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1. Serre functors

Let us start by recalling the following notion, which was already introduced a
couple of weeks ago.

Definition 1 ([Huy06, 1.28]). Let D be a k-linear triangulated category. A Serre
functor is a k-linear equivalence S : D → D together with natural isomorphisms

Hom(A,B) → Hom(B,S(A))∨.

This notion was originally introduced by Bondal and Kapranov in [BK89]. The
name is motivated by the following prototypical example: if X is a smooth, proper
variety of dimension n, then S(A) = A ⊗ ωX [n] is a Serre functor on the derived
category Db(X). We will see more examples later on. In the meantime, there are a
couple of basic properties worth knowing about.

Lemma 2 ([Huy06, 1.30–1]). (1) The Serre functor is unique up to unique iso-
morphism, provided that it exists.

(2) Assume that F : D1 → D2 is a triangulated functor, and that D1,D2 have
Serre functors S1, S2. Then F has a left adjoint if and only if it has a right
adjoint. Moreover

G ⊣ F ⇔ F ⊣ S1 ◦G ◦ S−1
2 .

(3) Assume that i : A → D is a (one-sided) triangulated subcategory of D. If D
has a Serre functor, then A has one; thus, it is admissible.

Proof. (1) This is direct from Yoneda: the image of the Serre functor S(A) is
characterized by the contravariant functor Hom(−, S(A)) ∼= Hom(A,−)∨.

1
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(2) The trick here is that Serre duality allows us to swap the two factors in the
Hom functor. In fact, assume that F has a left adjoint G. We have:

HomD2
(F (A), B) = HomD2

(B,S2 ◦ F (A))∨ = HomD2
(S−1

2 (B), F (A))∨

= HomD1
(G ◦ S−1

2 (B), A)∨ = HomD1
(G ◦ S−1

2 (B), S1 ◦ S−1
1 (A))∨

= HomD1
(S−1

1 (A), G ◦ S−1
2 (B)) = HomD1

(A,S1 ◦G ◦ S−1
2 (B)).

(3) Say that i : A → D has a right adjoint i!. Using the previous ideas, the
Serre functor of A is given by i! ◦ S ◦ i. Similarly, if i∗ ⊣ i, then the Serre
functor is given by the inverse of i∗ ◦ S ◦ i. □

Example 3. Let f : X → Y be a morphism between smooth, projective varieties
of dimensions m and n, respectively. We know that Rf∗ : D

b(X) → Db(Y ) admits
a left adjoint Lf∗. Thus, by the lemma we get a right adjoint

SX ◦ Lf∗ ◦ S−1
Y (−) = Lf∗(−)⊗ ωf [m− n],

where ωf = ωX ⊗ f∗ω−1
Y . This adjoint is denoted by f !, the upper shriek.

We point out that f ! exists in much more generality, but its definition and ba-
sic properties are much more delicate. The basic idea is as follows: if f : X →
Y is a morphism between finite type C-schemes, we pick a relative compacti-

fication X ↪→ X
f−→ Y , which exists by a theorem of Nagata. The functor

Rf∗ : DQCoh(X) → DQCoh(Y ) admits a right adjoint using Brown’s criterion, which
we denote by a : DQCoh(Y ) → DQCoh(X). One declares

f ! : D+
QCoh(Y ) → D+

QCoh(X), f !(K) = a(K)|X .

This approach for f ! is relatively clean; however, it does not say anything about
how to compute f !. This argument is essentially due to Neeman.

Alternatively, one can construct f ! directly if f is an embedding or if it is of the
form Pn

A → A. One can then construct f ! by working locally and “gluing” these
two models. In any case, there is a lot of work to be done. We refer the interested
reader to [Stacks, Tag 0DWF] and the references therein.

2. Mutations

Assume that we are given a semi-orthogonal decomposition D = ⟨A,B⟩. In
particular, A is left admissible and the inclusion map i : A → B admits a left
adjoint i∗. If D admits a Serre functor, the previous section shows that i also has
a right adjoint i!. This way, we can produce a new semi-orthogonal decomposition
D = ⟨A⊥,A⟩. This is what we call a mutation of a semi-orthogonal decomposition.
Note that A is preserved, while B is replaced by the new subcategory A⊥.

Lemma 4. The subcategories A⊥ and B are equivalent.

Proof. Note that the inclusion j : B → D admits a right adjoint j!. Using this
functor, we assemble the composition A⊥ → D → B. One quickly checks that this
is an equivalence. □

The same idea can be applied with more than two pieces. For example, if D =
⟨A1,A2,A3,A4⟩, we can move A2 and A3 around. Let us introduce some notation.
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Definition 5 ([BK89, §4], cf. [Kuz09, §2.3]). Let D = ⟨A1, . . . ,Aℓ⟩ be a semi-
orthogonal decomposition. Given i = 2, . . . , ℓ, the ith right mutation is

Ri(A•) = {A1, . . . ,Ai−2,Ai, ∗,Ai+1, . . . ,Aℓ},
where ∗ = ⊥⟨A1, . . . ,Ai−2,Ai⟩ ∩ ⟨Ai+1, . . . ,Aℓ⟩⊥. Similarly, for i = 1, . . . , ℓ − 1,
the ith left mutation is

Li(A•) = {A1, . . . ,Ai−1, ∗,Ai,Ai+2, . . . ,Aℓ},
where ∗ = ⊥⟨A1, . . . ,Ai−1⟩ ∩ ⟨Ai,Ai+2, . . . ,Aℓ⟩⊥.

Let us make some comments on the notation. First of all, note that the i
is the position of the “mutated” entry, and the left/right is where it is coming
from. Second, we think of Ri,Li as acting on the collection of all semi-orthogonal
decompositions.

Proposition 6. The operators Ri,Li satisfy the braid relations: for i ≥ 2, we have
RiRi+1Ri = Ri+1RiRi+1 (resp. with L).

Let us point out that the definition of a mutation is pretty messy, as it requires
computing two orthogonal complements. However, note that

D = ⟨A,B⟩ =⇒ D = ⟨SD(B),A⟩.
This way, if we want to mutate a block “to the other side” (i.e. apply L1 . . .Lℓ−1).
Something similar applies in the other direction.

3. Mutations of exceptional collections

Let us recall that an exceptional collection of a triangulated categoryD is a collec-
tion of objects E1, . . . , Er with no Homs from right to left, and with Hom•(Ei, Ei) =
C[0]. Using the same ideas of the previous section, we can mutate these sequences.
However, in this case there is an explicit way of performing these mutations.

Proposition 7. Let D = ⟨A1, . . . , Aℓ⟩ be a full exceptional collection, with A•
the corresponding semi-orthogonal decomposition. Let Li and Ri be given by the
triangles

Ai ⊗RHom(Ai, Ai+1)
ev−→ Ai+1 → Li → ∗,

Ri → Ai−1
ev∗

−−→ Ai ⊗RHom(Ai−1, Ai)
∗ → ∗.

where ev and ev∗ are the canonical (co)evaluation maps. Then we have full excep-
tional collections

D = ⟨A1, . . . , Ai−2, Ai, Ri, Ai+1, . . . , Aℓ⟩
= ⟨A1, . . . , Ai−1, Li, Ai, Ai+2, . . . , Aℓ⟩.

Moreover, the corresponding semi-orthogonal decompositions correspond to Ri(A•)
and Li(A•) respectively.

Proof. (Idea) Let us focus1 on the case ℓ = 2, i.e. D = ⟨A,B⟩. Consider the triangle

A⊗RHom(A,B)
ev−→ B → C → ∗.

We claim that D = ⟨C,A⟩. To show this, start by applying Hom(A,−) to the
triangle above, which shows that Homi(A,C) = 0 holds for all i. Now, apply

1The general case is a formal reduction to this one!
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Homi(B,−) to get that Hom•(B,C) = C[0]. At last, we apply Hom(−, C) to get
that Hom•(C,C) = C[0]. In other words, this shows that C is exceptional.

At last, note that the triangle above allows us to recover B from A and C. This
shows that C and A span D. □

We will use this result to produce various examples.

3.1. On Beilinson SOD. Recall from a couple of lectures ago that Db(Pn) admits
a full exceptional collection ⟨O,O(1), . . . ,O(n)⟩, thanks to Beilinson. Let’s see what
happens if we mutate (over and over)

First, let us focus on n = 1, i.e. Db(Pn) = ⟨O,O(1)⟩. To compute L1 we need
to look at the triangle

O ⊗RHom(O,O(1)) → O(1) → L1 → ∗.

Here L1 = O(−1)[1], hence we get the SOD Db(Pn) = ⟨O(−1),O⟩.
Let us look now at the case n = 2, starting with Db(P2) = ⟨O,O(1),O(2)⟩. We

apply L1 to get:

O ⊗RHom(O,O(1)) → O(1) → C → ∗.
Here C ∼= Ω1(1)[1], by the Euler exact sequence. Thus, we get

L1 : ⟨Ω1(1),O,O(2)⟩.

We now apply L1 ◦ L2 simultaneously. We can use our previous discussion to get
SP2(O(2)) = O(−1)[1]. This way, we get

⟨O,O(1),O(2)⟩ L1−→ ⟨Ω1(1),O,O(2)⟩ L1◦L2−−−−→ ⟨O(−1),Ω1(1),O⟩.

In general, one can show that Db(Pn) = ⟨Ωn(n), . . . ,Ω1(1),O⟩, and that this is
obtained by mutation as above.

3.2. The two SOD. Let us go back to an example discussed a couple of weeks
ago. Let α : S → P2 be the blow-up of P2 at two points. Here Pic(S) = ZE1 ⊕
ZE2 ⊕ Zα∗L, where E1, E2 are the two exceptional divisors and L is the class of a
line in P2. Using the blow-up semi-orthogonal decomposition we get

Db(S) = ⟨OE1
(−1),OE2

(−1),OS ,OS(α
∗L),OS(α

∗2L)⟩.

On the other hand, we can blow-down the strict transform of the curve joining both
points in P2. This gives us a blow-down β : S → P1 × P1. If M1,M2 are the two
rulings of P1 × P1, and F is the exceptional divisor, we get an SOD

Db(S) = ⟨OF (−1),OS ,OS(β
∗M1),OS(β

∗M2),OS(β
∗M1 + β∗M2)⟩.

Let’s see if we can relate these two decompositions via blow-downs. We point out
that

βM∗
1 = E1 + F, βM∗

2 = E2 + F, α∗L = E1 + E2 + F,

which will be useful to compare these two decompositions. We have depicted this
situation in Figure 1.

This way, our previous semi-orthogonal decompositions can be written as

Db(S) = ⟨OE1
(−1),OE2

(−1),OS ,OS(E1 + E2 + F ),OS(2E1 + 2E2 + 2F )⟩,(1)

Db(S) = ⟨OF (−1),OS ,OS(E1 + F ),OS(E1 + F ),OS(E1 + E2 + 2F )⟩.(2)
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α β

P2 S P1 × P1

L E1 E2

F

M1

M2

Figure 1. The blow-up of P2 at two points, and the blow-up pf
P1 × P1 at a point.

We start by applying R3 to (1). Here, note that

Hom•(OE2
(−1),OS) = Hom2−•(OS ,OE2

(−1)⊗ ωS)
∨

= H2−•(S,OE(−2))• = C[−1].

This way, the mutated object A fits into the triangle

OE1
(−1) → OS [1] → A → OE1

(−1)[1].

It follows that A = OS(E1), and we get the SOD

Db(S) = ⟨OE1
(−1),OS ,OS(E2),OS(E1 + E2 + F ),OS(2E1 + 2E2 + 2F )⟩

The same argument applies after applying R2, which yields

Db(S) = ⟨OS ,OS(E1),OS(E2),OS(E1 + E2 + F ),OS(2E1 + 2E2 + 2F )⟩.

Our next step is to apply L1 ◦L2 ◦L3 ◦L4. In other words, we are mutating the
last object all the way to the first position. The effect is the same as tensoring it
by the canonical bundle (which is OS(−2E1 − 2E2 − 3F )). We get:

Db(S) = ⟨OS(−F ),OS ,OS(E1),OS(E2),OS(E1 + E2 + F )⟩.

At last, apply L1. The same computations we did previously apply (after tensoring
by OS(F )), yielding

Db(S) = ⟨OF ,OS(−F ),OS(E1),OS(E2),OS(E1 + E2 + f)⟩.

This gives us (2) up to twisting by OS(F ).

4. Applications on families

We will finish today’s talk by giving some justification to the idea of mutations.
In fact: why would want to produce more semi-orthogonal decompositions?

One way of justifying this is to find a semi-orthogonal decomposition where the
components have some geometric meaning, or some useful form. For example, we
showed that the blow-up of P2 at two points admit a semi-orthogonal decomposition
whose components are all line bundles. More generally, the argument of the previous
section shows:

Proposition 8. Let S be a smooth, projective rational surface. Then S admits a
semi-orthogonal decomposition consisting only on line bundles.

Proof. (Sketch) Pick a sequence of blow-dows S → S1 → · · · → Sr, where Sr is
either P2 or a Hirzebruch surface. The proof proceeds by induction on r: the case
r = 0 is clear (recall that Hirzebruch surfaces are P1-bundles!), and the induction



6 NICOLÁS VILCHES

step follows from Orlov’s semi-orthogonal decomposition together with the previous
computation. □

For another example, we follow [Kuz21]. A surface S is a sextic du Val del Pezzo
if S is normal, integral, with at worst du Val singularities and ω−1

S ample with
ω2
S = 6. The smooth ones are easy to characterize: they are blow-ups S → P2 at

three general points. However, if the points are not chosen generally, we will get
(−2)-curves which need to be contracted.

So, producing semi-orthogonal decompositions, at least for the smooth ones, is
not difficult. If S → P2 has exceptional divisors E1, E2, E3, Orlov’s SOD gives us

Db(S) = ⟨OE1
(−1),OE2

(−1),OE3
(−1),OS ,OS(L),OS(2L)⟩,

where L is the (pullback of the) class of a line in P2. One can mutate this family
to get:

Proposition 9 ([Kuz21, 3.1, 3.13]). There is a semi-orthogonal decomposition

Db(S) = ⟨A1,A2,A3⟩,

where

A1 = ⟨OS⟩
A2 = ⟨OS(L− E1),OS(L− E2),OS(L− E3)⟩
A3 = ⟨OS(L),OS(2L− E1 − E2 − E3)⟩.

From here one can interpret the semi-orthogonal decompositions in an interesting
way. Note that ω−1

S embeds S into P6. We let Zd be the Hilbert scheme with
polynomial dt+1 with respect to this polarization. It turns out that each component
A∨

d can be interpreted as coming from the universal family in Zd. Moreover, one
can use this interpretation to extend the results for du Val del Pezzo surfaces.

Theorem 10 ([Kuz21, 5.2]). Assume that X → S is a family of du Val del Pezzo
surfaces. Then there is an S-linear semi-orthogonal decomposition

Db(X ) = ⟨Db(S),Db(X2, β2),D
b(X3, β3)⟩,

where X2,X3 → S are finite flat of degree 3, 2 respectively, and βX2 , βX3 are Brauer
classes of order 2 and 3.

At the end, we get a result where mutations are not mentioned anywhere; how-
ever, these are a useful tool to get the correct ending result.
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