MUTATIONS AND SERRE FUNCTORS

NICOLÁS VILCHES

ABSTRACT. Notes prepared for the *Semi-orthogonal decompositions seminar* (Spring 2025), organized by Amal Mattoo and myself at Columbia University.

CONTENTS

1. Serre functors	1
2. Mutations	2
3. Mutations of exceptional collections	3
3.1. On Beilinson SOD	4
3.2. The two SOD	4
4. Applications on families	5
References	6

1. Serre functors

Let us start by recalling the following notion, which was already introduced a couple of weeks ago.

Definition 1 ([Huy06, 1.28]). Let \mathcal{D} be a k-linear triangulated category. A Serre functor is a k-linear equivalence $S: \mathcal{D} \to \mathcal{D}$ together with natural isomorphisms

$$\operatorname{Hom}(A, B) \to \operatorname{Hom}(B, S(A))^{\vee}$$

This notion was originally introduced by Bondal and Kapranov in [BK89]. The name is motivated by the following prototypical example: if X is a smooth, proper variety of dimension n, then $S(A) = A \otimes \omega_X[n]$ is a Serre functor on the derived category $D^b(X)$. We will see more examples later on. In the meantime, there are a couple of basic properties worth knowing about.

- Lemma 2 ([Huy06, 1.30–1]). (1) The Serre functor is unique up to unique isomorphism, provided that it exists.
 - (2) Assume that $F: \mathcal{D}_1 \to \mathcal{D}_2$ is a triangulated functor, and that $\mathcal{D}_1, \mathcal{D}_2$ have Serre functors S_1, S_2 . Then F has a left adjoint if and only if it has a right adjoint. Moreover

$$G \dashv F \Leftrightarrow F \dashv S_1 \circ G \circ S_2^{-1}.$$

- (3) Assume that i: A → D is a (one-sided) triangulated subcategory of D. If D has a Serre functor, then A has one; thus, it is admissible.
- *Proof.* (1) This is direct from Yoneda: the image of the Serre functor S(A) is characterized by the contravariant functor $\operatorname{Hom}(-, S(A)) \cong \operatorname{Hom}(A, -)^{\vee}$.

NICOLÁS VILCHES

(2) The trick here is that Serre duality allows us to swap the two factors in the Hom functor. In fact, assume that F has a left adjoint G. We have:

$$\operatorname{Hom}_{D_2}(F(A), B) = \operatorname{Hom}_{D_2}(B, S_2 \circ F(A))^{\vee} = \operatorname{Hom}_{D_2}(S_2^{-1}(B), F(A))^{\vee} = \operatorname{Hom}_{D_1}(G \circ S_2^{-1}(B), A)^{\vee} = \operatorname{Hom}_{D_1}(G \circ S_2^{-1}(B), S_1 \circ S_1^{-1}(A))^{\vee} = \operatorname{Hom}_{D_1}(S_1^{-1}(A), G \circ S_2^{-1}(B)) = \operatorname{Hom}_{D_1}(A, S_1 \circ G \circ S_2^{-1}(B)).$$

(3) Say that $i: \mathcal{A} \to \mathcal{D}$ has a right adjoint $i^!$. Using the previous ideas, the Serre functor of \mathcal{A} is given by $i^! \circ S \circ i$. Similarly, if $i^* \dashv i$, then the Serre functor is given by the inverse of $i^* \circ S \circ i$.

Example 3. Let $f: X \to Y$ be a morphism between smooth, projective varieties of dimensions m and n, respectively. We know that $Rf_*: D^b(X) \to D^b(Y)$ admits a left adjoint Lf^* . Thus, by the lemma we get a right adjoint

$$S_X \circ Lf^* \circ S_Y^{-1}(-) = Lf^*(-) \otimes \omega_f[m-n],$$

where $\omega_f = \omega_X \otimes f^* \omega_Y^{-1}$. This adjoint is denoted by $f^!$, the upper shriek.

We point out that $f^!$ exists in much more generality, but its definition and basic properties are much more delicate. The basic idea is as follows: if $f: X \to Y$ is a morphism between finite type \mathbb{C} -schemes, we pick a relative compactification $X \hookrightarrow \overline{X} \xrightarrow{\overline{f}} Y$, which exists by a theorem of Nagata. The functor $Rf_*: D_{QCoh}(X) \to D_{QCoh}(Y)$ admits a right adjoint using Brown's criterion, which we denote by $\overline{a}: D_{QCoh}(Y) \to D_{QCoh}(X)$. One declares

$$f^! \colon \mathrm{D}^+_{\mathrm{QCoh}}(Y) \to \mathrm{D}^+_{\mathrm{QCoh}}(X), \qquad f^!(K) = \overline{a}(K)|_X.$$

This approach for $f^!$ is relatively clean; however, it does *not* say anything about how to compute $f^!$. This argument is essentially due to Neeman.

Alternatively, one can construct $f^!$ directly if f is an embedding or if it is of the form $\mathbb{P}^n_A \to A$. One can then construct $f^!$ by working locally and "gluing" these two models. In any case, there is a lot of work to be done. We refer the interested reader to [Stacks, Tag 0DWF] and the references therein.

2. MUTATIONS

Assume that we are given a semi-orthogonal decomposition $\mathcal{D} = \langle \mathcal{A}, \mathcal{B} \rangle$. In particular, \mathcal{A} is left admissible and the inclusion map $i: \mathcal{A} \to \mathcal{B}$ admits a left adjoint i^* . If \mathcal{D} admits a Serre functor, the previous section shows that i also has a right adjoint $i^!$. This way, we can produce a new semi-orthogonal decomposition $\mathcal{D} = \langle \mathcal{A}^{\perp}, \mathcal{A} \rangle$. This is what we call a *mutation* of a semi-orthogonal decomposition. Note that \mathcal{A} is preserved, while \mathcal{B} is replaced by the new subcategory \mathcal{A}^{\perp} .

Lemma 4. The subcategories \mathcal{A}^{\perp} and \mathcal{B} are equivalent.

Proof. Note that the inclusion $j: \mathcal{B} \to \mathcal{D}$ admits a right adjoint $j^!$. Using this functor, we assemble the composition $\mathcal{A}^{\perp} \to \mathcal{D} \to \mathcal{B}$. One quickly checks that this is an equivalence.

The same idea can be applied with more than two pieces. For example, if $\mathcal{D} = \langle \mathcal{A}_1, \mathcal{A}_2, \mathcal{A}_3, \mathcal{A}_4 \rangle$, we can move \mathcal{A}_2 and \mathcal{A}_3 around. Let us introduce some notation.

 $\mathbf{2}$

Definition 5 ([BK89, §4], cf. [Kuz09, §2.3]). Let $\mathcal{D} = \langle \mathcal{A}_1, \ldots, \mathcal{A}_\ell \rangle$ be a semiorthogonal decomposition. Given $i = 2, \ldots, \ell$, the *i*th right mutation is

$$\mathbb{R}_i(\mathcal{A}_{\bullet}) = \{\mathcal{A}_1, \dots, \mathcal{A}_{i-2}, \mathcal{A}_i, *, \mathcal{A}_{i+1}, \dots, \mathcal{A}_\ell\},\$$

where $* = {}^{\perp} \langle \mathcal{A}_1, \ldots, \mathcal{A}_{i-2}, \mathcal{A}_i \rangle \cap \langle \mathcal{A}_{i+1}, \ldots, \mathcal{A}_\ell \rangle^{\perp}$. Similarly, for $i = 1, \ldots, \ell - 1$, the *i*th left mutation is

$$\mathbb{L}_i(\mathcal{A}^{ullet}) = \{\mathcal{A}_1, \dots, \mathcal{A}_{i-1}, *, \mathcal{A}_i, \mathcal{A}_{i+2}, \dots, \mathcal{A}_\ell\},\$$

where $* = {}^{\perp} \langle \mathcal{A}_1, \dots, \mathcal{A}_{i-1} \rangle \cap \langle \mathcal{A}_i, \mathcal{A}_{i+2}, \dots, \mathcal{A}_{\ell} \rangle^{\perp}$.

Let us make some comments on the notation. First of all, note that the i is the position of the "mutated" entry, and the left/right is where it is coming from. Second, we think of $\mathbb{R}_i, \mathbb{L}_i$ as acting on the collection of all semi-orthogonal decompositions.

Proposition 6. The operators \mathbb{R}_i , \mathbb{L}_i satisfy the braid relations: for $i \geq 2$, we have $\mathbb{R}_i \mathbb{R}_{i+1} \mathbb{R}_i = \mathbb{R}_{i+1} \mathbb{R}_i \mathbb{R}_{i+1}$ (resp. with \mathbb{L}).

Let us point out that the definition of a mutation is pretty messy, as it requires computing two orthogonal complements. However, note that

$$\mathcal{D} = \langle \mathcal{A}, \mathcal{B} \rangle \implies \mathcal{D} = \langle S_{\mathcal{D}}(\mathcal{B}), \mathcal{A} \rangle.$$

This way, if we want to mutate a block "to the other side" (i.e. apply $\mathbb{L}_1 \dots \mathbb{L}_{\ell-1}$). Something similar applies in the other direction.

3. MUTATIONS OF EXCEPTIONAL COLLECTIONS

Let us recall that an *exceptional collection* of a triangulated category \mathcal{D} is a collection of objects E_1, \ldots, E_r with no Homs from right to left, and with Hom[•] $(E_i, E_i) = \mathbb{C}[0]$. Using the same ideas of the previous section, we can mutate these sequences. However, in this case there is an explicit way of performing these mutations.

Proposition 7. Let $\mathcal{D} = \langle A_1, \ldots, A_\ell \rangle$ be a full exceptional collection, with \mathcal{A}_{\bullet} the corresponding semi-orthogonal decomposition. Let L_i and R_i be given by the triangles

$$A_i \otimes R \operatorname{Hom}(A_i, A_{i+1}) \xrightarrow{ev} A_{i+1} \to L_i \to *,$$

$$R_i \to A_{i-1} \xrightarrow{ev^*} A_i \otimes R \operatorname{Hom}(A_{i-1}, A_i)^* \to *.$$

where ev and ev^* are the canonical (co)evaluation maps. Then we have full exceptional collections

$$\mathcal{D} = \langle A_1, \dots, A_{i-2}, A_i, R_i, A_{i+1}, \dots, A_\ell \rangle$$

= $\langle A_1, \dots, A_{i-1}, L_i, A_i, A_{i+2}, \dots, A_\ell \rangle.$

Moreover, the corresponding semi-orthogonal decompositions correspond to $\mathbb{R}_i(\mathcal{A}_{\bullet})$ and $\mathbb{L}_i(\mathcal{A}_{\bullet})$ respectively.

Proof. (Idea) Let us focus¹ on the case $\ell = 2$, i.e. $\mathcal{D} = \langle A, B \rangle$. Consider the triangle $A \otimes R \operatorname{Hom}(A, B) \xrightarrow{ev} B \to C \to *$.

We claim that $\mathcal{D} = \langle C, A \rangle$. To show this, start by applying $\operatorname{Hom}(A, -)$ to the triangle above, which shows that $\operatorname{Hom}^{i}(A, C) = 0$ holds for all *i*. Now, apply

¹The general case is a formal reduction to this one!

NICOLÁS VILCHES

 $\operatorname{Hom}^{i}(B,-)$ to get that $\operatorname{Hom}^{\bullet}(B,C) = \mathbb{C}[0]$. At last, we apply $\operatorname{Hom}(-,C)$ to get that $\operatorname{Hom}^{\bullet}(C,C) = \mathbb{C}[0]$. In other words, this shows that C is exceptional.

At last, note that the triangle above allows us to recover B from A and C. This shows that C and A span \mathcal{D} .

We will use this result to produce various examples.

3.1. On Beilinson SOD. Recall from a couple of lectures ago that $D^b(\mathbb{P}^n)$ admits a full exceptional collection $\langle \mathcal{O}, \mathcal{O}(1), \ldots, \mathcal{O}(n) \rangle$, thanks to Beilinson. Let's see what happens if we mutate (over and over)

First, let us focus on n = 1, i.e. $D^b(\mathbb{P}^n) = \langle \mathcal{O}, \mathcal{O}(1) \rangle$. To compute \mathbb{L}_1 we need to look at the triangle

$$\mathscr{O} \otimes R \operatorname{Hom}(\mathscr{O}, \mathscr{O}(1)) \to \mathscr{O}(1) \to L_1 \to *.$$

Here $L_1 = \mathscr{O}(-1)[1]$, hence we get the SOD $D^b(\mathbb{P}^n) = \langle \mathscr{O}(-1), \mathscr{O} \rangle$.

Let us look now at the case n = 2, starting with $D^b(\mathbb{P}^2) = \langle \mathcal{O}, \mathcal{O}(1), \mathcal{O}(2) \rangle$. We apply \mathbb{L}_1 to get:

$$\mathscr{O} \otimes R \operatorname{Hom}(\mathscr{O}, \mathscr{O}(1)) \to \mathscr{O}(1) \to C \to *.$$

Here $C \cong \Omega^1(1)[1]$, by the Euler exact sequence. Thus, we get

$$\mathbb{L}_1: \langle \Omega^1(1), \mathscr{O}, \mathscr{O}(2) \rangle.$$

We now apply $\mathbb{L}_1 \circ \mathbb{L}_2$ simultaneously. We can use our previous discussion to get $S_{\mathbb{P}^2}(\mathscr{O}(2)) = \mathscr{O}(-1)[1]$. This way, we get

$$\langle \mathcal{O}, \mathcal{O}(1), \mathcal{O}(2) \rangle \xrightarrow{\mathbb{L}_1} \langle \Omega^1(1), \mathcal{O}, \mathcal{O}(2) \rangle \xrightarrow{\mathbb{L}_1 \circ \mathbb{L}_2} \langle \mathcal{O}(-1), \Omega^1(1), \mathcal{O} \rangle.$$

In general, one can show that $D^b(\mathbb{P}^n) = \langle \Omega^n(n), \ldots, \Omega^1(1), \mathcal{O} \rangle$, and that this is obtained by mutation as above.

3.2. The two SOD. Let us go back to an example discussed a couple of weeks ago. Let $\alpha: S \to \mathbb{P}^2$ be the blow-up of \mathbb{P}^2 at two points. Here $\operatorname{Pic}(S) = \mathbb{Z}E_1 \oplus \mathbb{Z}E_2 \oplus \mathbb{Z}\alpha^*L$, where E_1, E_2 are the two exceptional divisors and L is the class of a line in \mathbb{P}^2 . Using the blow-up semi-orthogonal decomposition we get

$$D^{b}(S) = \langle \mathscr{O}_{E_{1}}(-1), \mathscr{O}_{E_{2}}(-1), \mathscr{O}_{S}, \mathscr{O}_{S}(\alpha^{*}L), \mathscr{O}_{S}(\alpha^{*}2L) \rangle.$$

On the other hand, we can blow-down the strict transform of the curve joining both points in \mathbb{P}^2 . This gives us a blow-down $\beta \colon S \to \mathbb{P}^1 \times \mathbb{P}^1$. If M_1, M_2 are the two rulings of $\mathbb{P}^1 \times \mathbb{P}^1$, and F is the exceptional divisor, we get an SOD

$$\mathbf{D}^{b}(S) = \langle \mathscr{O}_{F}(-1), \mathscr{O}_{S}, \mathscr{O}_{S}(\beta^{*}M_{1}), \mathscr{O}_{S}(\beta^{*}M_{2}), \mathscr{O}_{S}(\beta^{*}M_{1} + \beta^{*}M_{2}) \rangle.$$

Let's see if we can relate these two decompositions via blow-downs. We point out that

$$\beta M_1^* = E_1 + F, \quad \beta M_2^* = E_2 + F, \quad \alpha^* L = E_1 + E_2 + F,$$

which will be useful to compare these two decompositions. We have depicted this situation in Figure 1.

This way, our previous semi-orthogonal decompositions can be written as

- (1) $D^b(S) = \langle \mathscr{O}_{E_1}(-1), \mathscr{O}_{E_2}(-1), \mathscr{O}_S, \mathscr{O}_S(E_1 + E_2 + F), \mathscr{O}_S(2E_1 + 2E_2 + 2F) \rangle,$
- (2) $\mathbf{D}^{b}(S) = \langle \mathscr{O}_{F}(-1), \mathscr{O}_{S}, \mathscr{O}_{S}(E_{1}+F), \mathscr{O}_{S}(E_{1}+F), \mathscr{O}_{S}(E_{1}+E_{2}+2F) \rangle.$

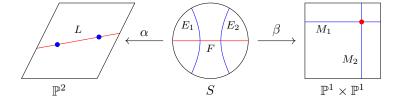


FIGURE 1. The blow-up of \mathbb{P}^2 at two points, and the blow-up pf $\mathbb{P}^1 \times \mathbb{P}^1$ at a point.

We start by applying \mathbb{R}_3 to (1). Here, note that

$$\operatorname{Hom}^{\bullet}(\mathscr{O}_{E_{2}}(-1),\mathscr{O}_{S}) = \operatorname{Hom}^{2-\bullet}(\mathscr{O}_{S},\mathscr{O}_{E_{2}}(-1)\otimes\omega_{S})^{\vee}$$
$$= H^{2-\bullet}(S,\mathscr{O}_{E}(-2))^{\bullet} = \mathbb{C}[-1].$$

This way, the mutated object A fits into the triangle

$$\mathscr{O}_{E_1}(-1) \to \mathscr{O}_S[1] \to A \to \mathscr{O}_{E_1}(-1)[1].$$

It follows that $A = \mathcal{O}_S(E_1)$, and we get the SOD

$$\mathbf{D}^{b}(S) = \langle \mathscr{O}_{E_{1}}(-1), \mathscr{O}_{S}, \mathscr{O}_{S}(E_{2}), \mathscr{O}_{S}(E_{1}+E_{2}+F), \mathscr{O}_{S}(2E_{1}+2E_{2}+2F) \rangle$$

The same argument applies after applying \mathbb{R}_2 , which yields

$$\mathbf{D}^{b}(S) = \langle \mathscr{O}_{S}, \mathscr{O}_{S}(E_{1}), \mathscr{O}_{S}(E_{2}), \mathscr{O}_{S}(E_{1}+E_{2}+F), \mathscr{O}_{S}(2E_{1}+2E_{2}+2F) \rangle.$$

Our next step is to apply $\mathbb{L}_1 \circ \mathbb{L}_2 \circ \mathbb{L}_3 \circ \mathbb{L}_4$. In other words, we are mutating the last object all the way to the first position. The effect is the same as tensoring it by the canonical bundle (which is $\mathscr{O}_S(-2E_1 - 2E_2 - 3F)$). We get:

$$D^{b}(S) = \langle \mathscr{O}_{S}(-F), \mathscr{O}_{S}, \mathscr{O}_{S}(E_{1}), \mathscr{O}_{S}(E_{2}), \mathscr{O}_{S}(E_{1}+E_{2}+F) \rangle.$$

At last, apply \mathbb{L}_1 . The same computations we did previously apply (after tensoring by $\mathscr{O}_S(F)$), yielding

$$D^{b}(S) = \langle \mathscr{O}_{F}, \mathscr{O}_{S}(-F), \mathscr{O}_{S}(E_{1}), \mathscr{O}_{S}(E_{2}), \mathscr{O}_{S}(E_{1}+E_{2}+f) \rangle.$$

This gives us (2) up to twisting by $\mathcal{O}_S(F)$.

4. Applications on families

We will finish today's talk by giving some justification to the idea of mutations. In fact: why would want to produce more semi-orthogonal decompositions?

One way of justifying this is to find a semi-orthogonal decomposition where the components have some geometric meaning, or some useful form. For example, we showed that the blow-up of \mathbb{P}^2 at two points admit a semi-orthogonal decomposition whose components are all line bundles. More generally, the argument of the previous section shows:

Proposition 8. Let S be a smooth, projective rational surface. Then S admits a semi-orthogonal decomposition consisting only on line bundles.

Proof. (Sketch) Pick a sequence of blow-dows $S \to S_1 \to \cdots \to S_r$, where S_r is either \mathbb{P}^2 or a Hirzebruch surface. The proof proceeds by induction on r: the case r = 0 is clear (recall that Hirzebruch surfaces are \mathbb{P}^1 -bundles!), and the induction

step follows from Orlov's semi-orthogonal decomposition together with the previous computation. $\hfill \Box$

For another example, we follow [Kuz21]. A surface S is a sextic du Val del Pezzo if S is normal, integral, with at worst du Val singularities and ω_S^{-1} ample with $\omega_S^2 = 6$. The smooth ones are easy to characterize: they are blow-ups $S \to \mathbb{P}^2$ at three general points. However, if the points are not chosen generally, we will get (-2)-curves which need to be contracted.

So, producing semi-orthogonal decompositions, at least for the smooth ones, is not difficult. If $S \to \mathbb{P}^2$ has exceptional divisors E_1, E_2, E_3 , Orlov's SOD gives us

$$\mathbf{D}^{b}(S) = \langle \mathscr{O}_{E_{1}}(-1), \mathscr{O}_{E_{2}}(-1), \mathscr{O}_{E_{3}}(-1), \mathscr{O}_{S}, \mathscr{O}_{S}(L), \mathscr{O}_{S}(2L) \rangle,$$

where L is the (pullback of the) class of a line in \mathbb{P}^2 . One can mutate this family to get:

Proposition 9 ([Kuz21, 3.1, 3.13]). There is a semi-orthogonal decomposition

$$\mathbf{D}^{b}(S) = \langle \mathcal{A}_1, \mathcal{A}_2, \mathcal{A}_3 \rangle$$

where

$$\mathcal{A}_1 = \langle \mathcal{O}_S \rangle$$

$$\mathcal{A}_2 = \langle \mathcal{O}_S(L - E_1), \mathcal{O}_S(L - E_2), \mathcal{O}_S(L - E_3) \rangle$$

$$\mathcal{A}_3 = \langle \mathcal{O}_S(L), \mathcal{O}_S(2L - E_1 - E_2 - E_3) \rangle.$$

From here one can interpret the semi-orthogonal decompositions in an interesting way. Note that ω_S^{-1} embeds S into \mathbb{P}^6 . We let Z_d be the Hilbert scheme with polynomial dt+1 with respect to this polarization. It turns out that each component \mathcal{A}_d^{\vee} can be interpreted as coming from the universal family in Z_d . Moreover, one can use this interpretation to extend the results for du Val del Pezzo surfaces.

Theorem 10 ([Kuz21, 5.2]). Assume that $\mathscr{X} \to S$ is a family of du Val del Pezzo surfaces. Then there is an S-linear semi-orthogonal decomposition

$$\mathbf{D}^{b}(\mathscr{X}) = \langle \mathbf{D}^{b}(S), \mathbf{D}^{b}(\mathscr{X}_{2}, \beta_{2}), \mathbf{D}^{b}(\mathscr{X}_{3}, \beta_{3}) \rangle,$$

where $\mathscr{X}_2, \mathscr{X}_3 \to S$ are finite flat of degree 3, 2 respectively, and $\beta_{\mathscr{X}_2}, \beta_{\mathscr{X}_3}$ are Brauer classes of order 2 and 3.

At the end, we get a result where mutations are not mentioned anywhere; however, these are a useful tool to get the correct ending result.

References

- [BK89] A. I. Bondal and M. M. Kapranov, Representable functors, Serre functors, and reconstructions, Izv. Akad. Nauk SSSR Ser. Mat. 53 (1989), no. 6, 1183–1205, 1337, DOI 10.1070/IM1990v035n03ABEH000716 (Russian); English transl., Math. USSR-Izv. 35 (1990), no. 3, 519–541. MR1039961
- [Huy06] D. Huybrechts, Fourier-Mukai transforms in algebraic geometry, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, Oxford, 2006. MR2244106
- [Kuz09] A. Kuznetsov, Hochschild homology and semiorthogonal decompositions, posted on 2009, 30 pp., DOI 10.48550/arXiv.0904.4330, available at https://arxiv.org/abs/0904.4330.
- [Kuz21] Alexander Kuznetsov, Derived categories of families of sextic del Pezzo surfaces, Int. Math. Res. Not. IMRN 12 (2021), 9262–9339, DOI 10.1093/imrn/rnz081. MR4276320
- [Stacks] The Stacks Project Authors, Stacks Project, 2021.

Department of Mathematics, Columbia University, 2990 Broadway, New York, NY 10027, USA

Email address: nivilches@math.columbia.edu