Here Σ+ = S∗ and Σ− = C4/S, so we have a decomposition

⟨S∗,C4/S,O,O(1),O(2),O(3)⟩

which is mutation equivalent.
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