MUTATIONS AND SERRE FUNCTORS

NICOLAS VILCHES

ABSTRACT. Notes prepared for the Semi-orthogonal decompositions seminar
(Spring 2025), organized by Amal Mattoo and myself at Columbia University.
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1. SERRE FUNCTORS

Let us start by recalling the following notion, which was already introduced a
couple of weeks ago.

Definition 1 ([Huy06l 1.28]). Let D be a k-linear triangulated category. A Serre
functor is a k-linear equivalence S: D — D together with natural isomorphisms

Hom(A, B) — Hom(B, S(A))".

This notion was originally introduced by Bondal and Kapranov in [BK89]. The
name is motivated by the following prototypical example: if X is a smooth, proper
variety of dimension n, then S(A) = A ® wx|n| is a Serre functor on the derived
category D?(X). We will see more examples later on. In the meantime, there are a
couple of basic properties worth knowing about.

Lemma 2 ([Huy06} 1.30-1]). (1) The Serre functor is unique up to unique iso-
morphism, provided that it exists.
(2) Assume that F': D1 — Do is a triangulated functor, and that Dy, Dy have
Serre functors S1,S2. Then F' has a left adjoint if and only if it has a right
adjoint. Moreover

GAF < F480GoS;"
(3) Assume thati: A — D is a (one-sided) triangulated subcategory of D. If D

has a Serre functor, then A has one; thus, it is admissible.

Proof. (1) This is direct from Yoneda: the image of the Serre functor S(A) is
characterized by the contravariant functor Hom(—, S(A)) = Hom(A4, —)V.
1
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(2) The trick here is that Serre duality allows us to swap the two factors in the
Hom functor. In fact, assume that F' has a left adjoint G. We have:

Homp, (F(A), B) = Homp, (B, Sy o F(A))" = Homp, (S5 *(B), F(A))"
= Homp, (G o Sy *(B),A)Y = Homp, (G o Sy *(B),S; 0 S;1(A))Y
= Homp, (S;'(A),G o Sy *(B)) = Homp, (4,51 0 G o S; ' (B)).

(3) Say that i: A — D has a right adjoint i'. Using the previous ideas, the
Serre functor of A is given by i' o S o4. Similarly, if i* - i, then the Serre
functor is given by the inverse of i* 0 .S o 1. [

Example 3. Let f: X — Y be a morphism between smooth, projective varieties
of dimensions m and n, respectively. We know that Rf.: D’(X) — D¥(Y) admits
a left adjoint Lf*. Thus, by the lemma we get a right adjoint

SxoLf*o Sy (=) =Lf*(-)@wslm—n,
where wy = wx ® f*w{,l. This adjoint is denoted by f', the upper shriek.

We point out that f' exists in much more generality, but its definition and ba-
sic properties are much more delicate. The basic idea is as follows: if f: X —
Y is a morphism between finite type C-schemes, we pick a relative compacti-

fication X < X 2 Y, which exists by a theorem of Nagata. The functor
Rf.: Dqcon(X) = Dqcon(Y) admits a right adjoint using Brown’s criterion, which
we denote by @: Dgcon(Y) = Dqcon(X). One declares

F': Ddeon(Y) = Dicon(X),  FHE) =a(K)|x.

This approach for f' is relatively clean; however, it does not say anything about
how to compute f'. This argument is essentially due to Neeman.

Alternatively, one can construct f' directly if f is an embedding or if it is of the
form P — A. One can then construct f ' by working locally and “gluing” these
two models. In any case, there is a lot of work to be done. We refer the interested
reader to [Stacks, Tag ODWF] and the references therein.

2. MUTATIONS

Assume that we are given a semi-orthogonal decomposition D = (A, B). In
particular, A is left admissible and the inclusion map i: A — B admits a left
adjoint ¢*. If D admits a Serre functor, the previous section shows that i also has
a right adjoint ¢*. This way, we can produce a new semi-orthogonal decomposition
D = (At A). This is what we call a mutation of a semi-orthogonal decomposition.
Note that A is preserved, while B is replaced by the new subcategory A*.

Lemma 4. The subcategories A+ and B are equivalent.

Proof. Note that the inclusion j: B — D admits a right adjoint j'. Using this
functor, we assemble the composition A+ — D — B. One quickly checks that this
is an equivalence. ([l

The same idea can be applied with more than two pieces. For example, if D =
(A1, A2, A3, A4), we can move Ay and Az around. Let us introduce some notation.
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Definition 5 ([BK89, §4], cf. [Kuz09, §2.3]). Let D = (Ay,...,As) be a semi-
orthogonal decomposition. Given ¢ = 2, ..., ¢, the ith right mutation is

Ri(Ao) - {-’417 .. 7-/4i—27Aiv *aA’H-l) o aAZ}7

where * = “{Ay, ..., Ai_2, A;)) N (Aisq,..., A, Similarly, for i = 1,...,0 — 1,
the ith left mutation is

]Li(A.> = {A1> e 7Ai71; *7Ai7-’4i+2) oo 7“4(}7
where * = J‘<.A1, - ,.Ai71> n <A1, Aiga, ... ,A£>J‘.
Let us make some comments on the notation. First of all, note that the i
is the position of the “mutated” entry, and the left/right is where it is coming

from. Second, we think of R;,L; as acting on the collection of all semi-orthogonal
decompositions.

Proposition 6. The operators R;,1L; satisfy the braid relations: for i > 2, we have
RiRi+lRi = Ri+1RiRi+1 (resp. with L)

Let us point out that the definition of a mutation is pretty messy, as it requires
computing two orthogonal complements. However, note that
D=(AB) = D=(5p(B),A).
This way, if we want to mutate a block “to the other side” (i.e. apply Lj...Ls—1).

Something similar applies in the other direction.

3. MUTATIONS OF EXCEPTIONAL COLLECTIONS

Let us recall that an exceptional collection of a triangulated category D is a collec-
tion of objects Ey, . .., B, with no Homs from right to left, and with Hom*® (E;, F;) =
C[0]. Using the same ideas of the previous section, we can mutate these sequences.
However, in this case there is an explicit way of performing these mutations.

Proposition 7. Let D = (Aq,..., Ay) be a full exceptional collection, with A
the corresponding semi-orthogonal decomposition. Let L; and R; be given by the
triangles

A ® RHOIH(Ai, Ai+1) £ Ai+1 — L; — %,
Ri — Ai—l 2:) Al X RHOHl(Ai_hAi)* — *.

where ev and ev* are the canonical (co)evaluation maps. Then we have full excep-
tional collections

D= <A1,. . .,Ai,Q,Ai,Ri,AiJrl, . ,Ag>
= <A17 . '7Ai717Li7A’L‘7A’i+2> e 7A€>‘

Moreover, the corresponding semi-orthogonal decompositions correspond to R;(As)
and L;(As) respectively.

Proof. (Idea) Let us focuﬂ on the case £ = 2, i.e. D = (A, B). Consider the triangle
A® RHom(A,B) <% B — C — *.

We claim that D = (C, 4). To show this, start by applying Hom(4, —) to the

triangle above, which shows that Hom'(A4,C) = 0 holds for all i. Now, apply

LThe general case is a formal reduction to this one!
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Hom'(B, —) to get that Hom®(B,C) = C[0]. At last, we apply Hom(—,C) to get
that Hom®(C, C') = C[0]. In other words, this shows that C' is exceptional.

At last, note that the triangle above allows us to recover B from A and C'. This
shows that C and A span D. O

We will use this result to produce various examples.

3.1. On Beilinson SOD. Recall from a couple of lectures ago that D?(P") admits
a full exceptional collection (&, €(1), ..., (n)), thanks to Beilinson. Let’s see what
happens if we mutate (over and over)

First, let us focus on n = 1, i.e. D*(P?) = (€, 0(1)). To compute LL; we need
to look at the triangle

¢ ® RHom(0,0(1)) — O(1) — Ly — *.

Here L, = 0(—1)[1], hence we get the SOD D*(P") = (0(—1), O).

Let us look now at the case n = 2, starting with D*(P?) = (&, 0(1), 0(2)). We
apply L; to get:

0 ® RHom(0,0(1)) — O(1) —» C — =.
Here C' = Q!(1)[1], by the Euler exact sequence. Thus, we get
Li: (QY(1),0,0(2)).

We now apply L; o Ls simultaneously. We can use our previous discussion to get
Sp2(0(2)) = O(—1)[1]. This way, we get

(0.0(1),0(2)) ™ (21(1), 0,0(2)) 222 (0(-1),94(1), 6).

In general, one can show that D*(P") = (Q"(n),...,Q!(1),0), and that this is
obtained by mutation as above.

3.2. The two SOD. Let us go back to an example discussed a couple of weeks
ago. Let a: S — P? be the blow-up of P? at two points. Here Pic(S) = ZE; ®
ZEs & Za* L, where Ey, Ey are the two exceptional divisors and L is the class of a
line in P?2. Using the blow-up semi-orthogonal decomposition we get

DY(S) = (O, (~1), Op,(~1), Os, Os(a*L), Os(a*2L)).

On the other hand, we can blow-down the strict transform of the curve joining both
points in P2. This gives us a blow-down 3: S — P! x P'. If My, M, are the two
rulings of P! x P!, and F is the exceptional divisor, we get an SOD

DY(S) = (Op(—1), 05, Os(B* M), Os(B* M), Os(B* My + *My)).

Let’s see if we can relate these two decompositions via blow-downs. We point out
that
BMl*ZEl—‘rF, BM;:EQ—FF, a*L:El—l—Eg—l—F,
which will be useful to compare these two decompositions. We have depicted this
situation in Figure
This way, our previous semi-orthogonal decompositions can be written as
(1) Db(S) = (Og,(-1),0gr,(—1),05,05(FE1 + Es + F), Os(2E1 + 2E5 + 2F)),

(2)  D"S)=(0p(-1),05,05(Ey + F), Os(E1 + F), Os(Ey + By + 2F)).



MUTATIONS AND SERRE FUNCTORS 5

« Er Ex 5 M

F
Mo

P? S P! x P!

FIGURE 1. The blow-up of P? at two points, and the blow-up pf
P! x P! at a point.

We start by applying R3 to (1). Here, note that
Hom®(0g,(—1), 0s) = Hom*™*(0s, Op,(—1) @ wg)"
= H*™*(S,05(-2))* = C[-1].
This way, the mutated object A fits into the triangle
Og,(-1) = Os[1] = A — O, (-1)[1].

It follows that A = €s(E;), and we get the SOD

D*(S) = (Or,(~1), Os, Os(E»), Os(Ey + Es + F), Os(2E1 + 2B, + 2F))
The same argument applies after applying Ry, which yields

DY(S) = (05, Os(E1), Os(Ey), Os(Ey + Eo + F), O5(2E; + 2E, 4 2F)).

Our next step is to apply Ly oLy oILg oLy. In other words, we are mutating the
last object all the way to the first position. The effect is the same as tensoring it
by the canonical bundle (which is Os(—2F; — 2F5 — 3F)). We get:

DY(S) = (0s(—F), Os, Os(E1), Os(Es), Os(Ey + Ea + F)).

At last, apply L. The same computations we did previously apply (after tensoring
by Os(F)), yielding

D*(S) = (Op, Os(~F), Os(Er), Os(Ez), Os(Ey + Bz + ).
This gives us up to twisting by Os(F).

4. APPLICATIONS ON FAMILIES

We will finish today’s talk by giving some justification to the idea of mutations.
In fact: why would want to produce more semi-orthogonal decompositions?

One way of justifying this is to find a semi-orthogonal decomposition where the
components have some geometric meaning, or some useful form. For example, we
showed that the blow-up of P? at two points admit a semi-orthogonal decomposition
whose components are all line bundles. More generally, the argument of the previous
section shows:

Proposition 8. Let S be a smooth, projective rational surface. Then S admits a
semi-orthogonal decomposition consisting only on line bundles.

Proof. (Sketch) Pick a sequence of blow-dows S — S; — --- — S,., where S, is
either P? or a Hirzebruch surface. The proof proceeds by induction on r: the case
r = 0 is clear (recall that Hirzebruch surfaces are P!-bundles!), and the induction
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step follows from Orlov’s semi-orthogonal decomposition together with the previous
computation. ([

For another example, we follow [Kuz21]. A surface S is a sextic du Val del Pezzo
if S is normal, integral, with at worst du Val singularities and w§1 ample with
w?% = 6. The smooth ones are easy to characterize: they are blow-ups S — P? at
three general points. However, if the points are not chosen generally, we will get
(—2)-curves which need to be contracted.

So, producing semi-orthogonal decompositions, at least for the smooth ones, is
not difficult. If S — P2 has exceptional divisors E;, Es, E3, Orlov’s SOD gives us

Db(S) = <ﬁE1(_1)7 ﬁEQ(_]‘)’ ﬁEs(_l)a Os, ﬁS(L)v ﬁS(QL»v

where L is the (pullback of the) class of a line in P2. One can mutate this family
to get:

Proposition 9 ([Kuz2l, 3.1, 3.13]). There is a semi-orthogonal decomposition
D%(S) = (A1, Az, As),

where

Ay =(0s(L — Ev),0s(L — E2), Os(L — E3))
A3 = <ﬁS(L), ﬁS(QL - E1 - E2 - E3)>

From here one can interpret the semi-orthogonal decompositions in an interesting
way. Note that wgl embeds S into P6. We let Z; be the Hilbert scheme with
polynomial dt+1 with respect to this polarization. It turns out that each component
A}/ can be interpreted as coming from the universal family in Z;. Moreover, one
can use this interpretation to extend the results for du Val del Pezzo surfaces.

Theorem 10 ([Kuz21} 5.2]). Assume that 2" — S is a family of du Val del Pezzo
surfaces. Then there is an S-linear semi-orthogonal decomposition

DY(Z) = (D*(S), D" (22, B2), D’ (25, B5)).

where X5, &3 — S are finite flat of degree 3,2 respectively, and B4, , B2, are Brauer
classes of order 2 and 3.

At the end, we get a result where mutations are not mentioned anywhere; how-
ever, these are a useful tool to get the correct ending result.
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